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Abstract

Grammar induction has made significant
progress in recent years. However, it is not
clear how the application of induced grammar
could enhance practical performance in down-
stream tasks. In this work, we introduce an un-
supervised grammar induction method for lan-
guage understanding and generation. We con-
struct a grammar parser to induce constituency
structures and dependency relations, which is
simultaneously trained on downstream tasks
without additional syntax annotations. The in-
duced grammar features are subsequently incor-
porated into Transformer as a syntactic mask
to guide self-attention. We evaluate and ap-
ply our method to multiple machine transla-
tion tasks and natural language understand-
ing tasks. Our method demonstrates superior
performance compared to the original Trans-
former and other models enhanced with exter-
nal parsers. Experimental results indicate that
our method is effective in both from-scratch
and pre-trained scenarios. Additionally, our re-
search highlights the contribution of explicitly
modeling the grammatical structure of texts to
neural network models.1

1 Introduction

Neural network models, like Transformer (Vaswani
et al., 2017), RoBERTa (Liu et al., 2019), and GPTs
(Brown et al., 2020), have gained widespread adop-
tion in various natural language processing tasks.
These models can generate desired answers on dif-
ferent tasks and show strong language understand-
ing ability on multiple datasets. However, they
give up explicit parsing of the specific syntactic
structure of the text data and cannot effectively
establish structured and interpretable language un-
derstanding models (Ramakrishnan et al., 2018;
Guo et al., 2019; Hewitt and Manning, 2019; Dai

* Corresponding author
1We release our code at https://github.com/

0-KaiKai-0/Grammar-Induction.

et al., 2021). This limitation has emerged as one
of the bottlenecks for neural network models to
understand natural language deeply.

To this end, researchers attempt to take advan-
tage of traditional syntax parsers (Brill et al., 1990;
Magerman and Marcus, 1991) to identify gram-
matical components within textual data and utilize
them in subsequent processing steps. These parsers
are built upon established linguistic frameworks
and regulations. There has been growing interest
in investigating the impact of syntax on neural net-
work models and improving them through the lens
of grammar induction (Yang et al., 2020; Bai et al.,
2021; Li et al., 2021; Hou et al., 2022).

While these techniques have exhibited enhanced
efficacy, they still grapple with two primary chal-
lenges. Firstly, these approaches (Yang et al., 2020;
Bai et al., 2021; Hou et al., 2022) usually depend
on external parsers to obtain additional special-
ized annotations, which are expensive and not time-
efficient. Their performance is greatly influenced
by the choice of external parsers and may not be
universally applicable across all languages. The
other problem is that these approaches only fo-
cus on from-scratch scenarios (Ma et al., 2019;
Yang et al., 2020) or pre-trained scenarios (Li et al.,
2021; Tziafas et al., 2021; Chen et al., 2022)). They
cannot share consistent improvements. This dis-
crepancy between the two model types engenders
a predicament where these methodologies are tai-
lored exclusively to one of the scenarios.

In this paper, we introduce a novel method to
induce grammar information for language under-
standing and generation, obviating the necessity
for supplementary syntactic annotations. The self-
induced grammar features are integrated into the
Transformer and simultaneously learned during
the training of downstream tasks. Additionally,
we devise BPE (Byte Pair Encoding) embeddings
and trade-off loss functions to facilitate grammar
induction. Experiments demonstrate the compati-
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Figure 1: The pipeline for the construction of our syntactic mask. Word embeddings and BPE embeddings are
utilized to induce the intermediate grammar features s, which are subsequently used to derive the syntactic distance
τ and height h. The two vectors are leveraged to estimate the dependency distribution for the sentence, and generate
the syntactic mask PD. The mask is then employed to guide the self-attention mechanism within the encoders.
These parsing modules are integrated into the Transformer model and trained together in downstream tasks.

bility of our method in both the from-scratch and
pre-trained scenarios. By strengthening the induc-
tion ability of the deep neural network model to
the grammatical information, we can improve the
model’s understanding of natural language. Our
method surpasses other external-parser-enhanced
methods in machine translation and language un-
derstanding tasks, showcasing persistent efficacy
and applicability.

2 Preliminary

We use syntactic distance (Shen et al., 2018a) and
height (Luo et al., 2019) to generate the dependency
distribution among tokens. They are two feature
vectors used to describe the constituency structure
and dependency relations of a sequence of words.

2.1 Syntactic Distance and Height
Syntactic distance Syntactic distance is first pro-
posed by Shen et al. (2018a) to model the syntacti-
cal proximity of adjacent constituents in a sentence.
For a sentence (w1, . . . , wn), syntactic distance τi
quantifies the height of the lowest common ances-
tor for two consecutive words wi and wi+1. The
relative order of syntactic distances represents syn-
tactic affinities between words. A smaller distance
τi signifies that it is easier to communicate between
w1...i and wi+1...n.

Syntactic height Syntactic height is introduced
by Luo et al. (2019) to depict the syntactic status
of words. In the dependency graph of a sentence,
the syntactic height hi aims to capture the distance
of the word wi to the root. The word with a higher

syntactic height is more likely to stand closer to the
root of the graph, containing more representative
global information for the sentence.

2.2 Dependency Distribution

StructFormer (Shen et al., 2021) proposes a two-
stage method to calculate the estimation of the de-
pendency distribution among tokens. They use
syntactic distance and height to identify the small-
est legal constituent for each token and the parent
of the constituent. The procedure goes through
the sentence to estimate the syntactic dependency
of each token on the others. We leverage their
estimation method to generate the dependency dis-
tribution for a sentence. The estimation procedure
can be referred to in Appendix A.

We introduce unsupervised grammar learning
as inductive bias into Transformer for NLP down-
stream tasks. Our method achieves consistent im-
provement in both from-scratch and pre-trained
scenarios.

3 Method

Alongside the data pipeline in the original Trans-
former, we construct a parser to derive grammar
features and estimate a syntactic mask to guide the
attention mechanism. The "parsing"2 pipeline is
delineated in Figure 1.

Grammar features s are induced with convolu-
tion layers and a self-attention module working on

2Despite no ground-truth parses involved in our method,
the pipeline can be regarded as parsing to estimate dependency
relations among tokens.
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word embeddings. Specifically, convolution lay-
ers can capture localized details within segments,
while the self-attention module can furnish global
information of the entire sequence. BPE embed-
dings are introduced so that grammar status can
be shared among congenetic subwords. Utiliz-
ing grammar features s, syntactic distance τ , and
height h can be derived through convolution layers.
They are leveraged by the distribution generator to
construct a syntactic mask PD that provides the de-
pendency distribution among tokens in the encoder
layers of Transformer.

3.1 Syntactic Mask
Following previous works (Shen et al., 2018a; Luo
et al., 2019; Shen et al., 2021), we quantify syntac-
tic distance and height on the same scale. We use
convolution layers and a self-attention module to
induce grammar features si:

si = Attn(Conv(xi−l, . . . , xi+l))

+ Proj(x′i−l, . . . , x
′
i+l)

(1)

where xi is the embedding of the i-th token, and
2l + 1 is the kernel size of the convolution module.
x′i is the BPE embedding, which will be introduced
in Section 3.3. Proj(·) is the projection layer com-
posed of a Linear layer and a LayerNorm layer.

Then we use linear matrices W τ
1 ,W

h
1 and con-

volution modules W τ
2 , W h

2 to derive syntactic dis-
tance τi and height hi:

τi = Wτ
1 tanh

(
Wτ

2

[
si
si+1

])
+ bτ1 (2)

hi = Wh
1 tanh

(
Wh

2si + bh2

)
+ bh1 (3)

Syntactic distance measures the syntactic prox-
imity of adjacent words, while syntactic height
measures the syntactic status of the word itself.
Therefore, the kernel size of W τ

2 and W h
2 is 2 and

1 respectively.
As introduced in Section 2.2, syntactic distance

and height are put into the distribution generator to
calculate the estimation of the dependency distri-
bution. It serves as a mask to adjust the weights in
the self-attention:

PD = FP(τ, h) (4)

where the distribution generator is formalized as
the estimation function FP(·). PD is the derived
syntactic mask containing the dependency distribu-
tions.

3.2 Syntax-giuded Attention
The syntactic mask PD provides the probability of
information transfer among tokens. It is used to
guide self-attention heads in the encoder layers of
Transformer.

Attention(PD, Q,K, V ) = PD · S
(
QKT

√
d

)
· V
(5)

where Q, K, V are query, key and value matrices
and d is the hidden dimension. S(·) is an activation
function.

It should be noted that two different activation
functions are employed in the scenarios of building
from scratch and utilizing pre-trained models. In
the from-scratch scenario, S(·) is a sigmoid func-
tion instead of the original softmax function so that
S(QKT

√
dk

) can indicate an independent probability
of each token’s attendance on each other.

In the pre-trained setting, we adhere to the use
of the softmax function. Given our utilization of
the official pre-trained models RoBERTa (Liu et al.,
2019) and the integration of our parser during fine-
tuning, maintaining consistency in the activation
function with the pre-training phase is more suit-
able and practical. In addition, the distribution
weight is set to be PD+1, where the syntactic mask
plays an auxiliary role in reweighting attention.
This is because RoBERTa has been pre-trained
devoid of grammar induction. Directly imposing
new constraints and altering the model training
paradigm may not align seamlessly with its exist-
ing framework.

3.3 BPE Embedding
When parsing, we compute dependency distri-
butions for the tokens within sequences. Typi-
cally, the model receives subwords rather than
complete words as input, owing to the data be-
ing preprocessed using BPE subword tokenization.
Nonetheless, all subwords stemming from the same
word should share an equivalent grammatical status
within their respective sentences.

To make our parser aware of the grammar shar-
ing among the congenetic subwords, we design
BPE embeddings to represent the condition of word
segmentation in the sequence. Tokens that remain
intact are labeled as 0, while subwords resulting
from word segmentation are assigned 2 (with 1 re-
served for padding). For instance, in the sentence
"How could pay arrangements be redesigned to
address these problems?", the word "redesigned"
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is segmented into "re" and "designed" during pre-
processing. The two subwords should share gram-
martical information among the sentence. Conse-
quently, we will assign them label 2 and the others
label 0.

The vector of BPE labels will be input into an
embedding layer and a projection layer to obtain
BPE embeddings. The BPE embeddings will be
added to hidden states before they are transferred
into the convolution modules to compute syntactic
distances and heights. Concatenating is also consid-
ered to combine the two embeddings, but it proves
ineffective. We do not introduce BPE embeddings
into RoBERTa because of consistency and adapt-
ability from the pre-training stage to fine-tuning.

3.4 Loss Function

We also investigate the device of loss function to
facilitate grammar induction for the two scenarios
studied in our paper.

Voita et al. (2019) ascertain that the flow of in-
formation through Transformer layers is contingent
upon the choice of the learning objective. For ma-
chine translation (MT), the representation of the
input sequence will be refined in the model and
transferred from the source language to the target
language. In contrast, for masked language model-
ing (MLM), the information about the context will
be rebuilt during the encoding process.

In order to make maximum leverage of grammar
induction, we trade off between the two loss func-
tions of MLM and MT with a weighted parameter
λ:

L = λ · LMLM + (1− λ) · LMT (6)

Where the λ will be searched for different transla-
tion tasks.

Our MLM loss is deployed using the output of
the encoder module. We randomly mask part of the
input with a special token and restore the masked
tokens from the output. The mask rate is set to be
0.15.

In the fine-tuning phase of RoBERTa, we opt
not to include the MLM loss. This decision stems
from the fact that RoBERTa has already been pre-
trained on a vast corpus of data, with MLM serving
as its core learning objective. Consequently, the
incorporation of MLM loss during fine-tuning does
not yield additional benefits. More analyses about
the effect of MLM loss are provided in Appendix C.

4 Machine Translation

We use Transformer (Vaswani et al., 2017) as
our baseline and conduct experiments on six ma-
chine translation tasks of three datasets: IWSLT14-
De/En, NC11-De/En, and ASPEC-Zh/Ja. Models
are trained from scratch and evaluated on each task.

4.1 Datasets

IWSLT14-De/En The IWSLT14 (International
Workshop on Spoken Language Translation) in-
cludes the MT track on TED Talks. We use the
German (De) and English (En) corpus. We follow
the standard pre-processing steps in fairseq (Ott
et al., 2019). The sizes of training, validation and
test sets are 160k, 7.3k and 6.8k.
NC11-De/En The NC11 dataset come from news
commentary. We pre-process the dataset following
the steps of Bugliarello and Okazaki (2020). The
sizes of training, validation and test sets are 234k,
2.2k and 3.0k.
ASPEC-Zh/Ja The ASPEC (Asian Scientific Paper
Excerpt Corpus; Nakazawa et al., 2016) dataset
is a Chinese (Zh) - Japanese (Ja) scientific paper
excerpt corpus. We use the official steps provided
by WAT (Workshop on Asian Translation) to pre-
process the dataset. The sizes of training, validation
and test sets are 672k, 2.1k and 2.1k.

The three datasets we choose are of different
scales. Considering the sizes of datasets, IWSLT14
and NC11 tasks could be used to simulate low-
resource scenarios. ASPEC, on the other hand, is
of large size and provides more source languages.

4.2 Experiment Settings

We use six layers of encoder-decoder architecture
as the backbone. The number of the convolution
layers in our parser is 3, and the dimension of the
embedding layer for BPE is set to 256 before input
into a projection layer by searching powers of 2
from 2 to 512. We use the syntactic mask in the
first encoder layer for all the tasks.

We adopt the inverse square root learning rate
scheduler, and the peak learning rate is set to 5e-
4, 1e-3 and 3e-4 for IWSLT14, NC11 and ASPEC.
The most appropriate values of the weighted param-
eter λ for the loss function are selected by doing a
grid search over the range of 0.2 to 0.6 for each task.
λ is chosen to be 0.47, 0.35, 0.3, 0.45 for IWSLT14,
NC11, ASPEC Chinese to Japanese, and Japanese
to Chinese respectively. More details of experiment
settings are summarized in Appendix B.

4504



Models
IWSLT14

De→En En→De

Transformer 34.71 28.91

Using external parsers
PASCAL 34.84 29.10
LISA* 34.97 29.06
ST-NMT* 35.24 -
Distance-Transformer* 35.74 29.28

No external parsers
LPSI* 35.05 -
StructFormer 32.78 -
Ours 35.89 29.31

Table 1: BLEU scores on IWSLT14-De/En. While
PASCAL, ST-NMT and Distance Transformer explic-
itly leverage external parsers to obtain syntactic informa-
tion, LPSI, StructFormer and our method introduce self-
induced grammar and do not require external parsers.
"*" means we report the results of ST-NMT, Distance
Transformer and LPSI from their papers. The scores
of LISA are the implementation by Bugliarello and
Okazaki, 2020

Models
NC11

De→En En→De

Transformer 27.04 25.23
PASCAL 27.65 25.52
LISA* 27.10 25.30
Distance-Transformer* 27.67 26.19
Ours 27.69 25.83

Table 2: BLEU scores on NC11-De/En.

4.3 Results

We take 5 random seeds for each task and av-
erage the last 5 checkpoints to be evaluated for
each seed. We use the BLEU score to assess the
performance of models on the test sets. Our ex-
perimental results on the three datasets are pre-
sented in Table 1, Table 2 and Table 3. We re-
port the scores of Transformer we implement and
other state-of-the-art (SOTA) models, including
PASCAL (Bugliarello and Okazaki, 2020), LISA
(Strubell et al., 2018), ST-NMT (Yang et al., 2020)
and Distance Transformer (Hou et al., 2022), which
are enhanced by external parsers, as well as LPSI
(Harada and Watanabe, 2021), which unsupervis-
edly induces latent phrase structures and incorpo-
rate them into the attention mechanism. We also
replace the Transformer encoder with StructFormer

Models
ASPEC

Zh→Ja Ja→Zh

Transformer 47.66 34.36
Distance-Transformer* 48.34 -
Ours 48.86 34.48

Table 3: BLEU scores on ASPEC-Zh/Ja.

(Shen et al., 2021), which is an encoder-based
model for grammar parsing, and train the model on
IWSLT14 De→En.

Tables demonstrate that our method obtains
SOTA results in most translation tasks. It consis-
tently outperforms the vanilla Transformer across
all six tasks, with particularly notable improve-
ments observed in IWSLT14 German to English
and ASPEC Chinese to Japanese tasks. It surpasses
other external-parser-enhanced methods and the
unsupervised method LPSI and StructFormer on
IWSLT14-De/En.

It is worth noting that our method achieves
scores comparable to the reported outcomes of Dis-
tance Transformer (Hou et al., 2022). They rely on
the external parser to generate constituency gram-
mar information so as to enhance the self-attention
mechanism in Transformer. Moreover, when we
reproduce their results, we find that their model
benefits from attention dropout, and they use the
best checkpoint at inference time. Compared with
their supervised Distance Transformer, our unsu-
pervised method learns to comprehend grammar
structures without any additional knowledge or ex-
ternal tools.

In addition, it can be observed that all the other
external-parser-enhanced methods are mainly ap-
plied in German and English since the parsers they
leveraged are primarily developed for these two
languages. Their models are affected by external
parsers and limited in the diversity of languages.
In contrast, our method internalizes grammar in-
duction within Transformer for downstream tasks
without the requirement for additional syntactic an-
notations. As a result, our approach can be applied
across a wider range of languages.

4.4 Effect of BPE Embddings
To assess the effect of BPE embeddings we have de-
signed, we compare the performance of our method
with and without the incorporation of BPE embed-
dings.

The average scores and standard deviations pre-
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Models
IWSLT14 NC11 ASPEC

De→En En→De De→En En→De Zh→Ja Ja→Zh

Transformer 34.71±0.12 28.91±0.14 27.04±0.10 25.23±0.17 47.66±0.25 34.36±0.09
Ours (-BPE) 35.83±0.07 29.19±0.12 27.39±0.11 25.27±0.63 48.78±0.23 34.70±0.12
Ours (+BPE) 35.89±0.18 29.31±0.13 27.69±0.17 25.83±0.26 48.86±0.14 34.48±0.27

Table 4: Effect of BPE embeddings. "-BPE" means using our method without BPE embeddings, while "+BPE"
means using our method with BPE embeddings.

tasks
De→En En→De

-BPE +BPE -BPE +BPE

precision 35.55 35.70 25.63 31.96
recall 34.13 34.27 24.59 30.66
F1 34.83 34.97 25.10 31.30

Table 5: Parsing performance on IWSLT14.

sented in Table 4 indicate that while our BPE em-
beddings have a modest influence on machine trans-
lation, they do offer a positive contribution across
all tasks except the ASPEC Japanese to Chinese
task. It is observable that BPE embeddings are
particularly beneficial in the context of English to
German translations. This enhanced utility is likely
attributed to the fact that the grammar status sharing
among congenetic subwords is more compatible
with English grammar. Regardless of the presence
of BPE embeddings, our method shows consistent
advancements over Transformer across machine
translation tasks, showcasing the robustness and
adaptability of our approach.

4.5 Parsing Performance

Furthermore, we implement the distance-to-tree al-
gorithm (Shen et al., 2018b) to reconstruct the hier-
archical structure of a constituency tree, leveraging
the syntactic distances generated during the pars-
ing process. Following the definition of syntactic
distance, the two words with the smallest distance
will be merged into a tree first. The sequence of
tokens, along with their syntactic distances, will be
converted into a binary tree. The transformation
algorithm can be referred to in Appendix D.

To assess the parsing performance of our method,
we utilize the validation set of IWSLT14-De/En.
The parser of Stanford CoreNLP3 is employed to
generate constituency trees as reference.4 Preci-

3https://nlp.stanford.edu/software/segmenter.shtml
4Stanford CoreNLP was also leveraged by previous work

(Htut et al., 2019) to generate standard parses for samples of

the </s>first gentle@@ man , he ‘’ a bak@@ .er

(a) The ground truth tree obtained by Stanford CoreNLP.

</s>the first gentle@@ man , he ‘’ a bak@@ .er

(b) The constituency tree obtained by using our method without
BPE embeddings.

the first gentle@@ man , he ‘’ a bak@@ . </s>er

(c) The constituency tree obtained by using our method with
BPE embeddings.

Figure 2: The constituency tree for the example sen-
tence by using (a) Stanford CoreNLP, (b) our method
without BPE embeddings, and (c) our method with BPE
embeddings. "@@" in "gentle@@" and "bak@@" is
the sign of BPE segmentation.

sion, recall, and F1 scores are computed to evaluate
the trees generated by our method, with the results
presented in Table 5.

The F1 scores of constituency trees generated
by using our method achieve 34.97 and 31.30 for
the source languages of German and English, re-

machine translation tasks. These generated parses served as
references for evaluating parsing performance during transla-
tion.
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Models
CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B

Avg
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (F1) (pc)

RoBERTa 61.3 95.2 87.6/87.0 92.8 75.8 92.9 88.9 90.9 85.8

Using external parsers
SLA* 60.0 93.3 -/- 91.4 67.8 - - 89.9 -
Syntax-RoBERTa* 63.3 96.1 87.8/85.7 94.3 81.2 88.5 88.5 89.9 86.1
SynCLM* 65.3 95.1 87.2/- 93.0 80.1 93.7 88.9 90.8 -

No external parsers
Ours 62.2↑ 95.0 87.7↑/87.5↑ 93.3↑ 79.8↑ 92.8 89.1↑ 90.9 86.5↑

Table 6: Scores on GLUE benchmark. The evaluation metrics are listed below the task names, where "mc"
denotes Matthews correlation coefficient, "acc" denotes accuracy, "F1" denotes F1 score, and "pc" denotes Pearson
correlation coefficients. The MNLI dataset has 2 versions of test sets represented as "m" and "mm". The scores with
a superscript "↑" denote our method outperforms the vanilla RoBERTa.

spectively. While the parsing performance may not
match that of an expert-supervised grammar parser,
with such moderate parsing accuracy, our method
could achieve reasonable improvement in machine
translation.

Additionally, it can be observed from Table 5
that the scores using BPE embeddings surpass
those without BPE embeddings. In Figure 2, we
illustrate constituency trees generated by the three
different methods for an example sentence. Com-
pared to the ground truth, the hierarchical struc-
ture of the constituency tree generated by using
our method appears quite plausible. It suggests
that BPE embeddings enhance the model’s abil-
ity to capture BPE segmentations, which proves
that the grammar status sharing among congenetic
subwords is practical and valid.

5 Language Understanding

We deploy our grammar induction method on
RoBERTa (Liu et al., 2019) at the stage of fine-
tuning, and evaluate its performance in the GLUE
benchmark (Wang et al., 2019).

5.1 Datasets
The GLUE (General Language Understanding
Evaluation) benchmark is a collection of datasets
for evaluating the natural language understanding
performance of models. It consists of (1) single-
sentence classification tasks: CoLA (Corpus of
Linguistic Acceptability) and SST-2 (Stanford Sen-
timent Treebank); (2) similarity and paraphrase
tasks: MRPC (Microsoft Research Paraphrase Cor-
pus), QQP (Quora Question Pairs) and STS-B (Se-
mantic Textual Similarity Benchmark); (3) infer-
ence tasks: MNLI (Multi-Genre Natural Language

Inference Corpus), QNLI (Stanford Question An-
swering Dataset) and RTE (Recognizing Textual
Entailment).

5.2 Experiment Settings

RoBERTa is a well and robustly pre-trained model
with a strong ability for language understanding. It
is essentially a Transformer model with only en-
coder layers. We use RoBERTa-base as our back-
bone. It has 12 encoder layers and 12 attention
heads in each layer. We load official checkpoints of
pre-trained RoBERTa. Details of the experimental
settings are set following fairseq (Ott et al., 2019).

For our grammar-aware RoBERTa, the number
of convolution layers in our parser is 2, and we use
the syntactic mask in the first three encoder layers.
We fine-tune and evaluate the model on each task
of GLUE.

5.3 Results

The results on the GLUE benchmark are presented
in Table 6. The best checkpoints are saved during
training, and we use standard evaluation metrics
for each task. We reproduce the vanilla RoBERTa
and our grammar-enhanced RoBERTa in the same
environment and report the scores in the table.

As shown in the table, our method outperforms
the vanilla RoBERTa in the majority of GLUE tasks
and achieves the highest average score. Remark-
ably, without relying on any additional syntactic an-
notations, our method has achieved improvements
that are more consistent when compared to other
syntax-enhanced models, including SLA (Li et al.,
2021), Syntax-RoBERTa (Bai et al., 2021) and Syn-
CLM (Zhang et al., 2022). To introduce syntactic
information into pre-trained models, all of these
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methods resort to external parsing models.
When integrated with our method for self-

inducing grammatical knowledge, RoBERTa ob-
tains improvements across six of the nine test sets
in GLUE, with the scores on the remaining three
test sets being nearly identical to those of the base-
line RoBERTa. More specifically, it can be inferred
from the table that pre-trained language models
have exhibited such an impressive capability of
language understanding that the integration of ex-
ternal parsers may not bring uniform enhancements
across all tasks. They even hurt the performance
in certain tasks, as evidenced by the performance
of SLA on RTE, Syntax-RoBERTa on MRPC, and
SynCLM on MNLI. Nonetheless, our approach
performs comparably well in single-sentence clas-
sification tasks, and similarity and paraphrase tasks.
It particularly excels in inference tasks, with a no-
table improvement observed in the RTE task.

6 Related Work

There are generally two ways for syntactic
knowledge-based language comprehension.

Explict syntax enhancement One way is to
incorporate syntactic information explicitly by
using a high-quality external parser. PASCAL
(Bugliarello and Okazaki, 2020) builds up a syntax-
guided localized attention mask where each token’s
attention range is a Gaussian distribution centered
by its dependency head. Distance Transformer
(Hou et al., 2022) utilizes the relative magnitude
of syntactic distance from the constituency tree to
build up a syntactic local range. ST-NMT (Yang
et al., 2020) slices the constituency tree at some
depth and gets a list of constituents as labels. A
new Transformer encoder is learned to predict this
structure, and its output is integrated with the origi-
nal encoder output. SEPREM (Xu et al., 2021) also
focuses on pretraining architecture and defines a
prior attention weight distribution by normalizing
the inverse of the token’s distance in the depen-
dency structure. However, all of these methods
require sophisticated external parsers to generate
dependency or constituency syntax trees.

Implicit syntax enhancement The other way is
to implicitly induce the latent grammar structure by
learning from data distribution. PRPN (Shen et al.,
2018a) enhances RNN neural language modeling
by simultaneously learning a CNN-based parsing
network, which could induce latent constituency

structure represented by syntactic distance. Recent
works have focused more on attention mechanisms.
StructFormer (Shen et al., 2021) introduces a parser
layer that can induce dependency and constituency
syntax simultaneously and integrates induced de-
pendency structure into self-attention in a differ-
entiable way. LPSI (Harada and Watanabe, 2021)
induces latent phrase structure in an unsupervised
fashion and integrates them into the multi-head
attention mechanism. SyncAttn (Deguchi et al.,
2021) enables neural OpenIE to induce the latent
syntactic structure and adopt multi-view learning
to capture multiple relationships from constituency
and dependency graphs. Nevertheless, very little
work pays attention to leveraging implicit induction
in downstream tasks.

Syntax enhancement of pre-trained models In
recent years, people also studied to introduce gram-
mar induction into pre-trained models like BERT
(Devlin et al., 2019) and Roberta (Liu et al., 2019)
instead of training from scratch. POS-BERT (Sun-
dararaman et al., 2019) leverages POS tag infor-
mation apart from the syntactic structure. SLA (Li
et al., 2021) prohibits two tokens from attending to
each other once their distance in the dependency
tree exceeds some boundary, and it improves the
fine-tuning performance on several GLUE tasks.
Syntax-Roberta (Bai et al., 2021) develops a frame-
work that can be easily plugged into an arbitrary
pre-trained checkpoint, which automatically un-
derlines the most relevant syntactic knowledge for
each downstream task. SynCLM (Zhang et al.,
2022) proposes a syntax-guided contrastive learn-
ing method where phrase-guided and tree-guided
contrastive objectives based on constituency and
dependency structures are optimized in the pre-
training stage to help the language model cap-
ture rich syntactic knowledge in its representations.
However, these methods resort to external parsers
to obtain syntactic information, which could not
work well with pre-trained models across down-
stream tasks.

7 Conclusion

In this paper, we study the utilization of grammar
induction for language understanding and gener-
ation. We force the model to be trained with the
self-induced grammar without external parsers or
annotations, which is a more general approach.
Moreover, our method is efficient in both the from-
scratch and pre-trained scenarios. Through assess-
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ments across various machine translation and lan-
guage comprehension tasks, we validate the effi-
cacy of our grammar induction technique, showcas-
ing substantial and consistent enhancements. These
results underscore the tangible benefits that can be
achieved through the incorporation of grammar in-
duction techniques. Our research offers promising
insights into the practical application of induced
grammar in downstream tasks.

Limitations

The performance of the grammar-aware method
may be constrained in large-scale datasets and well-
trained models. As shown in our paper, none of
the grammar-aware methods can achieve consis-
tent improvements on all the tasks of GLUE. This
phenomenon could be explained by the adequacy
of model training. Since RoBERTa has been pre-
trained over a tremendous amount of data, it has
already done well in language understanding. But
it occurs to us whether pre-trained models or large
language models have some form of syntax parsing
modules inside them.

The parsing performance of our parser is a little
limited. We found that the quality of constituency
trees generated from the syntactic distance in our
parser is far from that of well-designed and trained
supervised constituency parsers. However, our
method does make neural network models more
interpretable. More appropriate optimization meth-
ods could be explored to make grammar induction
more effective.

Ethics Statements

Our work pertains to neural machine translation
and fine-tuning of pre-trained language models to
introduce grammar induction into Transformer. In
this work, we use only publicly available data and
artifacts.

Acknowledgement

This work was sponsored by the National
Natural Science Foundation of China (NSFC)
grant (No.62106143), and National Key Re-
search and Development Program of China (No.
2023ZD0121402) .

References
Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang,

Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-
bert: Improving pre-trained transformers with syntax

trees. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, EACL 2021, Online,
April 19 - 23, 2021, pages 3011–3020. Association
for Computational Linguistics.

Eric Brill, David M. Magerman, Mitchell Marcus, and
Beatrice Santorini. 1990. Deducing linguistic struc-
ture from the statistics of large corpora. In Next
Decade in Information Technology: Proceedings of
the 5th Jerusalem Conference on Information Tech-
nology 1990, Jerusalem, October 22-25, 1990, pages
380–389. IEEE Computer Society.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Emanuele Bugliarello and Naoaki Okazaki. 2020. En-
hancing machine translation with dependency-aware
self-attention. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
1618–1627. Association for Computational Linguis-
tics.

Chenhua Chen, Zhiyang Teng, Zhongqing Wang, and
Yue Zhang. 2022. Discrete opinion tree induction
for aspect-based sentiment analysis. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages
2051–2064. Association for Computational Linguis-
tics.

Junqi Dai, Hang Yan, Tianxiang Sun, Pengfei Liu, and
Xipeng Qiu. 2021. Does syntax matter? A strong
baseline for aspect-based sentiment analysis with
roberta. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 1816–1829. Association for Computa-
tional Linguistics.

Hiroyuki Deguchi, Akihiro Tamura, and Takashi Ni-
nomiya. 2021. Synchronous syntactic attention for
transformer neural machine translation. In Proceed-
ings of the ACL-IJCNLP 2021 Student Research
Workshop, ACL 2021, Online, JUli 5-10, 2021, pages
348–355. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of

4509

https://doi.org/10.18653/v1/2021.eacl-main.262
https://doi.org/10.18653/v1/2021.eacl-main.262
https://doi.org/10.18653/v1/2021.eacl-main.262
https://doi.org/10.1109/JCIT.1990.128309
https://doi.org/10.1109/JCIT.1990.128309
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2022.acl-long.145
https://doi.org/10.18653/v1/2022.acl-long.145
https://doi.org/10.18653/v1/2021.naacl-main.146
https://doi.org/10.18653/v1/2021.naacl-main.146
https://doi.org/10.18653/v1/2021.naacl-main.146
https://doi.org/10.18653/v1/2021.acl-srw.36
https://doi.org/10.18653/v1/2021.acl-srw.36
https://doi.org/10.18653/v1/n19-1423


deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Yibing
Liu, Yinglong Wang, and Mohan S. Kankanhalli.
2019. Quantifying and alleviating the language prior
problem in visual question answering. In Proceed-
ings of the 42nd International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR 2019, Paris, France, July 21-25,
2019, pages 75–84. ACM.

Shintaro Harada and Taro Watanabe. 2021. Neural
machine translation with synchronous latent phrase
structure. In ACL (student), pages 321–330. Associa-
tion for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4129–4138. Association for Computational
Linguistics.

Shengyuan Hou, Jushi Kai, Haotian Xue, Bingyu
Zhu, Bo Yuan, Longtao Huang, Xinbing Wang, and
Zhouhan Lin. 2022. Syntax-guided localized self-
attention by constituency syntactic distance. CoRR,
abs/2210.11759.

Phu Mon Htut, Kyunghyun Cho, and Samuel R. Bow-
man. 2019. Inducing constituency trees through neu-
ral machine translation. CoRR, abs/1909.10056.

Zhongli Li, Qingyu Zhou, Chao Li, Ke Xu, and Yunbo
Cao. 2021. Improving BERT with syntax-aware local
attention. In Findings of the Association for Com-
putational Linguistics: ACL/IJCNLP 2021, Online
Event, August 1-6, 2021, volume ACL/IJCNLP 2021
of Findings of ACL, pages 645–653. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Hongyin Luo, Lan Jiang, Yonatan Belinkov, and Jim
Glass. 2019. Improving neural language models by
segmenting, attending, and predicting the future. In
Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 1483–1493. Association for Computa-
tional Linguistics.

Chunpeng Ma, Akihiro Tamura, Masao Utiyama, Ei-
ichiro Sumita, and Tiejun Zhao. 2019. Improving
neural machine translation with neural syntactic dis-
tance. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 2032–2037. Association for Computational
Linguistics.

David M. Magerman and Mitchell P. Marcus. 1991.
Pearl: A probabilistic chart parser. In EACL 1991,
5th Conference of the European Chapter of the As-
sociation for Computational Linguistics, April 9-11,
1991, Congress Hall, Alexanderplatz, Berlin, Ger-
many, pages 15–20. The Association for Computer
Linguistics.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. 2016. Aspec: Asian
scientific paper excerpt corpus. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 2204–
2208, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapo-
lis, MN, USA, June 2-7, 2019, Demonstrations, pages
48–53. Association for Computational Linguistics.

Sainandan Ramakrishnan, Aishwarya Agrawal, and Ste-
fan Lee. 2018. Overcoming language priors in visual
question answering with adversarial regularization.
In Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 1548–1558.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron C. Courville. 2018a. Neural language mod-
eling by jointly learning syntax and lexicon. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. Open-
Review.net.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron C. Courville, and Yoshua Bengio.
2018b. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
56th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2018, Melbourne, Australia,
July 15-20, 2018, Volume 1: Long Papers, pages
1171–1180. Association for Computational Linguis-
tics.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald
Metzler, and Aaron C. Courville. 2021. Structformer:

4510

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3331184.3331186
https://doi.org/10.1145/3331184.3331186
https://doi.org/10.18653/v1/n19-1419
https://doi.org/10.18653/v1/n19-1419
https://doi.org/10.18653/v1/n19-1419
https://doi.org/10.48550/arXiv.2210.11759
https://doi.org/10.48550/arXiv.2210.11759
https://arxiv.org/abs/1909.10056
https://arxiv.org/abs/1909.10056
https://doi.org/10.18653/v1/2021.findings-acl.57
https://doi.org/10.18653/v1/2021.findings-acl.57
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/p19-1144
https://doi.org/10.18653/v1/p19-1144
https://doi.org/10.18653/v1/n19-1205
https://doi.org/10.18653/v1/n19-1205
https://doi.org/10.18653/v1/n19-1205
https://aclanthology.org/E91-1004/
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/n19-4009
https://proceedings.neurips.cc/paper/2018/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html
https://openreview.net/forum?id=rkgOLb-0W
https://openreview.net/forum?id=rkgOLb-0W
https://doi.org/10.18653/v1/P18-1108
https://doi.org/10.18653/v1/P18-1108
https://doi.org/10.18653/v1/2021.acl-long.559


Joint unsupervised induction of dependency and con-
stituency structure from masked language modeling.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pages
7196–7209. Association for Computational Linguis-
tics.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5027–5038, Brussels, Belgium. Association for Com-
putational Linguistics.

Dhanasekar Sundararaman, Vivek Subramanian,
Guoyin Wang, Shijing Si, Dinghan Shen, Dong
Wang, and Lawrence Carin. 2019. Syntax-infused
transformer and BERT models for machine trans-
lation and natural language understanding. CoRR,
abs/1911.06156.

Giorgos Tziafas, Konstantinos Kogkalidis, Gijs Wi-
jnholds, and Michael Moortgat. 2021. Improving
BERT pretraining with syntactic supervision. CoRR,
abs/2104.10516.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 4395–4405. Association for
Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun
Shou, Ming Gong, Wanjun Zhong, Xiaojun Quan,
Daxin Jiang, and Nan Duan. 2021. Syntax-enhanced
pre-trained model. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP

2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 5412–5422. Association for
Computational Linguistics.

Jian Yang, Shuming Ma, Dongdong Zhang, Zhoujun Li,
and Ming Zhou. 2020. Improving neural machine
translation with soft template prediction. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 5979–5989. Association for
Computational Linguistics.

Shuai Zhang, Lijie Wang, Xinyan Xiao, and Hua Wu.
2022. Syntax-guided contrastive learning for pre-
trained language model. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 2430–2440.
Association for Computational Linguistics.

A Estimation of Dependency Distribution

The estimation function FP(·) in Equation 4 lever-
ages the two-stage method by Shen et al. (2021) to
calculate the estimation of the dependency distri-
bution among tokens. We utilize it to generate the
syntactic mask with syntactic distance and height.
We describe the calculation procedure in detail.

To estimate the probability pD(wj |wi) that the
j-th token wj is the parent of the i-th token wi, they
decompose pD(wj |wi) into two factors:

pD(j | i) =
∑

[l,r]

pPr(j | [l, r])pC([l, r] | i) (7)

where pPr(j | [l, r]) denotes the probability that
wj is the root of wl...r. It can be parameterized by
syntactic height:

pPr(j | [l, r]) =
exp (hj)∑

l≤k≤r exp (hk)
(8)

And pC([l, r] | i) denotes the probability that wl...r

is the smallest legal constituent C(wi) for wi:

pC([l, r] | i) = pL(l | i)pR(r | i) (9)

where pL(l | i) denotes the probability that l is the
left margin of C(wi) and pR(r | i) stands for the
right margin.

The distribution is parameterized that the l-th
token wl is inside C(wi) with the probability p(l ∈
C(wi)) that hi is larger than the maximum distance
τ between l and i:

p (l ∈ C (wi)) = σ ((hi −max (τl, . . . , τi−1)) /µ)
(10)
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Models
IWSLT14 NC11

De→En En→De De→En En→De

Transformer 34.71 28.91 27.04 25.23
Ours (-MLM) 34.41 28.44 26.24 25.26
Ours (+MLM) 35.89 29.31 27.69 25.83

Table 7: Effect of MLM loss on machine translation. "-MLM" means using our method without MLM loss, while
"+MLM" means using our method with MLM loss.

Models
CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B

Avg
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (F1) (pc)

RoBERTa 61.3 95.2 87.6/87.0 92.8 75.8 92.9 88.9 90.9 85.8
Ours (-MLM) 62.2 95.0 87.7/87.5 93.3 79.8 92.8 89.1 90.9 86.5
Ours (+MLM) 62.1 95.0 88.0/87.5 93.1 75.8 92.7 88.7 89.4 85.8

Table 8: Effect of MLM loss on GLUE.

where σ is the sigmoid function and µ is a learnable
temperature term.

The event l ∈ C(wi) consists of 2 cases: l ∈
C(wi) ∩ l − 1 ∈ C(wi) and l ∈ C(wi) ∩ l − 1 /∈
C(wi).

For the first case, if l−1 ∈ C(wi), we must have
l ∈ C(wi). So the probability can be measured
with p(l − 1 ∈ C(wi)). For the second case, if
l ∈ C(wi) and l−1 /∈ C(wi), it means that l is the
left margin of C(wi).

Therefore, the probability pL(l | i) that l is the
left margin of C(wi) can be derived by:

pL(l | i) = p (l ∈ C (wi))− p (l − 1 ∈ C (wi))
(11)

And pR(r | i) can be derived by:

pR(r | i) = p (r − 1 ∈ C (wi))− p (r ∈ C (wi))
(12)

The procedure goes through the sentence to es-
timate the syntactic dependency of each token on
the others.

B Experiment Details

We perform all the training on 2 RTX3090 GPUs
for IWSLT14 and NC11, 2 80G-A100 for AS-
PEC, and 1 40G-A100 for GLUE. For our method
with BPE embeddings, each training took about
2.5 hours for IWSLT14, 3 hours for NC11, and
50 hours for ASPEC. For our method without
BPE embeddings, each training took about 2
hours for IWSLT14, 2.5 hours for NC11, and
29 hours for ASPEC. We use Adam optimizer
with β1 = 0.9, β2 = 0.98. Cross entropy is

the default loss function with label smoothing of
0.1 and weight decay of 0.0001. The batch size
(GPU_num×Update_num×Max_tokens) is
2 × 1 × 4096, 2 × 2 × 8192 and 2 × 1 × 8192
respectively.

The numbers of attention heads in each layer
and dimensions of the fully connected layer are 4
and 1024 for IWSLT14 and NC11, 8 and 2048 for
ASPEC.

We employ beam search at inference time. Fol-
lowing the settings of previous work Hou et al.,
2022, the beam size and length penalty are set to 5
and 1.0 for IWSLT14 and ASPEC, and set to 4 and
0.6 for NC11.

The number of model parameters is about 49M
for IWSLT14, 57M for NC11, and 108M for AS-
PEC, with an increase of 9M. For grammar-aware
RoBERTa on GLUE, the fine-tuning took about 7
hours and the number of model parameters is about
135M with an increase of 10M.

We also see increased numbers of parameters
in other syntax-enhanced models like SLA (Li
et al., 2021), ST-NMT (Yang et al., 2020), LPSI
(Harada and Watanabe, 2021) and Syntax-Roberta
(Bai et al., 2021), while they do not report statistics
in their papers.

C Effect of MLM loss

We conduct experiments to study the effect of
MLM loss on our method. The results on machine
translation tasks and GLUE are shown in Table 7
and Table 8.

Experiment results demonstrate that MLM loss
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Algorithm 1 Syntactic Distance to Constituency
Tree
Input: Syntactic distance τ1...n−1, sentence w1...n

Output: Constituency Tree T
Function Tree(τ, w)
1: if τ = [] then
2: T ← Leaf(w)
3: else
4: i← argmaxi(τ )
5: nodel ← Tree(τ1...i−1, w1...i)
6: noder ← Tree(τi+1...n−1, wi+1...n)
7: T ← Node(nodel, noder)
8: end if
9: return T

has a different effect on models’ grammar inte-
gration in the two scenarios. As discussed in
Section 3.4, the language modeling objective con-
tributes to the hierarchical generalization of Trans-
formers. Consequently, our grammar induction
works well with MLM loss to train Transformers
from scratch on machine translation tasks. Never-
theless, it does not benefit from MLM loss when
fine-tuning a pre-trained model RoBERTa. One
possible reason is that learning to induce grammar
with MLM loss might influence hierarchical gener-
alization inside the model, which has been devel-
oped by MLM loss in the pre-training of RoBERTa.
It deserves further work to study the relation be-
tween language modeling and grammar induction
during different stages of training.

D Transformation Algorithm

The algorithm we implemented in Section 4.5 is to
transform the syntactic distances of a sentence into
a constituency tree.

The transformation algorithm is designed with
a top-down merging method. It divides the input
sequence w into two subsequences at the split point
i whose syntactic distance τi is the largest in the se-
quence. Then the subtrees of the two subsequences
are merged into a whole.
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