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Abstract

Causal reasoning is a cornerstone of how hu-
mans interpret the world. To model and reason
about causality, causal graphs offer a concise
yet effective solution. Given the impressive ad-
vancements in language models, a crucial ques-
tion arises: can they really understand causal
graphs? To this end, we pioneer an investi-
gation into language models’ understanding
of causal graphs. Specifically, we develop a
framework to define causal graph understand-
ing, by assessing language models’ behaviors
through four practical criteria derived from
diverse disciplines (e.g., philosophy and psy-
chology). We then develop CLEAR, a novel
benchmark that defines three complexity lev-
els and encompasses 20 causal graph-based
tasks across these levels. Finally, based on
our framework and benchmark, we conduct ex-
tensive experiments on six leading language
models and summarize five empirical findings.
Our results indicate that while language mod-
els demonstrate a preliminary understanding of
causal graphs, significant potential for improve-
ment remains. Our project website is at https:
//github.com/OpenCausaLab/CLEAR.

1 Introduction

Causal reasoning is fundamental to how humans
understand the world and solve challenges (Sloman
and Sloman, 2009). The ability to reason causally
allows us to explain phenomenon and predict the fu-
ture (Woodward, 2005; Pearl, 2009; Bunge, 2017).
There are various causal models used to investigate
and represent causation, including mathematical
equations, logical statements, and causal graphs
(Pearl and Mackenzie, 2018). Among them, causal
graph gains widespread adoption due to its intu-
itive and concise representation of complex causal
relationships (Pearl, 1995, 1998).

*Work done when interning at Shanghai AI Laboratory.
†Corresponding author.
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Figure 1: Performance of six leading language models
across 20 diverse tasks in CLEAR. Further details on the
experimental results can be found in Section 4. We use
distinct colors to represent different levels.

A causal graph is essentially a bayesian network
where each node represents a variable, and the di-
rected edges denote definite or possible causal rela-
tionships between variables (Helmert, 2004). Un-
derstanding causal graphs is essential, as it enables
us to grasp the relationships between variables (Ko-
caoglu et al., 2017). Furthermore, causal graphs
can be leveraged for probability calculation (Klein-
berg, 2013), providing solutions to problems across
all three rungs of the ladder of causation (i.e., as-
sociation, intervention, and counterfactuals) (Pearl
and Mackenzie, 2018). With the rapid advance-
ment of language models, there has been a surge
in research exploring their ability to solve graph-
related problems (Zhang et al., 2023b; Chai et al.,
2023; Fatemi et al., 2023; Ye et al., 2023; Zhang
et al., 2023a; Besta et al., 2024; Chen et al., 2024c;
Wang et al., 2024a; Luo et al., 2024). In contrast
to the abundant research on general graph prob-
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lems, the ability of language models to understand
causal graphs is yet to be investigated. Therefore,
this paper aims to shed light on the question: Can
language models really understand causal graphs?

Addressing this question poses three major chal-
lenges: (1) What does it mean for a model to un-
derstand causal graphs? (2) How to design a causal
graph-based benchmark that can measure a model’s
understanding? (3) How to quantify a model’s un-
derstanding when presented with causal graphs?

In this work, we first propose a framework to
evaluate language models’ understanding of causal
graphs, by establishing four criteria: performance
exceeding random guesses, robustness against ques-
tion types, correct utilization of causal definitions,
and performance constrained by task dependence.
These criteria draw on insights from machine learn-
ing, philosophy, and psychology, providing a multi-
disciplinary approach to evaluating the comprehen-
sion of causal graphs by language models. Next,
we construct the CLEAR, a novel benchmark cre-
ated specifically for evaluating how well language
models understand causal graphs. Finally, guided
by our proposed framework of understanding in
causal graphs, we systematically evaluate models’
performance on CLEAR across all four criteria. To
ensure a diverse evaluation, we select six leading
models and utilize four prompts (e.g., in-context
learning (IcL) (Brown et al., 2020)). Our extensive
experiments yield the following key findings:

1. The model’s ability to handle different causal
graph-based tasks is uneven, exhibiting no-
table weaknesses in specific areas (Figure 1).

2. Language models have a preliminary under-
standing of causal graphs (Figure 5), and are
observed to focus on key information required
to deduce the correct answer (Figure 10).

3. Model performance is sensitive to the ques-
tion type. A model’s understanding of causal
graphs might be artificially inflated if evalua-
tion relies on limited types (Figure 6).

4. Models exhibit a capacity for utilizing both
explicit and implicit concepts related to causal
graphs, and their proficiency with these con-
cepts varies considerably (Figure 7).

5. The performance of most models is not con-
strained by task dependency (i.e., although
Task B depends on Task A, performance on
Task B often exceeds that on Task A), show-
casing a notable divergence in their perfor-
mance trends. This might suggest heterogene-

ity in knowledge representation and applica-
tion across different models (Figure 8).

Overall, we make four main contributions:
• We make, to the best of our knowledge, the

first-ever attempt to evaluate language models’
capacity for understanding causal graphs.

• We propose a framework for measuring a
model’s understanding of causal graphs by
defining four specific criteria.

• We construct CLEAR, the first benchmark de-
signed specifically to assess language mod-
els’ understanding of causal graphs. CLEAR
features three levels, encompasses 20 causal
tasks, and considers six question types.

• Extensive experiments with six leading lan-
guage models yield insightful findings and
valuable observations about their capacity for
understanding causal graphs.

2 What Do We Mean by Understanding in
Language Models?

2.1 Multiple Facets of Understanding

Unlocking the mysteries of human social behav-
ior (Adler et al., 2006), decision-making (Frensch
and Funke, 2014), and personality development
(Lapsley et al., 2004) hinges on our ability of un-
derstanding. Our investigation into understanding
begins with a brief summary of the existing defini-
tions across various disciplines.

From the philosophical and psychological per-
spectives, understanding means: (1) More than
just knowing isolated facts. It involves recognizing
and grasping the relationships that weave together
the various elements of a subject (Kvanvig, 2003;
Carter and Gordon, 2014; Grimm, 2021). (2) Be-
yond the formula or definition. It encompasses the
ability to not only grasp concepts or formulas but
also to adeptly apply them in practical contexts
(Rumelhart, 1991; De Regt, 2004). (3) Variation in
degree. Understanding is not binary, its complete-
ness depends on the individual’s conceptual context
and background knowledge (Nickerson, 1985).

Considering recent machine learning endeavors,
Choudhury et al. (2022) propose three criteria to
assess if a reading comprehension model reaches
human-level ability. They focus on whether a
model could solve problems correctly, whether it
uses information that humans would deem relevant,
and whether its performance is consistently robust.
Although the three conditions provided in Choud-

6248



L1: BasicTask L3: AdvancedTask

L2: IntermediateTask

Backdoor Path

FrontdoorAdjustment Set

Three Nodes Relationship

Single Node Single Edge Two Nodes Relationship

PathCycle

Topological Ordering

Blocked PathC-ComponentC-Tree

C-Forest D-Separation

Directed Path

Markov Equivalent ClassMarkov BlanketMaximal Root Set

BackdoorAdjustment Set

Causal Effect Identification

Figure 2: Hierarchy and dependent relationships of tasks in CLEAR. We define three complexity levels, the
three-level definition is novel and tailored specifically for this benchmark. (1) Level 1: Basic Task. Mastering these
concepts is a prerequisite for understanding any general graph. (2) Level 2: Intermediate Task. These tasks represent
the most common characteristics in causal graphs. Causal graph-based reasoning relies heavily on understanding
these fundamental problems. (3) Level 3: Advanced Task. These tasks present complex, high-level challenges that
are central to causal graph understanding. Solid arrows indicate the dependencies between tasks within the same
level, while dashed arrows represent the tasks’ dependencies across different levels. Task dependency design draws
on established research (Shpitser and Pearl, 2006; Pearl, 2009; Bareinboim and Pearl, 2012; Pearl et al., 2016; Pearl
and Mackenzie, 2018; Jaber et al., 2019).

hury et al. (2022) sufficiently define a model’s un-
derstanding, there is still room for improvement.
For instance, these conditions fail to offer precise
quantitative criteria and lack explicit clarification
on what type of information is considered relevant.

2.2 Exploring Language Models’
Understanding of Causal Graphs

Numerous studies have identified understanding
as a key factor in the pursuit of human-level arti-
ficial intelligence (McCarthy, 2007; Adams et al.,
2012; McClelland et al., 2020). However, arriv-
ing at a definition of understanding within lan-
guage models is an ongoing challenge. Evaluat-
ing models’ understanding based on accuracy is
currently the dominant approach and certainly es-
sential (Ashwani et al., 2024; He et al., 2024; Xu
et al., 2024), but this method suffers from inherent
limitations. Real-world problems are complex, and
data often contains noise (Gupta and Gupta, 2019;
Moran et al., 2020; Bansal et al., 2022). These
make it practically impossible for any model to
be perfectly accurate all the time (even humans
rarely achieve this) (Valverde-Albacete and Peláez-
Moreno, 2014). While it is clear that understanding
varies in degree (Nickerson, 1985), pinning down
a specific threshold is difficult. This difficulty is
compounded by the variability in task complexity
and the subjective nature of interpreting “levels of
understanding”. Consequently, rather than define

“what constitutes understanding of causal graphs
in a language model”, we think it might be more

productive to consider “if a language model under-
stands causal graphs, how should it behave?”

2.3 Seeking Understanding of Causal Graphs
in Model Behavior

To measure how well language models understand
causal graphs, we develop a three-level evalua-
tion hierarchy comprising 20 meticulously crafted
causal graph-based tasks (as Figure 2 illustrates).
These tasks include graphs’ basic tasks (e.g., cy-
cle), intermediate tasks (e.g., markov equivalent
class), and advanced tasks (e.g., causal effect iden-
tification). Proficiency in these 20 tasks serves
as a valid measure of a model’s understanding of
causal graphs. Therefore, combining the analyses
from Section 2.1 and Section 2.2, we propose that a
language model that exhibits understanding would
demonstrate the following four behaviors in our
tasks.1 The performance of a model is denoted by
P , random guess by Pr, the original response of a
model by R, and the ground truth by GT .

B1: Performance exceeding random guesses.
Existing work suggests that random guess implies
a lack of extensive understanding of the given prob-
lem (Capraro et al., 2012). Moreover, using random
guess as baseline is a common and reasonable prac-
tice in evaluating model performance (Chen et al.,
2023; Wang et al., 2024a; Chen et al., 2024b). This
behavior can be formulated as P > Pr.

1More thoughts about our framework are in Appendix A.1.
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B2: Robustness against question types. Nu-
merous studies highlight that altering the question
type or description of a graph, while preserving
the original meaning of the problem, can signifi-
cantly impact model performance (Fatemi et al.,
2023; Hu et al., 2023; Luo et al., 2024). Therefore,
we suppose that if a model’s understanding of a
causal graph and its related tasks is genuine, its
performance should not be sensitive to superficial
changes in the causal graph’s question type.

B3: Correct utilization of causal definitions.
As De Regt (2004) emphasizes, understanding im-
plies the ability to utilize given definitions to solve
problems. This behavior indicates that the model
not only recognizes terms but also understands their
meanings and how they relate to the given context.
This behavior can be defined as: R← def. = GT ,
where R ← def. means a model’s response af-
ter adding a causal definition to the prompt. The
definition can be conveyed either explicitly within
the prompt or implicitly through the provision of
examples (e.g., IcL) (Li et al., 2022; Zheng et al.,
2023; Richens and Everitt, 2024).

B4: Performance constrained by task depen-
dence. Task dependence consistently emerges as
a crucial factor in studies focused on understanding
(Kvanvig, 2003; Carter and Gordon, 2014; Grimm,
2021). As shown in Figure 2, we determine that
Task B is dependent on Task A if it requires knowl-
edge acquired from Task A for resolution, whereas
solving Task A does not necessitate knowledge
from Task B. Mastery of the foundational task is
thus deemed essential for succeeding in the depen-
dent task. This performance constraint due to task
dependence serves as a critical metric for assessing
a model’s depth of understanding.

3 The CLEAR Benchmark

To explore the question: Can Language modEls
reAlly undeRstand causal graphs? we propose
CLEAR, the first benchmark dedicated to causal
graph understanding. We ensure dataset diversity
by accounting for various factors: the size, type,
and density of causal graphs, as well as the richness
of tasks and question types.

3.1 Benchmark Construction

Generating random graphs. We begin by ran-
domly creating a set of graphs. A graph is denoted
as G = (V, E), where V and E represent set of

Question types

Causal graph info
Given a DAG (directed acyclic graph) with nodes V, W, L, A 
and directed edges W→A, V→W, W→L, V→A, L→A.

Find all
Find all backdoor paths 
from node L to node A.

Find one
Find the shortest backdoor 
path from node L to node A.

How many
How many backdoor paths 
are from node L to node A.

Choice selection
Which of the following is a backdoor path from W to L?
A. W→A←L   B. W←V→A←L   C. W←A<→V→L   D. W→L

Yes or no
Is W←V→A a backdoor 
path from W to A?

Existence
Does there exist a backdoor path from L to A?

Figure 3: Six question types. Taking the backdoor path
as an example, we design six question types in CLEAR.
A complete question is formulated by combining the
causal graph info with a specific question type.

nodes and edges. To ensure diversity, we cover
both general and causal graphs, differentiated by
structure into four types: undirected graph, directed
graph, directed acyclic graph (DAG), and acyclic
directed mixed graph (ADMG) (Peters et al., 2017).
The undirected and directed graphs, typical of gen-
eral graph types, are employed primarily in basic
tasks. Conversely, DAGs and ADMGs, which are
causal in nature, are utilized in intermediate and
advanced tasks. To control the complexity, we
vary the number of nodes (nv) from 4 to 9 and
adjust the number of edges (ne) from nv − 1 to
10 for each nv. These graph types involve three
types of edges: undirected edge, directed edge, and
bi-directed edge. The undirected edges symbol-
ize reciprocal relationships, while the bi-directed
edges suggest the presence of confounding between
nodes. For ADMGs that contain both directed
and bi-directed edges, we maintain the ratio of
bi-directed to directed edges at or below 0.5 to pre-
vent excessive complexity. We denote nodes using
letters, and to ensure neutrality and mitigate bias
from the model’s potential prior knowledge, the
alphabetical order of V is randomized.

Generating causal reasoning questions. Based
on the causal graphs, we generate questions with
corresponding ground truth for various causal tasks
and question types. The questions are produced
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Table 1: Concise statistics of the CLEAR benchmark.
We tally the number of different causal tasks, organizing
them by various levels. Type indicates question type.

Causal task # Type # Sample
Basic Task

Single node (SN) 4 192
Single edge (SE) 4 192
Two nodes relationship (2NR) 5 120
Three nodes relationship (3NR) 5 120
Path (PT) 5 168
Cycle (CL) 4 144
Topological ordering (TO) 3 144

Intermediate Task
Blocked path (BLP) 3 144
D-separation (DS) 3 120
Markov equivalent class (MEC) 2 120
Markov blanket (MB) 3 144
Directed path (DP) 5 120
Backdoor path (BKP) 5 144
C-component (CC) 3 108
C-tree (CT) 1 120
C-forest (CF) 1 120
Maximal root set (MRS) 4 192

Advanced Task
Backdoor adjustment set (BAS) 4 132
Frontdoor adjustment set (FAS) 4 144
Causal effect identification (CEI) 1 120
Total 6 2808

using predefined templates. Specifically, we design
20 causal tasks and six question types.2 And as
Figure 3 demonstrates, these question types can be
divided into two types of subjective questions (i.e.,
find all and find one) and four types of objective
questions (i.e., how many, yes or no, choice se-
lection, and existence), providing an in-depth eval-
uation of models’ understanding. The objective
questions have a single, clearly verifiable answer
based on the question and causal graph. Regarding
subjective questions, we take find all as an exam-
ple. Find all requires listing all answers meeting
specific criteria (e.g., “Find all paths from node X
to node Y”). The subjectivity arises primarily from
the answer format, as there can be multiple correct
ways to express the answer (e.g., both “X→Y” and
“a path from X to Y” are acceptable).

3.2 Data Statistics

Our CLEAR benchmark includes 20 causal tasks,
spanning all three complexity levels. We generate
2808 questions in total. For each causal task, we
ensure that the number of questions exceeds 100
to support the validity of our experimental conclu-
sions. Table 1 presents the overview of the CLEAR.

2Appendix B provides more information on the dataset.

4 Experiments

4.1 Setups

Models. Our evaluation encompasses six models.
This selection includes both open-access models
(InternLM2-Math-20B (Ying et al., 2024), Mixtral-
8×7B (Jiang et al., 2024), and Llama2-Chat-
70B (Touvron et al., 2023)), and limited-access
models (GPT-3.5-Turbo (OpenAI, 2022), GPT-
4 (Achiam et al., 2023), and Gemini Pro (Team
et al., 2023)). They originate from various creators
and exhibit a spectrum of model scales. We use the
default hyper-parameter settings for all models.

Prompts. In Section 4.2, 4.3 and 4.5, we employ
the basic prompt (i.e., <question>). In Section 4.4,
we adopt basic prompt, 1/3-shot IcL (Brown
et al., 2020), and definition-guided prompt (i.e.,
<instruction, definition, question>).3

Metrics. The evaluation metric is accuracy. Ob-
jective questions are assessed via answer extraction
using GPT-4 and exact-match scoring.4 Subjec-
tive questions are evaluated manually. For a more
efficient and accurate human evaluation, we de-
velop a dedicated HTML-based tool. This tool not
only facilitates a more intuitive visualization of the
model outputs but also enhances the overall review
process. More details about our tool and human
evaluation are provided in Appendix C.2.

4.2 Comparison with Random Guess

Figure 4 illustrates the models’ performances on
all causal tasks. Each cell in the figure represents a
model’s accuracy. Moreover, to ensure the sound-
ness of our benchmark design and the trustworthi-
ness of our results, we conduct a multi-turn eval-
uation in Appendix C.3. From Figure 4, we can
conclude that: (1) Although limited (i.e., approxi-
mately 40% to 60% room for improvement), lan-
guage models do exhibit preliminary understand-
ing (i.e., exceed random guess) of causal graphs.
The rightmost column of the figure indicates the
models’ average accuracies, demonstrating that all
models outperform their random guesses. This
suggests that they possess basic understanding
of the causal graphs. Despite exceeding random
guesses, there remains substantial room for im-
provement. Even the top-performing model, GPT-

3See Appendix C for details on these prompts.
4Prior studies have shown that strong language models

(e.g., GPT-4) can be effective judges (Lu et al., 2023; Zheng
et al., 2024b), demonstrating the validity of this approach.
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Figure 4: Overall model performance. Each cell corresponds to the model’s accuracy on that specific task.

4, only reaches an accuracy of 60.5%, while the
remaining models hover around 40.0%. (2) Lan-
guage models demonstrate a good grasp of the fun-
damental elements that constitute a causal graph.
All models achieve over 70.0% accuracy on the
single node and single edge tasks, with GPT-4 even
reaching 100.0% on the single node. These results
provide valuable insights for designing future tasks
involving causal graphs. (3) The model’s error re-
sponse is the dominant factor contributing to its sub-
par performance compared with random guess. We
adopt the error types defined in Chen et al. (2024b)
and observe the model exhibit errors such as causal
hallucination, contradiction, and misunderstanding.
For instance, when the model’s response exhibits
contradiction, it might simultaneously answer “yes”
and “no”. This ambiguity makes it challenging to
extract answers using GPT-4. GPT-4 would output
“unknown” in this scenario, rendering the response
invalid.5

Figure 5 presents the models’ average accuracies
across three levels. We find that: (1) Language
models excel at the basic task level. All models
achieve an accuracy exceeding 50.0%, with the
highest reaching 74.3%. Conversely, most average
accuracies attained on the remaining two levels
fail to surpass 40.0%. Our three-level structure
highlights the limitations of current models and
offers potential guidance for the construction of
future benchmarks. (2) The five models, excluding
GPT-4, demonstrate similar performance.

4.3 Is the Model Robust?

To evaluate the models’ robustness, we consider
all six different question types. Different question
types within a specific causal task, when presented

5The qualitative analysis is provided in Appendix C.4.
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Figure 5: Model performance across the three lev-
els of CLEAR. The term Mixtral refers to Mixtral-
8×7B, Llama2 to Llama2-Chat-70B, and InternLM2
to InternLM2-Math-20B.

with the same causal graph, aiming to probe the
same core concept of causality. Importantly, we
acknowledge the potential impact of question type
on both the probabilities of random guesses and the
phrasing of questions. Our objective is to conduct
a preliminary investigation into how question types
influence model robustness.

Figure 6 shows the average accuracy of the mod-
els across different question types. We draw the
following conclusions: (1) Model performance is
sensitive to question type. All models excel in YN
and EX question types but struggle with FA, FO,
and HM. Wherein, Llama2-Chat-70B, InternLM2-
Math-20B, and Gemini Pro exhibit performance
discrepancies exceeding 35.0% across different
question types. Although GPT-3.5-Turbo is not
the top performer, it demonstrates the minimal per-
formance difference, measuring at 22.8%. (2) A
model’s understanding of causal graphs might be
artificially inflated if evaluation relies on limited
question types. The selection bias inherent in lan-
guage models raises concerns about their robust-
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Figure 6: How the question types affect model ro-
bustness. We compare the models’ accuracies across
different question types. FA stands for find all, FO for
find one, HM for how many, CS for choice selection,
YN for yes or no, and EX for existence.

ness (Zheng et al., 2024a; Chen et al., 2024a). If
we only evaluate language models on CS, YN and
EX, we risk overestimating their true capabilities.
It is the diversity of question types that reveals the
actual understanding capability of a model.6

4.4 Definition Proficiency of the Model

To investigate whether the models could effec-
tively utilize the provided definitions related to a
causal graph, we further conduct experiments on
seven tasks (i.e., 3NR, PT, BLP, BKP, CC, MRS,
and FAS).7 For these tasks, the average accuracies
across all models on the objective questions are be-
low 40%. Moreover, the seven tasks span all levels
in Figure 2, which can fully demonstrate the effec-
tiveness of the experiments. For prompts, we se-
lect the basic prompt, 1/3-shot IcL, and definition-
guided prompt. There is ample work validating the
effectiveness of IcL (Wu et al., 2023; Wang et al.,
2023). Therefore, to assess a model’s ability to
correctly apply or abstract a causal definition, IcL
serves as an ideal reference.

Figure 7 shows the overall accuracy difference
of each model across seven causal tasks using dif-
ferent prompts.8 The baseline for comparison is
the average accuracy of each model under the ba-

6There is a growing trend in benchmark design towards
incorporating a wider variety of question types or providing
more choices for models (Chen et al., 2024b; Wang et al.,
2024b; Röttger et al., 2024).

7These abbreviations are given in Table 1. Detailed defini-
tions of all seven tasks are in Table 5 (Appendix C.5).

8We provide the detailed data in Table 6 (Appendix C.5).
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Figure 7: Explicit and implicit definition proficiency.
We compare how well the model could utilize defini-
tions, examining both explicitly and implicitly. Add def.
indicates the definition-guided prompt.

sic prompt. By analyzing this figure, we can draw
the following conclusions: (1) The models exhibit
notable differences in their understanding of defini-
tions related to a causal graph. Providing the causal
definition significantly enhances the performance
of GPT-4, GPT-3.5-Turbo and Mixtral-8×7B. No-
tably, the improvement is most pronounced for
GPT-4, which even surpasses both 1-shot IcL and 3-
shot IcL. The improvements on GPT-3.5-Turbo and
Mixtral-8×7B are also remarkable, both outper-
forming 1-shot IcL. However, the remaining three
models do not benefit from the provided defini-
tion. Specifically, InternLM2-Math-20B exhibits
the most prominent accuracy decline. (2) Models
capable of (explicitly) utilizing definitions correctly
are often observed performance improvements (im-
plicitly) through IcL. However, even if a model’s
performance can be considerably promoted by IcL,
it does not necessarily mean the model can suc-
cessfully apply (explicit) definitions. Despite the
potential for accuracy gains (over 60% cumula-
tively) of Gemini Pro using 3-shot IcL, it struggles
to correctly apply (explicitly) provided definitions,
resulting in diminished performance.

4.5 How Task Dependence Shapes Model
Performance

Based on Figure 2, we select three representative
sets of dependent causal tasks and consider the YN
question type. (1) Tasks within the same level: we
choose CC→CT→CF, all located at intermediate
task. (2) Tasks across distinct levels: we choose
a sequence spanning different levels: 3NR (basic
task)→BKP (intermediate task)→BAS (advanced
task) are considered. (3) Tasks with partial level
overlap: we focus on a combination where some
tasks share the same level: 3NR (basic task)→BKP
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(c) 3NR→BLP→DS

Figure 8: Task dependence’s impact on model performance. We evaluate model performance across three groups
of causal tasks categorized by their correlations. The orange dashed line represents the accuracy of random guess.

(intermediate task)→DS (intermediate task).
Upon meticulous examination of Figure 8, we

have the following observations: (1) The perfor-
mances of most models are not constrained by de-
pendent causal tasks. Out of all models, only GPT-
3.5-Turbo and GPT-4 in Figure 8(b) exhibit the
expected accuracy trend (i.e., 3NR≥BKP≥BAS).
These results suggest that the models might not
truly understand the causal relationships between
tasks, but rather rely on other spurious correlations.
It is also possible that not all models possess the ca-
pacity for human-level causal reasoning and knowl-
edge transfer ability. (2) Different models exhibit
varying performance trends when tackling the same
group of dependent causal tasks. This highlights
the heterogeneity of knowledge representation and
application among different models.

4.6 Counterfactual Explainability

The analyses from Section 4.2 to Section 4.5 are
based on directly calculating the accuracy of the
models’ outputs. To extend beyond mere accu-
racy, we leverage Captum (Kokhlikyan et al., 2020;
Miglani et al., 2023), a Python library for model
interpretability, to explore language models’ under-
standing of causal graphs from a counterfactual per-
spective. We primarily use the perturbation based
methods provided by Captum.9 As depicted in Fig-
ure 9, we first query both Llama2-Chat-70B and
Mixtral-8×7B, which are of comparable scale and
have been widely adopted, using the original ques-
tion to obtain their respective answers. Our main
focus is the impact of “Z→A” on the model’s re-
sponse. We suspect “X→R” and “M→Z”, which
are located near the “Z→A”, could also potentially

9For further guidance, refer to the tutorial at: https://
captum.ai/tutorials/Llama2_LLM_Attribution.

Original question:
Given a DAG (directed acyclic graph) with
nodes M, Z, A, X, R and directed edges M→X,
X→R, Z→A, M→Z, M→R, Z→X, Z→R.
How many parents does node A have?

Counterfactual explainability

Node A has two parents

Ground truth: 1

Llama2-Chat-70B Mixtral-8x7B

Node A has 1 parent

Counterfactual perturbation:
Given a DAG (directed acyclic graph) with
nodes M, Z, A, X, R and directed edges M→X,
R→X, A→Z, Z→M, M→R, Z→X, Z→R.
How many parents does node A have?

M X

Z

R

A

M X

Z

R

A

Figure 9: Counterfactual perturbation used in this
case. Starting with the original question, we obtain
answers for both models. Next, we establish the baseline
using counterfactual perturbation. Finally, we calculate
the token attribution of key information to understand
its influence on the model’s output.

impact the model’s response. Consequently, we use
counterfactual perturbations to analyze the influ-
ences of these three statements on the model. We
set the counterfactual perturbations as baseline (i.e.,
perturbation-based algorithm uses it as reference
value), and the model’s response as target string.
Finally, using the target function in Captum, we cal-
culate the log probability of the model generating
its answer given the question.

Figure 10 displays the token attributions of the
models’ responses. We find that “Z→A” is the
most positive factor in getting the right answer “1”
for Mixtral-8×7B, with “X→R” and “M→Z” also
contributing positively. This confirms that Mixtral-
8×7B correctly identifies and utilizes the relevant
information in its reasoning process. In contrast,
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Figure 10: Token attribution. On the y-axis, under-
scores mark the tokenizer’s divisions of each target
string. The x-axis displays key information of the ques-
tion.

Llama2-Chat-70B produces a wrong answer. Nei-
ther “Z→A”, “X→R” nor “M→Z” exhibit a signif-
icant positive impact on its answer, suggesting that
Llama2-Chat-70B fails to identify key information.
The results support the claim in Section 4.2 that
models have a preliminary understanding of causal
graphs. More importantly, the results demonstrate a
strong link between a model’s understanding of the
causal graph and its ability to focus on the essential
information within the graph.

5 Related Work

Language models’ understanding ability. Lan-
guage models’ understanding is being probed
through various perspectives, such as causality
(Hobbhahn et al., 2022; Kim et al., 2023; Ash-
wani et al., 2024), real-world problems (Choi et al.,
2023; He et al., 2024; Xu et al., 2024), disciplines
(Castro Nascimento and Pimentel, 2023; Guo et al.,
2024). A common approach in these studies is to
establish a benchmark, and then evaluate a model’s
performance. A more rigorous exploration of what
means understanding in models is still needed.

Graph-based benchmarks. The capacity of lan-
guage models to solve graph-based problems is at-
tracting growing attention. Wang et al. (2024a) pro-
pose the NLGraph, concentrating primarily on es-
sential graph tasks. Luo et al. (2024) introduce the
GraphInstruct benchmark. Fatemi et al. (2023) pro-
pose the GraphQA to explore the impact of differ-
ent graph encoding methods. LLM4DyG (Zhang
et al., 2023a) addresses the dynamic graphs. De-
spite progress in applying models to graph tasks,
their ability to reason about causality within graphs
still requires further investigation.

Causal evaluation on language model. The
quest to understand causality in language models
is heating up. Jin et al. (2023) propose CLAD-

DER, a dataset encompassing over 10K diverse
questions. Liu et al. (2024) investigate the capa-
bilities of language models in handling data-based
problems. Chen et al. (2024b) develop CaLM, a
120,000+ bilingual dataset for in-depth evaluation
of language models’ causal reasoning ability. Nu-
merous other efforts further enrich this area (Nie
et al., 2023; Jin et al., 2024; Zhou et al., 2024; Kici-
man et al., 2024). However, a dedicated benchmark
specifically from the perspective of causal graphs
is still lacking.

6 Conclusion

This paper provides a comprehensive and in-depth
exploration on the question: Can language mod-
els really understand causal graphs? We define a
practical framework for accessing a model’s under-
standing. We introduce CLEAR, a novel benchmark
designed to evaluate a model’s understanding of
causal graphs, filling a significant gap in existing
research. We validate our framework through ex-
tensive experiments and conclude five insightful
findings.

7 Limitations

Despite our best efforts to design a framework for
causal graph understanding, construct a benchmark,
and conduct thorough experiments on six models,
we acknowledge that our work still has limitations.
The language of CLEAR is relatively limited. Due to
time and budget constraints, our benchmark only
considers English. As language models are increas-
ingly used worldwide, we acknowledge that a mul-
tilingual dataset could provide more meaningful
findings. Moreover, the definition of understand-
ing still requires further exploration. For instance,
how to extend the concept of robustness to broader
scenarios. Additionally, evaluating the understand-
ing of large vision language models (LVLMs) will
likely require considering a wider set of factors.
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A Considerations in Understanding
Framework Design

A.1 Two-pronged Approach

In Section 2.2, we propose that we should con-
sider “if a language model understands causal
graphs, how should it behave?” We believe the
question needs to be considered from two aspects:
(1) Human-centric perspective. To properly as-
sess language models, we must first define under-
standing in a way that aligns with human cognition.
This is crucial for ensuring language models truly
achieve human capabilities. (2) Model-centric per-
spective. While human-centric definitions provide
a starting point, there exist foundational differences
in information processing between human brains
and language models (Caucheteux et al., 2023).
Therefore, we need to explore practical definitions
that are suitable to the characteristics of models.

To this end, we carefully design four criteria in
Section 2.3. And from a model-centric perspec-
tive, we define understanding by examining behav-
iors related to B1: performance exceeding random
guesses and B2: robustness against question types.
From a human-centric perspective, we consider
B3: correct utilization of causal definitions and B4:
performance is constrained by task dependence.

B Design Details of CLEAR

B.1 Overall Statistics

The detailed statistics of CLEAR are in Table 2.

B.2 Question Templates

Templates for questions of CLEAR are listed in Table
3. While potentially impacting diversity (Cobbe
et al., 2021), this method enables efficient data scal-
ing and accesses whether a model can recognize
subtle distinctions within the templates (Chen et al.,
2024b).

C Details for Experiments

C.1 Prompt Settings

Basic prompt. Our basic prompt aligns with the
definition in Chen et al. (2024b), referring to pro-
viding only the question requiring an answer.

Definition-guided prompt. Taking BKP as an
example, Figure 11 illustrates how to incorporate
the definition of this causal task into the prompt
(i.e., definition-guided prompt).

Backdoor path with definition

Prompt:
You will be provided with a definition of a concept. Using this 
definition, answer the following question.
Definition: 
Given an ordered pair of variables (X, Y), a backdoor path is 
any path from X to Y that starts with an arrow pointing into X. 
This backdoor path is a non-causal path from X to Y.
Question:
Given a DAG (directed acyclic graph) with nodes V, W, L, A 
and directed edges W→A, V→W, W→L, V→A, L→A.
Is W←V→A a backdoor path from W to A?

Figure 11: Definition-guided prompt. We explicitly
provide the model with definitions relevant to the ques-
tions.

Figure 12: Human evaluation tool. We develop a dedi-
cated tool for a more efficient and accurate evaluation.

C.2 Human Evaluation
We provided a comprehensive guideline to the an-
notators, covering key aspects such as: (1) Rele-
vance: Assessing whether the model’s response is
relevant to the question. (2) Accuracy: Evaluating
the factual correctness of the response.

To ensure the quality of the evaluation, we im-
plemented the following measures: (1) Expertise
of annotators: Both annotators have over six years
of experience in computer science. (2) Specialized
evaluation tool: We develop an HTML-based tool
for intuitive visualization and streamlined evalu-
ation of model outputs. Figure 12 demonstrates
the interface of our human evaluation tool, and
it is publicly available at https://github.com/
OpenCausaLab/CLEAR. (3) Training session: Both
experts underwent a training session to align their
understanding and application of the guidelines.

As for our inter-agreement quality, the anno-
tators work collaboratively to resolve discrepan-
cies and ensure consistency. This collaborative
approach helps maintain a high level of agreement
and reliability in the evaluations.
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Table 2: Detailed statistics of the CLEAR benchmark. We tally the number of different question types within each
causal task, organizing them by various levels. YN indicates yes or no.

Causal task Find all Find one How many Choice selection YN Existence Total
Basic Task

Single node (SN) 48 - 48 48 48 - 192
Single edge (SE) 48 - 48 48 48 - 192
Two nodes relationship (2NR) 24 - 24 24 24 24 120
Three nodes relationship (3NR) 24 - 24 24 24 24 120
Path (PT) 24 72 24 24 24 - 168
Cycle (CL) - 36 - 36 36 36 144
Topological ordering (TO) - 48 - 48 48 - 144

Intermediate Task
Blocked path (BLP) - 72 - 36 36 - 144
D-separation (DS) - 60 - 30 30 - 120
Markov equivalent class (MEC) - 60 - - 60 - 120
Markov blanket (MB) - 48 - 48 48 - 144
Directed path (DP) 24 - 24 24 24 24 120
Backdoor path (BKP) 24 48 24 24 24 - 144
C-component (CC) 36 - 36 - 36 - 108
C-tree (CT) - - - - 120 - 120
C-forest (CF) - - - - 120 - 120
Maximal root set (MRS) 48 - 48 48 48 - 192

Advanced Task
Backdoor adjustment set (BAS) - 72 - 24 24 12 132
Frontdoor adjustment set (FAS) - 72 - 24 24 24 144
Causal effect identification (CEI) - - - - 120 - 120
Total 300 588 300 510 966 144 2808
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Table 3: Question template for CLEAR.

Causal task Type Template
Basic Task

SN

FA List all nodes of this graph.
HM How many nodes does this graph have?
CS Which of the following is/is NOT a node of this graph?
YN Is {variable} a node of this graph?

SE

FA List all edges of this graph.
HM How many edges does this graph have?
CS Which of the following is/is NOT an edge of this graph?
YN Is {variable} a edge of this graph?

2NR

FA List all parents/descendants/children/ancestors of {variable}.
HM How many parents/descendants/children/ancestors does {variable} have?
CS Which of the following is one of parents/descendants/children/ancestors of {variable}?
YN Is {variable} one of parents/descendants/children/ancestors of {variable}?
EX Does {variable} have any parents/descendants/children/ancestors?

3NR

FA List all chains/forks/v-structures of this graph.
HM How many chains/forks/v-structures does this graph have?
CS Which of the following is a chain/fork/v-structure of this graph?
YN Does {variables} form a chain/fork/v-structure in this graph?
EX Are there any chain/fork/v-structure of this graph?

PT

FA Find all path from {variable} to {variable}.
FO Find one/the shortest/the longest path from {variable} to {variable}.
HM How many paths are there from {variable} to {variable}.
CS Which of the following is a path from {variable} to {variable}?
YN Is {variable} a path from {variable} to {variable}?

CL

FO Find one cycle in this graph.
CS Which of the following is a cycle in this graph?
YN Is {variable} a cycle in this graph?
EX Are there any cycle in this graph?

TO
FO Find one valid topological ordering in this graph.
CS Which of the following is a valid topological ordering of this graph?
YN Is {variable} a valid topological ordering of this graph?

Intermediate Task

BLP
FO Find one valid/the minimal nodeset that can block {variable}.
CS Which of the following nodesets can block {variable}?
YN Can {variable} be blocked by {variable}?

DS
FO Find one valid/the minimal nodeset that can d-separate {variable} and {variable}.
CS Which of the following nodesets can d-separate {variable} and {variable}?
YN Are {variable} and {variable} d-separated by {variable}?

MEC
FO Find another graph that belongs to the same markov equivalent class of the given graph.

YN Given another DAG with nodes {variable} and directed edges {variable}, do these two graphs
belong to the same markov equivalent class?

MB
FO What is the markov blanket of {variable}.
CS Which of the following is the markov blanket of {variable}?
YN Is {variable} the markov blanket of {variable}?

DP

FA Find all directed paths from {variable} to {variable}.
HM How many directed paths are there from {variable} to {variable}?
CS Which of the following is a directed path from {variable} to {variable}?
YN Is {variable} a directed path from {variable} to {variable}?
EX Is there a directed path from {variable} to {variable}?

BKP

FA Find all backdoor paths from {variable} to {variable}.
FO Find the shortest/the longest backdoor path from {variable} to {variable}.
HM How many backdoor paths are there from {variable} to {variable}.
CS Which of the following is a backdoor path from {variable} to {variable}?
YN Is {variable} a backdoor path {variable} to {variable}?

CC

FA It can be uniquely partitioned into a set C(G) of subgraphs, each a maximal C-component.
Write down such partition of the given graph.

HM It can be uniquely partitioned into a set C(G) of subgraphs, each a maximal C-component. How
many subgraphs are there in C(G)?

YN Is it a C-component??
CT YN Is it a C-tree?
CF YN Is it a C-forest?

MRS

FA Find the maximal root set of this graph.
HM How many nodes are there in the maximal root set of this graph?
CS Which of the following options is the maximal root set of this graph?
YN Is {variable} the maximal root set of this graph?

Advanced Task

BAS

FO Find one valid/one minimal/one maximal backdoor adjustment set for {variable} and {variable}.
CS Which of the following sets is a valid backdoor adjustment set for {variable} and {variable}?
YN Is {variable} a valid backdoor adjustment set for {variable} and {variable}?
EX Does there exist a valid backdoor adjustment set for {variable} and {variable}?

FAS

FO Find one valid/one minimal/one maximal frontdoor adjustment set for {variable} and {variable}.
CS Which of the following sets is a valid frontdoor adjustment set for {variable} and {variable}?
YN Is {variable} a valid frontdoor adjustment set for {variable} and {variable}?
EX Does there exist a valid frontdoor adjustment set for {variable} and {variable}?

CEI YN Can the causal effect of {variable} on {variable} be identified or not?6262



C.3 Multi-turn Evaluation

We substantiate the robustness of our benchmark
design and the reliability of our results through a
multi-turn evaluation. We choose our four types
of objective questions (i.e., how many, yes or no,
choice selection, and existence) to make the multi-
turn evaluation more efficient. As mentioned in
Section 4.1, our objective questions can be auto-
matically evaluated at scale using GPT-4 extraction
and exact-match scoring.

Table 4: Concise statistics of out multi-turn evalua-
tion.

Model Round 1 Round 2 Round 3
Mixtral-8×7B 51.9 46.9 47.0
Llama2-Chat-70B 47.6 45.9 46.0
InternLM2-Math-20B 48.9 47.5 47.6
GPT-3.5-Turbo 43.6 49.9 48.3
GPT-4 63.4 65.9 65.4
Gemini Pro 49.8 50.5 -

We track the average accuracy across 20 tasks
over three experimental rounds, with an over-
all comparison presented in Table 4. The later
two rounds of experiments occurred roughly three
months after the first. We further provide detailed
results for the first and second rounds of experi-
ments across all 20 tasks in Figure 13 and Figure
14, respectively. The consistent results across three
rounds of experiments, as visualized in the table
and figures, support the soundness of our bench-
mark design and the reliability of the conclusions
in Section 4. The results from the limited-access
models (e.g., GPT-3.5-Turbo) exhibit minor fluctu-
ations, which we believe is reasonable. Given the
three-month gap between the first and subsequent
rounds of experiments, it is plausible that even the
same API might have undergone model updates or
improvements.

C.4 Qualitative Analysis of Error Response

Figure 15 provides cases for models’ error re-
sponses.

C.5 Results of Definition Proficiency
Definitions for the seven selected tasks are provided
in Table 5. The complete results of the four prompts
are shown in Table 6.
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SN SE 2NR 3NR PT CL TO BLP DS MEC MB DP BKP CC CT CF MRS BAS FAS CEI
AVG

Mixtral-8×7B

Llama2-Chat-70B

InternLM2-Math-20B

GPT-3.5-Turbo

GPT-4

Gemini Pro

95.1 80.6 74.0 29.2 34.7 54.6 57.3 44.4 48.3 60.0 59.4 70.8 27.8 29.2 48.3 61.7 25.0 55.6 31.9 49.2 51.9

93.1 70.8 44.8 37.5 36.1 41.7 45.8 40.3 43.3 65.0 46.9 43.8 43.1 30.6 73.3 50.8 24.3 47.2 29.2 44.2 47.6

67.4 75.0 57.3 37.5 38.9 63.0 55.2 36.1 40.0 71.7 52.1 58.3 29.2 26.4 55.0 42.5 38.2 44.4 34.7 55.0 48.9

86.8 79.2 57.3 34.4 34.7 46.3 50.0 26.4 41.7 36.7 49.0 44.8 30.6 27.8 37.5 43.3 34.7 43.1 31.9 36.7 43.6

100.0 92.4 91.7 55.2 33.3 92.6 85.4 43.1 48.3 55.0 91.7 86.5 44.4 58.3 69.2 45.0 25.7 40.3 62.5 47.5 63.4

66.0 84.7 60.4 41.7 38.9 69.4 60.4 45.8 46.7 43.3 52.1 58.3 31.9 27.8 56.7 43.3 26.4 44.4 45.8 52.5 49.8
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Figure 13: Model performance of Round 1. Each cell corresponds to the model’s accuracy on that specific task.

SN SE 2NR 3NR PT CL TO BLP DS MEC MB DP BKP CC CT CF MRS BAS FAS CEI
AVG

Mixtral-8×7B

Llama2-Chat-70B

InternLM2-Math-20B

GPT-3.5-Turbo

GPT-4

Gemini Pro

94.4 79.9 68.8 33.3 34.7 55.6 46.9 41.7 35.0 45.0 58.3 66.7 25.0 22.2 37.5 53.3 27.8 43.1 31.9 36.7 46.9

93.8 69.4 43.8 36.5 36.1 43.5 47.9 41.7 31.7 68.3 45.8 39.6 41.7 18.1 73.3 39.2 24.3 43.1 36.1 43.3 45.9

67.4 73.6 58.3 38.5 37.5 61.1 55.2 36.1 40.0 56.7 50.0 62.5 27.8 20.8 55.0 40.8 37.5 41.7 34.7 54.2 47.5

95.1 86.8 54.2 42.7 23.6 46.3 62.5 31.9 41.7 53.3 58.3 53.1 40.3 34.7 56.7 48.3 31.3 50.0 40.3 47.5 49.9

100.0 93.1 93.7 54.2 29.2 93.5 87.5 50.0 50.0 60.0 90.6 84.4 44.4 62.5 65.8 50.8 30.6 51.4 70.8 55.8 65.9

66.0 84.0 61.5 37.5 33.3 65.7 66.7 41.7 43.3 43.3 47.9 67.7 34.7 33.3 64.2 49.2 23.6 43.1 50.0 54.2 50.5
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Figure 14: Model performance of Round 2. Each cell corresponds to the model’s accuracy on that specific task.

Prompt
Given a DAG (directed acyclic graph) with nodes U, R, P, E, W, 
M, I, K and directed edges P->E, U->M, P->I, E->K, U->W, U->P, 
U->I, E->W, R->M.
Which of the following is one of children of node R?
A. M B. I C. K D. W

Model response:
The children of node R are the nodes that have an edge 
pointing to R.
The edges pointing to R are:
* U->R
* P->R
So, the children of R are U and P.
Therefore, the correct answer is:
A. M
M is not a child of R, as there is no edge pointing from R to M.

Contradiction & Misunderstanding

Ground truth: A

(a) Example of contradiction and misunderstanding.

Causal hallucination

Ground truth: No

Prompt
Given an ADMG (acyclic directed mixed graph) with nodes B, F, 
C, K, directed edges B->C, B->K, F->K, C->K, F->C and bi-
directed edges F<->C, C<->K.
Is there a directed path from F to B?

Model response:
Yes, there is a directed path from F to B in the given ADMG.
The path is: F -> C -> B.
Here's a step-by-step explanation:
1. Start at node F.
2. Follow the directed edge F -> C.
3. At node C, follow the directed edge C -> B.
4. At node B, we have reached the destination.
Therefore, there is a directed path from F to B in the given 
ADMG.

(b) Example of causal hallucination.

Figure 15: Error response. We adopt the error types defined in Chen et al. (2024b). The red text means the wrong
response. The green text means the right response.
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Table 5: Definitions of the selected seven causal tasks.

Causal task Definition
Basic Task

Three nodes relationship

Given a DAG with three nodes X, Y, Z.
(1) A “chain” is a sequence of nodes connected by edges where each node has only one
predecessor and one successor (except for the first and last nodes in the chain). The simplest
chain in a causal graph can be illustrated as “X->Y->Z”.
(2) A “fork” refers to a situation where one node has multiple outgoing edges leading to different
successor nodes. The simplest fork in a causal graph can be illustrated as “X<-Y->Z”.
(3) A “v-structure” means one node is a child of the two others that themselves are not adjacent.
The simplest v-structure in a causal graph can be illustrated as “X->Y<-Z”.

Path A path in a DAG is a sequence of (at least two) distinct nodes i1, . . . , im such that there is an
edge between ik and ik+1 for all k = 1, . . . ,m.

Intermediate Task

Blocked path

In a DAG, a path p is said to be blocked by a set of nodes Z if and only if:
(1) p contains a chain i->m->j or a fork i<-m->j such that the middle node m is in Z, or
(2) p contains an inverted fork (or collider) i->m<-j such that the middle node m is not in Z and
such that no descendant of m is in Z.

Backdoor path Given an ordered pair of variables (X, Y), a backdoor path is any path from X to Y that starts
with an arrow pointing into X. This backdoor path is a non-causal path from X to Y.

C-component Let G be a causal graph such that a subset of its bidirected arcs forms a spanning tree over all
nodes in G. Then G is a C-component.

Maximal root set Let G be a causal graph and X is one node that belongs to G. If X does not have any descendant,
then we call X a root set of G. Maximal root set contains all the root sets of G.

Advanced Task

Frontdoor adjustment set

If a set of variables Z satisfies the front-door criterion relative to an ordered pair of variables (X,
Y):
(1) Z intercepts all directed paths from X to Y;
(2) there is no unblocked back-door path from X to Z; and
(3) all back-door paths from Z to Y are blocked by X.
Then we call Z a frontdoor adjustment set, this set allows us to accurately estimate the causal
effect of X on Y.

Table 6: Model performance on seven selected causal tasks.

Causal task Prompt Mixtral Llama2 InternLM2 GPT-3.5-Turbo GPT-4 Gemini Pro
Basic Task

Three nodes relationship

Basic 29.2 37.5 37.5 34.4 55.2 41.7
add def. 35.4 33.3 29.2 40.6 60.4 42.7

1-shot IcL 34.4 32.3 35.4 40.6 57.3 41.7
3-shot IcL 42.7 38.5 51.0 44.8 54.2 42.7

Path

Basic 34.7 36.1 38.9 34.7 33.3 38.9
add def. 34.7 30.6 33.3 30.6 23.6 34.7

1-shot IcL 36.1 29.2 37.5 26.7 31.9 38.9
3-shot IcL 43.1 31.9 48.6 44.4 26.4 50.0

Intermediate Task

Blocked path

Basic 44.4 40.3 36.1 26.4 43.1 45.8
add def. 40.3 37.5 18.1 44.4 56.9 36.1

1-shot IcL 50.0 31.9 37.5 44.4 44.4 36.1
3-shot IcL 47.2 43.1 40.3 43.1 48.6 40.3

Backdoor path

Basic 27.8 43.1 29.2 30.6 44.4 31.9
add def. 48.6 37.5 18.1 31.9 62.5 31.9

1-shot IcL 40.3 19.4 38.9 36.1 52.8 40.3
3-shot IcL 44.4 30.6 37.5 40.3 55.6 52.8

C-component

Basic 29.2 30.6 26.4 27.8 58.3 27.8
add def. 30.6 37.5 26.4 43.1 59.7 31.9

1-shot IcL 18.1 26.4 29.2 31.9 48.6 34.7
3-shot IcL 22.2 30.6 27.8 34.7 65.3 48.6

Maximal root set

Basic 25.0 24.3 38.2 34.7 25.7 26.4
add def. 29.9 22.2 29.9 27.1 43.1 27.1

1-shot IcL 29.2 18.7 38.9 32.6 30.6 31.9
3-shot IcL 31.9 26.4 45.1 34.7 34.0 40.3

Advanced Task

Frontdoor adjustment set

Basic 31.9 29.2 34.7 31.9 62.5 45.8
add def. 40.3 38.9 41.7 47.2 65.3 43.1

1-shot IcL 45.8 33.3 44.4 44.4 69.4 45.8
3-shot IcL 44.4 30.6 48.6 45.8 63.9 51.4
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