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Abstract

Calibration, which establishes the correlation
between accuracy and model confidence, is
important for LLM development. We design
three off-the-shelf calibration methods based
on self-consistency (Wang et al., 2022) for
math reasoning tasks. Evaluation on two pop-
ular benchmarks (GSM8K and MathQA) us-
ing strong open-source LLMs (Mistral and
LLaMA2) shows that our methods better bridge
model confidence and accuracy than existing
methods based on p(True) (Kadavath et al.,
2022) or logit (Guo et al., 2017).

1 Introduction

Mathematical reasoning tasks (Cobbe et al., 2021;
Hendrycks et al., 2021; Amini et al., 2019) in-
volve mapping a question into a series of equa-
tions, which are then solved to obtain the final
answer. Math reasoning has long been recognized
challenging. Existing solutions propose to map in-
put questions into equations via semantic parsing
(Matsuzaki et al., 2017; Hopkins et al., 2017) or
AST decoding (Li et al., 2019; Qin et al., 2021;
Wu et al., 2021). Yet, the performance can degra-
date dramatically even with slight changes to the
questions (Patel et al., 2021; Li et al., 2022).

Recently, large language models (LLM, Achiam
et al. 2023; Touvron et al. 2023; Jiang et al. 2024)
have shown great potential for solving many math
reasoning tasks, even though they are not specif-
ically trained on these tasks. For instance, with
chain-of-thought prompting (Wei et al., 2022) and
self-consistency (Wang et al., 2022), open-source
LLMs, such as Mixtral 8×7B (Jiang et al., 2024),
can reach an accuracy of around 80% on the
GSM8K benchmark (Cobbe et al., 2021). On the
other hand, conventional pretrained models (e.g.,
T5 (Raffel et al., 2020)) that are specifically fine-
tuned on the GSM8K training set can only report
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Figure 1: Comparison of several calibration methods on
Mistral-7B, where SC w/ FCN is one of our methods
based on self-consistency, which will be introduced in
§3.

accuracies around 10% to 20% (Shridhar et al.,
2023; Magister et al., 2023).

However, LLMs lack adequate calibration out
of the box – the probabilities of model predictions
are often poorly aligned with the actual accuracy
(Xiong et al., 2023; Chen et al., 2023). Calibra-
tion is important for LLM development, as a well-
calibrated LLM can precisely tell how likely its
responses are correct or not. With such informa-
tion, LLM developers can take multiple options to
handle low-confidence responses, such as letting
the LLM refuse to answer or keep resampling until
a confident response is produced.

In this work, we propose calibration methods
based on self-consistency (Wang et al., 2022) for
math reasoning tasks. Self-consistency performs
clustering over multiple LLM samples before pick-
ing one from the largest cluster as the response to
each input query. Here we consider several ways
to estimate model confidence using the clustering
results: cluster size that estimates how many sam-
ples agree with the selected one, cluster number
that measures to what extent samples disagree with
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each other, and pairwise comparison that captures
relative differences between pairs of clusters.

We conduct experiments using strong open-
source LLMs: Mistral (Jiang et al., 2023, 2024)
and LLaMA2 (Touvron et al., 2023) series models
with / without being aligned with instructions. Re-
sults on GSM8K (Cobbe et al., 2021) and MathQA
(Amini et al., 2019) show that all our methods
better calibrate these models than exiting popular
methods, such as p(True) (Kadavath et al., 2022)
and logit (Guo et al., 2017) over the whole reason-
ing path or target answer span only.

2 Preview: Self-Consistency with CoT
Prompting

For math reasoning, there are usually multiple tra-
jectories to reach the final solution. To replicate this
process, Wang et al. (2022) initially sample vari-
ous reasoning paths r1, ..., rN from the LLM given
input x with Chain-of-Thought (CoT) prompting.1

Then, the answers a1, ..., aN are extracted from the
paths, and the most consistent answer (the one win
by majority vote among the answers) is selected as
the final answer a:

a = max
â

N∑

i=1

1(ai = â),

ri, ai ∼ LLMθ(x),

(1)

where ri, ai denote the i-th sampled reasoning path
and its corresponding answer, respectively.

3 Calibration using Self-Consistency

After performing self-consistency on input x using
LLMθ, we obtain a set of clusters C = {c1, ..., c|C|}
with each cluster ci comprising ni sampled re-
sponses with the same answers. We design the fol-
lowing strategies, tailored to the characteristics of
these clusters, to estimate the confidence of LLMθ.

Cluster Number We initially consider the Clus-
ter Number |C|. This is motivated by the finding
of previous work (Wang et al., 2022; Xiong et al.,
2023): LLMs tend to generate consistent answers
when they are confident about their predictions,
and thus the cluster number (number of distinct
answers) tends to be small. We further divide the
cluster number by the sample size N to normalize

1Here we follow common practice to adopt demonstrations
with rationales for pretrained only models (e.g., Mistral-7B)
and use “Let’s think step by step” (Kojima et al., 2022) for
instruction-tuned models (e.g., Mistral-7B-Inst).

the score into the range of [0, 1], before reversing
it by “1− x”:

FCN (x, θ) = 1− |C|
N

. (2)

Cluster Size In a similar vein, we adopt the Clus-
ter Size: the number of samples (e.g., ni) within
a specific cluster (e.g., ci). Again, we compute
its proportion relative to the total sample size to
normalize the score into the range [0, 1]:

FCS(x, θ) =
ni

N
. (3)

In contrast to the cluster number, the cluster size is
more universally applicable across diverse prompts,
as the cluster number can easily become ineffective
when the output space of an LLM is restricted, such
as when options for a question are provided.

Pairwise Comparison The Cluster Number and
Cluster Size primarily consider the number of dis-
tinct answers and the number of sampled paths
within a single cluster, respectively. They both
overlook the information by comparing different
clusters. For example, they may fail to consider the
situation when the sizes of the top-ranked clusters
are close. Consequently, we introduce the Pairwise
Comparison method, which computes the winning
rate of the chosen cluster (ci) against each of the
remaining clusters:

FPC(x, θ) =

|C|∏

j ̸=i

ni

ni + nj
, (4)

where ni
ni+nj

represents the winning rate of selected
cluster ci against another cluster cj by comparing
the respective cluster sizes.

4 Experiments

4.1 Setup

Datasets We conduct experiments on two pop-
ular math reasoning benchmarks of different
type of questions, GSM8K (Cobbe et al., 2021)
and MathQA (Amini et al., 2019). Particularly,
GSM8K comprises 1,319 linguistically diverse
grade school math word problems for testing. On
the other hand, MathQA offers 2,985 multiple-
choice math word problems for evaluation.

Evaluation Metrics We adopt Brier Score and
Expected Calibration Error (ECE) as evaluating
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Mistral-7B Mistral-7B-Inst Mixtral-8×7B Mixtral-8×7B-Inst

ECE ↓ Brier ↓ ECE ↓ Brier ↓ ECE ↓ Brier ↓ ECE ↓ Brier ↓

GSM8K

logit w/ Path 0.394 0.399 0.414 0.414 0.178 0.265 0.233 0.252
logit w/ Answer 0.505 0.488 0.467 0.458 0.307 0.312 0.236 0.238
p(True) 0.127 0.267 0.406 0.407 0.070 0.201 0.195 0.198

Self-Consistency
w/ FCN 0.092 0.186 0.125 0.182 0.136 0.157 0.075 0.092
w/ FCS 0.148 0.185 0.163 0.180 0.173 0.156 0.085 0.086
w/ FPC 0.248 0.229 0.253 0.226 0.238 0.194 0.110 0.096
w/ ALL 0.101 0.172 0.123 0.162 0.135 0.141 0.078 0.083

MathQA

logit w/ Path 0.500 0.499 0.539 0.510 0.333 0.380 0.364 0.373
logit w/ Answer 0.356 0.362 0.291 0.319 0.266 0.290 0.220 0.281
p(True) 0.350 0.309 0.271 0.317 0.228 0.253 0.273 0.272

Self-Consistency
w/ FCN 0.331 0.336 0.374 0.359 0.143 0.236 0.128 0.215
w/ FCS 0.091 0.225 0.114 0.227 0.080 0.190 0.035 0.171
w/ FPC 0.052 0.220 0.065 0.219 0.143 0.203 0.054 0.174
w/ ALL 0.144 0.238 0.172 0.242 0.089 0.190 0.072 0.177

Table 1: Main test results on GSM8K and MathQA when using Mistral family models. Specifically, ∗-Inst indicates
instruction-tuned models.

metrics following common practice (Geng et al.,
2023).

Given instances (x1, y1), ..., (xN̄ , yN̄ ) and their
corresponding LLM predictions ŷ1, ..., ŷN̄ , ECE
is computed by first binning the predictions into
M = 10 intervals based on their LLM confidence
levels (e.g., p(ŷi)). For each bin (e.g. Bm), it then
calculates the accuracy (acc(Bm)) and the average
confidence (conf(Bm)):

acc(Bm) =
1

|Bm|
∑

i∈Bm

1(yi = ŷi),

conf(Bm) =
1

|Bm|
∑

i∈Bm

p(ŷi),

(5)

where |Bm| is the number of samples in bin Bm.
Finally, the difference between accuracy and confi-
dence is averaged across all bins to obtain the ECE
score:

ECE =

M∑

m=1

|Bm|
N̄

|acc(Bm)− conf(Bm)| (6)

As another popular metric, Brier score is similar
to ECE but conducted at the instance level:

Brier =
1

N̄

N̄∑

i=1

(p(ŷi)− 1(yi = ŷi))
2. (7)

Both metrics range from 0 to 1 with lower values
indicating better calibration. We take Brier score as
the main metric, as it is more robust to unbalanced
distribution across bins (e.g. instances concentrate
to one or two bins).

Settings We conduct experiments on LLaMA2
and Mistral-family models and investigate both pre-
trained or instruction-tuned variations. We use nu-
cleus sampling to obtain N = 16 samples by de-
fault for each instance and use temperatures of 0.6
/ 1.0 for all pretrained / instruction-tuned models.

Baselines We take the three representative base-
lines below for comparison:

• logit w/ Path: It averages the probabilities of
the tokens from the whole path to estimate the
confidence of each prediction.

• logit w/ Answer: It is similar to logit w/ Path
but only consider the tokens from the predicted
answer span.

• p(True): It asks the LLM itself to classify its pre-
diction as True or False. Then, it takes the pre-
dicted probability of True as its confidence. We
follow Kadavath et al. (2022) to construct 8-shot
demonstrations for prompting pretrained mod-
els but directly use instruction for instruction-
tuned models.

4.2 Results and Analysis

Main Results Table 1 presents the main results
obtained from both benchmarks using Mistral-
family models. p(True) performs best among the
baselines, echoing the findings of Kadavath et al.
(2022). However, due to its reliance on prompt
design and in-context examples to aid the LLM
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Figure 2: Calibration results on GSM8K when using
Mixtral-8×7B-Inst with different N .

to classify its predictions, it can be challenging to
construct effective demonstrations or instructions.

In general, self-consistency-based methods sur-
pass baselines in most cases regarding Brier and
ECE, validating the efficacy of employing self-
consistency features for estimating model confi-
dence. We also note that baselines can occasionally
yield impressive ECE scores (p(True) on GSM8K
with Mixtral-8×7B). However, we observe that this
is attributed to the concentration of most samples
in just a few bins (e.g., Figure 1), leading to unreli-
able measurements. Nevertheless, our approaches
still exhibit strong performance in terms of ECE
scores across various settings.

Among the self-consistency-based methods,
FCN yields better ECE results on GSM8K, while
FCS achieves the highest Brier score. Conversely,
for MathQA, FCN performs significantly worse
than the other two. This is because MathQA is a
multi-choice task, and thus the cluster number of
LLM answers is strictly limited by the provided
choices. In conclusion, FCS demonstrates greater
generality across diverse settings, but FCN and
FPC do offer improved estimation in certain cases.

Finally, we also explore averaging the proposed
three metrics as a unified one, denoted as “ALL”.
Results show that it does not typically yield the
best results. However, it serves as a robust choice,
demonstrating competitive performance.

Influence of Sample Size N Previous research
(Wang et al., 2022) has demonstrated that the sam-
ple size N can significantly affect the accuracy of
self-consistency. When N increases, the model
performance initially continues to improve before
stabilizing once N reaches a sufficient level. There-
fore, we take Mixtral-8×7B-Inst as a case study to
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Figure 3: Performance and calibration results on
GSM8K using different models below sorted by their
performance: ① LLaMA2-7B-Chat, ② LLaMA2-13B-
Chat, ③ Mistral-7B-Inst, ④ LLaMA2-70B-Chat, ⑤
Mixtral-8×7B-Inst.

examine the impact of N on calibration.
As illustrated in Figure 2, the Brier scores for

all our methods initially decline and then remain
constant as N grows. For FCS and FPC , N = 8
is adequate for accurate estimation. In contrast,
FCN requires a larger N , indicating that the cluster
number is more susceptible to the randomness of
sampling.

Correlation between Performance and Calibra-
tion We finally explore the associations between
model performance (Accuracy) and calibration.
Figure 3 showcases the results on instruction-tuned
LLaMA2 and Mistral series models, arranged in
ascending order based on their performance. We
generally observe a positively correlated trend be-
tween calibration (lower the better) and perfor-
mance (higher the better) among the studied mod-
els. This observation indicates that more powerful
models also exhibit enhanced calibration, echoing
the findings of Kadavath et al. (2022). This phe-
nomenon can be attributed to the fact that when a
tested LLM is stronger, it is capable of generating
more reasonable and consistent responses, leading
to improved calibration.

5 Conclusion

In this paper, we extend the widely-used inference
strategy, self-consistency, to the field of calibra-
tion. Specifically, we develop three off-the-shelf
calibration methods based on self-consistency for
math reasoning tasks. Compared to conventional
methods (p(True) and logit), our approaches yield
significantly improved ECE and Brier scores on
popular GSM8K and MathQA datasets. Future
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research directions include designing more effec-
tive calibration methods, leveraging richer features
and employing more strategies (e.g., temperature
scaling (Guo et al., 2017)) to enhance calibration
performance. Our ultimate goal is to construct re-
liable and honest LLMs with the help of accurate
confidence estimation.

Limitations

Our methods are founded on the principle of self-
consistency, which relies on sampling multiple
times for prediction. This approach, however,
needs additional cost for inference, which may
not be efficient and eco-friendly. Besides, our
current work is limited to mathematical problems
and does not explore other types of tasks, such as
question-answering. Although it is crucial to ex-
tend our methods to encompass other tasks, this is
non-trivial due to the inherent difficulty in divid-
ing certain tasks’ model predictions into distinct
clusters.

Ethics Statement

We focus on ethical AI research and strive to
achieve a balance between technological advance-
ments and our ethical responsibilities. This work
studies calibration, which aims to enhance the reli-
ability of LLMs. Besides, we conduct experiments
only on publicly available datasets, upholding pri-
vacy and anonymity rules.
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A Experiments on TriviaQA

Although this work mainly focuses on math prob-
lems, we also verify the effectiveness of our ap-
proach on TriviaQA (Joshi et al., 2017), a popular
question-answering benchmark. Different from
math problems, the outputs of LLMs for this task
sometimes lack clear answers for clustering. For
instance, Mistral-7B-Inst provides a lengthy re-
sponse, “The musical Phantom of the Opera pre-
miered in the US on 10th December 1993...”, in-
stead of an answer span “Phantom of the Opera”,
to the question “Which Lloyd Webber musical pre-
miered in the US on 10th December 1993?”.

To address this issue, we follow Kuhn et al. to
employ natural language inference (NLI) to iden-
tify responses with the same answers2.

Results are shown in Table 2. Our approach
significantly surpasses the baselines, particularly
when utilizing instruction-tuned models, further
demonstrating the effectiveness of our method.

2We adopt a publicly accessible model
at https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli.
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Mistral-7B Mistral-7B-Inst Mixtral-8×7B Mixtral-8×7B-Inst

ECE ↓ Brier ↓ ECE ↓ Brier ↓ ECE ↓ Brier ↓ ECE ↓ Brier ↓
logit 0.119 0.156 0.385 0.377 0.069 0.116 0.256 0.298
p(True) 0.077 0.162 0.326 0.318 0.099 0.131 0.314 0.316

Self-Consistency
w/ FCN 0.044 0.133 0.054 0.173 0.077 0.119 0.068 0.115
w/ FCS 0.043 0.132 0.072 0.186 0.039 0.107 0.039 0.116
w/ FPC 0.071 0.137 0.109 0.186 0.102 0.129 0.121 0.126

Table 2: Test results on TriviaQA.
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