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Abstract

The proliferation of fake news has emerged as
a severe societal problem, raising significant
interest from industry and academia. While ex-
isting deep-learning based methods have made
progress in detecting fake news accurately, their
reliability may be compromised caused by the
non-transparent reasoning processes, poor gen-
eralization abilities and inherent risks of inte-
gration with large language models (LLMs).
To address this challenge, we propose TELLER,
a novel framework for trustworthy fake news
detection that prioritizes explainability, gener-
alizability and controllability of models. This
is achieved via a dual-system framework that
integrates cognition and decision systems, ad-
hering to the principles above. The cognition
system harnesses human expertise to generate
logical predicates, which guide LLMs in gen-
erating human-readable logic atoms. Mean-
while, the decision system deduces generaliz-
able logic rules to aggregate these atoms, en-
abling the identification of the truthfulness of
the input news across diverse domains and en-
hancing transparency in the decision-making
process. Finally, we present comprehensive
evaluation results on four datasets, demonstrat-
ing the feasibility and trustworthiness of our
proposed framework. Our implementation is
available at this link1.

1 Introduction

Fake news has emerged as a prominent social prob-
lem due to the rampant dissemination facilitated by
social media platforms (Zhou and Zafarani, 2021).
Additionally, the swift progress of generative ar-
tificial intelligence has further amplified this is-
sue (Cardenuto et al., 2023). While human fact-
checking experts can accurately verify the authen-
ticity of news, their efforts cannot scale with the
overwhelming volume of online information. Con-

1https://github.com/less-and-less-bugs/Trust_
TELLER

Figure 1: Three crucial aspects of trustworthy fake news
detection algorithms and the correlation between these
principles and our dual-sytem framework TELLER.

sequently, researchers have turned to automatic
fake news detection techniques.

Despite the improved predictive accuracy
achieved by current deep learning-based detection
approaches (Ma et al., 2023; Qi et al., 2021; Mehta
et al., 2022), these methods suffer from the lack
of transparency because of the black-box nature
of neural networks (Cui et al., 2019) and a limited
ability to generalize to unseen data of which the dis-
tribution is different from training data, given the
inherent diversity of online information (e.g., top-
ics, styles and media platforms) (Liu et al., 2024).
Moreover, the increasing integration with LLMs is
prone to uncontrollable risks due to hallucinations
and societal applications. Thus, a growing aware-
ness emphasizes trustworthiness2 of these systems
(Liu et al., 2023; Sheng et al., 2022).

Unfortunately, the characteristics of a trustwor-
thy fake news detector remain an open question.
Hence, based on recent surveys of Trustworthy AI
(Li et al., 2023; Jobin et al., 2019) and fake news
detection (Shu, 2023), we identify three crucial as-
pects that go beyond accuracy for fake news detec-
tion technologies: explainability, generalizability,
and controllability. These aspects work collectively

2In AI, trustworthiness refers to the extent to which an AI
system can be trusted to operate ethically, responsibly, and
reliably (Jobin et al., 2019).
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to enhance system security and trustworthiness.
Firstly, explainability refers to understanding

how an AI model performs decision (Miller, 2019).
This mechanism serves as a fundamental require-
ment for establishing end-user trust in these tools,
as it enables the disclosure of complex reasoning
processes and the identification of potential flaws
in neural networks. Secondly, generalizability rep-
resents the capability to acquire knowledge from
limited training data to predict accurately in unseen
situations (Wang et al., 2023a). Given the imprac-
ticality of exhaustively collecting and annotating
vast amounts of data across various news domains,
generalization ensures the affordable and sustain-
able deployment of data-driven fake news detection
algorithms. Lastly, controllability encompasses the
capacity for human guidance and intervention in
the behavior of models (Ji et al., 2023a). This ob-
jective benefits models in understanding specific
misinformation regulatory policies and rectifying
deviations if necessary. While recent practices may
satisfy the requirements of explainability (Xu et al.,
2022; Liu et al., 2023) or generalization (Kochkina
et al., 2018; Yue et al., 2023), they often fail to
adhere to all three principles simultaneously.

To this end, we propose TELLER, a Trustworthy
framework for Explainable, generaLizable and con-
troLlabe dEtectoR, drawing inspiration from the
dual-system theory3 (Daniel, 2017). This frame-
work abstracts the existing pipeline of fake news de-
tection into two components: the cognition and de-
cision systems. As depicted in Fig. 1, the cognition
system serves as the first step and is responsible
for transforming meaningful human expertise from
renowned journalism teams (Tsang, 2023; Sanders,
2023) into a set of Yes/No question templates that
correspond to logic predicates. These decomposed
questions are then answered using LLMs, which
provide truth values for corresponding logic atoms.

On the other hand, the decision system, em-
powered by a differentiable neural-symbolic model
(Cingillioglu and Russo, 2021), can integrate the
output of the cognition system to deduce the final
authenticity of input news by leveraging domain in-
variant logic rules learned from data automatically.
This visible logic-based ensemble can mitigate the
negative effects caused by inaccurate predictions of
LLMs and allow for the correction of unreasonable

3System 1 provides tools for intuitive, imprecise, and un-
conscious decisions akin to deep learning, while system 2 han-
dles complex situations requiring logical and rational thinking
akin to symbolic learning (Booch et al., 2021).

rules through adjusting the weights in the model
manually to align with human expertise.

Our framework ensures explainability by incor-
porating human-readable question templates (pred-
icates) and a transparent decision-making process
based on logic rules. This interpretability further
enables the flexibility to adjust rules and enhances
the model’s robustness against false LLM predic-
tions, thereby guaranteeing controllability. More-
over, our model exhibits generalizability, attributed
to the generalizable performance of LLMs com-
bined with reliable human experience as guidance
and the utilization of the neural-symbolic model,
which can learn domain-generalizable rules.

To summarize, the contributions of this work
include: 1) We introduce a systematic framework
comprising cognition and decision modules, aim-
ing to uphold three crucial principles for estab-
lishing a trustworthy fake news detection system:
explainability, generalizability, and controllability.
2) We validate the effectiveness of our framework
by conducting comprehensive experiments using
various LLMs on four benchmarks. The results
demonstrate the feasibility and trustworthiness of
TELLER across different scenarios.

2 Related Work

2.1 Trustworthy AI

Establishing comprehensive trustworthiness in AI
is non-trivial due to its multi-objective nature, in-
cluding robustness, security, transparency, fairness,
safety, and ethical standards (Jobin et al., 2019).
Achieving such trustworthiness necessitates consid-
ering the entire lifecycle of an AI system, spanning
from data preparation and algorithm design, devel-
opment, and deployment to management and gover-
nance (Li et al., 2023; Eykholt et al., 2018). Recent
researchers have explored diverse approaches to
enhance AI trustworthiness across various goals
and stages to address this challenge. For example,
regarding algorithm design, several topics, such
as transfer learning, federated learning, and inter-
pretable AI, have been proposed to improve mod-
els’ robustness, security, and transparency. More-
over, the deployment of AI systems necessitates ex-
ternal government oversight, particularly for AGI
(Bengio et al., 2023). Although our work focuses
on enhancing the trustworthiness of detection sys-
tems from the algorithm design aspect, we acknowl-
edge that there is still much room for improvement
to achieve the ultimate goal.
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2.2 Trustworthy Fake News Detection

Recent fake news detection research has witnessed
a notable paradigm shift from prioritizing accuracy
to considering trustworthiness. In line with our
work, we primarily examine studies that aim to en-
hance algorithms’ explainability, generalizability,
and controllability.

Regarding explainability, Cui et al. (2019); Xu
et al. (2022); Liao et al. (2023) suggested obtain-
ing key evidence for interpretation based on fea-
ture importance, while Liu et al. (2023) utilized
logic clauses to illustrate the reasoning process-
ing. However, these methods still need to be more
transparent due to their probabilistic nature and
complex architecture. Furthermore, another group
of works (Huang and Sun, 2023; Hu et al., 2023;
Yue et al., 2024; Qi et al., 2024), explored large
generative language models (e.g., ChatGPT) and
regarded the intermediate chain of thoughts as an
explanation. Nevertheless, these explanations may
not be reliable due to the hallucination phenomenon
(Ji et al., 2023b) and the misalignment problem of
AGI (Ji et al., 2023a). Moving on to generalizabil-
ity, most methods, such as (Yue et al., 2023; Zhu
et al., 2023; Qi et al., 2021), enhanced fake news
detectors through transfer learning algorithms to
learn domain-invariant features or domain-adaptive
features. However, these methods inevitably intro-
duce external costs of domain alignment, such as
annotating domain labels. As for controllability,
although some works (Silva et al., 2021; Mendes
et al., 2023) incorporated the human-in-loop tech-
nique in data sampling and model evaluation, few
works explore how to intervene and edit models
to align with human expertise. More comparative
discussion between TELLER and existing work can
be found in Appendix E.

3 Methodology

Formally, given a piece of news T , the objective of
the fake news detection task is to predict its label
of truthfulness y ∈ Y where Y can fit in different
levels of classification granularity. For example, in
binary classification setting, Y = {true, false}, and
T is identified as real (fake) when y is true (false).

As depicted in Fig. 2, TELLER involves two
main components: cognition and decision systems.
The cognition system decomposes human expertise
into Yes/No question templates corresponding to
logic predicates. When presented with a new input
T , the templates and predicates can be instantiated

to form questions and logic atoms. By leveraging
the parametric knowledge inside LLMs and gather-
ing additional information from external tools (e.g.,
search engines), the cognition system can gener-
ate answers to these questions, represented as truth
values of logic atoms. Then, the decision system
takes these truth values as input and generates inter-
pretable logic clauses to debunk misinformation by
a neural-symbolic model, which can learn generic
logic rules from data in an end-to-end manner.

3.1 Cognition System

To combat misleading information, existing deep
learning-based algorithms fall short in gaining pub-
lic trust, while fact-checking experts rigorously fol-
low designated guidance and principles to facilitate
transparent and fair evaluation. Our cognitive sys-
tem aims to integrate the strengths of deep learning-
based methods that can handle large-scale online
information while maintaining the trustworthiness
of manual checking.

3.1.1 Predicate Construction
To begin with, we describe the following symbol
convention for clarity: calligraphic font Q and P
for sets of question templates and predicates, capi-
talized letters Q, P, X for question templates, pred-
icates, and variables, and corresponding lowercase
letters q, p, x for instances of these entities (ques-
tions, logic atoms, values). The truth values of
logic atoms are denoted by µ.

Inspired by the well-established fact-checking
process in Table 5, we initially decompose it into
a question template set, denoted as Q, contain-
ing eight questions as detailed in Appendix A.1.
Each template Qi in Q consists of Ni variables and
can be transformed into an Ni-ary logic predicate
Pi(Xi,1, . . . ,Xi,Ni) in P . The logic semantics of
Pi is interpreted as the affirmative answer to Qi and
its truth value µi represents the probability that Pi

holds. For instance, take Q1 (i.e., "Background In-
formation: X1,1. Statement: X1,2. Is the statement
true?") in Fig. 2 as an example. The correspond-
ing predicate P1(X1,1,X1,2) can be explained as
"Given the background information X1,1, the state-
ment X1,2 is true".

For each predicate Pi(Xi,1, . . . ,Xi,Ni), we can
instantiate the variables Xi,1, . . . ,Xi,Ni with the
actual contents taken from any input news to ob-
tain logic atoms. Since an input piece of news may
contain multiple background information and state-
ments (instantiations), we use k to denote the kth
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Figure 2: The architecture of the proposed framework TELLER. N represents the number of question templates (logic
predicates), Mi denotes the number of logic atoms corresponding to the ith predicate, Y denotes the truthfulness
label set. The semantics of question templates and logic predicates are described in Table 6.

instantiation where 1 ≤ k ≤
Ni∏
j=1

|Xi,j |. Here |Xi,j |
indicates the total number of possible instantiations
for variable Xi,j . Then we denote by pi,k the in-
stantiated logic atom corresponding to the question
qi,k. Next, we introduce how to acquire the truth
value of each logic atom.

3.1.2 Logic evaluation with LLMs
While decomposed questions can provide a com-
prehensive explanation of how the decision is
made (Chen et al., 2022; Fan et al., 2020), di-
rectly answering these questions poses a challenge
due to the impracticality of annotating enormous
data to train multiple models for different ques-
tions. To address this issue, we resort to the more
general-purpose LLMs (e.g., FLAN-T5 (Chung
et al., 2022), Llama2 (Touvron et al., 2023b), and
GPT-3.5) as the foundation for effectively answer-
ing these questions. Existing LLMs can be catego-
rized into two groups: LLMopen, such as FLAN-T5
and Llama2, where the logits of output vocabulary
can be obtained, and LLMclose, such as GPT-3.5,
where the logits are not accessible.

To ensure compatibility with both categories of
LLMs, we propose two strategies to obtain the final
truth values of logic atoms. Concretely, we first
input the question qi,k with a suffix (i.e., "Yes or
No? Response:") to LLMs in order to measure
their preference for the affirmative answer "Yes"
versus the negative one "No". This preference is
subsequently used to compute the truth value of the
corresponding logic atom pi,k.

For LLMopen, we follow (Gallego, 2023; Burns
et al., 2023) to obtain pre-softmax logits of "Yes"
and "No" tokens, denoted as vY es and vNo respec-

tively. Compared with post-softmax logits, pre-
softmax logits can mitigate the influence of other to-
kens in output vocabulary, particularly when LLMs
tend to generate irrelevant tokens that may result in
vY es or vNo becoming zero. Then the truth value
µ for the logic atom p (here we omit the under-
script i, k for ease of illustration) can be obtained
as follows:

µ = 2
evY es

evNo + evY es
− 1. (1)

For LLMclose, we sample m times during de-
coding and count the frequency of "Yes" and "No"
responses as mY es and mNo. Then we compute

µ = 2
mY es

mNo +mY es
− 1. (2)

In either case, µ is in the range of [−1, 1]. When
µ ∈ [−1, 0), µ ∈ (0, 1], and µ = 0, the corre-
sponding logic atom p is evaluated as false, true,
and unknown, respectively. Once the truth values
of all logic atoms for a single predicate Pi (cor-
responding to a single question template) are ob-
tained, we concatenate them as one vector, denoted
as µi. Then we concatenate the value vectors for all
predicates as the input for the final decision system.

In conclusion, our cognition system can generate
diversified questions and logic atoms based on the
input news T . These human-readable entities en-
hance explainability by showcasing potential inter-
mediate reasoning steps and ensure controllability
by allowing adjustments to Q and P . Moreover,
combining human expertise and LLMs provides
the basis for the cognition system’s satisfactory
generalization performance in unseen domains.
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3.2 Decision System

After acquiring responses to all questions, it is im-
perative to develop a decision system to effectively
aggregate them to predict the label of the input
news T while preserving trustworthiness in the
reasoning process. However, prevalent heuristic
strategies (e.g., majority voting) lack the flexibil-
ity to handle complex relationships among differ-
ent questions and cannot tolerate false predictions,
and deep-learning-based models cannot be compre-
hended literally by humans (Wang et al., 2023b).

Hence, we utilize a neural-symbolic model,
named Disjunctive Normal Form (DNF) Layer
(Cingillioglu and Russo, 2021; Baugh et al., 2023),
as our decision system. This model includes con-
junctive layers (SL∧) and disjunctive layers (SL∨),
which can progressively converge to symbolic se-
mantics such as conjunction ∧ and disjunction ∨
respectively during model training. Consequently,
this model can automatically learn logic rules from
data in an end-to-end manner, capturing general-
izable relationships between logic predicates and
the target label. As illustrated in Fig. 2, we stack
C conjunctive layers SL∧ beneath |Y| disjunctive
layers SL∨ to construct the DNF Layer, where each
SL∨ corresponds to a truthfulness label y ∈ Y .

However, the original DNF Layer proposed in
(Cingillioglu and Russo, 2021) is not directly ap-
plicable to our work due to two issues. Firstly,
the truth value of logic atoms µ ranges in [−1, 1],
while the original model can only handle values of
−1 and 1. Secondly, each logic atom in the orig-
inal DNF Layer is treated differently which loses
logic semantics where atoms for the same logic
predicate should share similar functionality. To ad-
dress the aforementioned challenges, we propose a
modified DNF layer which takes continuous values
µ ∈ [−1, 1] as input and assigns the same weight
for those atoms instantiated from the same logic
predicate. The detailed description of our modified
DNF layer can be found in Appendix G.

More concretely, in our proposed DNF Layer,
every SL∧ takes truth values µ of all logic atoms
obtained in the cognition system as input, aiming
to learn a conjunctive clause conj =

∧
pi,k∈A pi,k

where A ⊆ {p1,1, . . . , pN,MN
}, referring to a sub-

set of the complete logic atoms, and outputs the
truth value of this conjunctive clause. Subsequently,
each SL∨ receives the truth values of C conjunctive
clauses to represent a disjunction of these conjunc-
tions:

∨
c∈C conjc where C ⊆ {1, . . . , C}, referring

to a subset of all conjs. It then outputs the truth
value of this disjunction formula, corresponding
to the final probability that the input news T is
identified as the label y. Hence, each label y will
be associated with a DNF clause learned by the
DNF layer. Intuitively, the conjunction simulates
the idea that if the input news T gives affirmative
answers to some questions simultaneously, it is
highly probable that it should be assigned to label
y. On the other hand, the disjunction provides more
flexibility by considering different alternatives (the
output is true if at least one of the conj is true)
which makes the final decision less sensitive to in-
correct atom values due to wrong predictions given
by LLMs. For example, assume the learned rules
are conj1 ∨ conj2 where conj1 = p1,1 ∧ p1,2 and
conj2 = p2,1 ∧ p3,1. Suppose conj1 is true, then
we can conclude that conj1 ∨ conj2 is true even if
conj2 gives an incorrect value.

Last but not the least, we apply softmax function
to the output of all disjunction layers SL∨ to obtain
the probability z ∈ R|Y| for all possible labels. The
entire decision system can be trained in an end-to-
end fashion by minimizing the cross-entropy loss
function as below:

L = −
|Y|∑

l=1

I(yl = yT ) log zl, (3)

where yT represents the ground truth label of T .
During inference, we select the label corresponding
to the highest value in z as the final result.

In summary, our decision system can extract in-
terpretable symbolic rules from data that exhibit
robustness across diverse domains and enable inter-
vention by adjusting weights in the DNF Layer to
align with prior knowledge (refer to Appendix C).

4 Experiments

In this section, we present the experiment setup
and demonstrate the feasibility, explainability, gen-
eralizability and controllability of TELLER through
extensive experiments.

4.1 Experimental Setting
Dataset. We conducted experiments using four
challenging datasets, namely LIAR (Wang, 2017),
Constraint (Patwa et al., 2021), PolitiFact, and Gos-
sipCop (Shu et al., 2020). LIAR comprises the
binary classification and multi-classification set-
ting with six fine-grained labels for truthfulness
ratings. Moreover, Wang (2017); Alhindi et al.
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(2018) curated relevant evidence (e.g., background
information), serving as gold knowledge in an open
setting. Constraint, PolitiFact and GossipCop are
binary classification datasets related to COVID-19,
politics, and entertainment domains, respectively.
LLMs. We select the open-source FLAN-T5 and
Llama2 series, which encompass various parameter
sizes, as large language models for constructing the
cognition system. We also conduct experiments us-
ing GPT-3.5-turbo on the LIAR dataset to examine
the versatility of our framework.
Baselines. We compare our model against Direct,
Few-shot Direct, Zero-shot COT, Few-shot COT,
Few-shot Logic. The baselines suffixed with Direct
involve prompting large language models (LLMs)
to predict the label of input news directly; those
suffixed with COT utilize chain-of-thought tech-
niques to enhance the performance of LLMs; those
suffixed with Logic replace the thought process in
COT with questions paired with their answers. We
exclusively implement COT-related methods using
GPT-3.5-turbo because they show no improvement
over Direct on FLAN-T5 and Llama 2, as shown
in Table 12. Additionally, we compare with small
models, including BERT and RoBERTa, analyzed
in Appendix E.
Implementation Detail. We evaluate the perfor-
mance of our framework using the accuracy and
Macro-F1, which accommodates class imbalance.
For each dataset, we train our decision system using
the training split; select the optimal model based on
its performance on the validation split; and report
the results on the test split. To assess the generaliz-
ability of our model, we consider each dataset as
a separate domain and train our models using the
train split from source domains; choose the best
model on the validation split of source ones; and
report results on the test split from the target do-
main. Moreover, to highlight the robustness of our
framework, we keep all hyperparameters fixed in
each setting. Details of the experiment setting, data
leakage analysis, baselines, and model training are
elaborated in Appendix B.

4.2 Feasibility Study

To validate the feasibility of our framework, we
compare it against multiple baselines across a wide
range of LLMs and scenarios (e.g., different classi-
fication granularities) in Table 1 and Table 2. These
results uncover two crucial findings listed below:

Firstly, our framework demonstrates satisfactory

performance in fake news detection tasks. Specifi-
cally, in the binary classification setting, TELLER

achieves an accuracy of approximately 76% on the
GossipCop dataset and over 80% on the other three
datasets. Notably, when utilizing Llama 2 (13B) to
drive the cognition system, TELLER outperforms
all GPT-3.5-turbo based methods by a significant
margin. These results highlight the effectiveness of
TELLER in distinguishing between fake and gen-
uine news. In the multi-classification setting on the
LIAR dataset, our framework consistently outper-
forms Direct for FLAN-T5 and Llama2 series, even
though these models may struggle to discriminate
fine-grained labels. This observation underscores
the capability of our decision system to mitigate
the negative influences of noisy predictions in the
cognition system, effectively unleashing the poten-
tial of LLMs through logic-based aggregation of
answers to decomposed questions.

Secondly, our framework exhibits significant po-
tential for the future. In the binary classification
setting across four datasets, TELLER consistently
outperforms Direct in terms of accuracy and macro-
F1 scores by an average of 7% and 6%, respectively.
Considering the swift improvement of LLM intelli-
gence, these results imply that the performance of
our framework is likely to scale with the evolution
of LLMs. Additionally, due to the notable perfor-
mance difference between closed and open settings
on the LIAR dataset, it is promising to integrate
external tools to acquire extensive evidence from
credible sources, such as official government web-
sites, to enhance the performance of our systems.

4.3 Explainability Verification

Explainability is a fundamental factor for establish-
ing trust in AI technology. We demonstrate that our
framework satisfies this aspect through its inherent
mechanism and the visualization of rules.

Unlike approaches that rely heavily on LLMs,
our cognition system incorporates expert knowl-
edge to construct a more well-grounded worldview
by generating well-defined question templates and
logic predicates. Moreover, our decision system
can learn interpretable rules from data to deduce
logic clauses to debunk fake news by converging
implicit parameters to conjunctive and disjunctive
semantics. These symbolic units (e.g., questions
and logic atoms) and the interpretable DNF Layer
contribute to our framework’s overall explainability
and transparency.
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Large Language Models Method
Binary Classification Multi-Classification

Closed Open Closed Open
Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-small (80M) Direct 44.99 31.63 45.08 32.41 18.17 9.28 19.51 10.13

FLAN-T5-base (250M) Direct 54.02 50.79 61.47 61.43 19.43 11.79 21.40 21.40

FLAN-T5-large (780M)
Direct 57.30 52.20 74.38 73.84 19.43 17.84 29.50 24.95

TELLER 66.83(9.53↑) 66.33(14.13↑) 77.76(3.38↑) 77.32(3.49↑) 26.99(7.55↑) 18.04(0.20↑) 33.67(4.17↑) 27.50(2.55↑)
w/ Intervention 65.64 65.12 77.46 77.14 26.28 18.49 35.25 30.05

FLAN-T5-xl (3B)
Direct 58.89 58.62 75.97 75.67 19.67 16.57 29.43 24.74

TELLER 62.36(3.48↑) 60.18(1.56↑) 78.75(2.78↑) 78.55(2.88↑) 24.31(4.64↑) 17.40(0.83↑) 33.52(4.09↑) 27.22(2.48↑)
w/ Intervention 63.65 61.82 79.34 79.07 25.57 19.62 34.46 33.59

FLAN-T5-xxl (11B)
Direct 56.41 56.08 75.17 75.15 22.42 18.31 32.18 28.12

TELLER 66.63(10.23↑) 65.91(9.82↑) 80.24(5.06↑) 79.85(4.70↑) 26.83(4.41↑) 19.68(1.36↑) 35.48(3.30↑) 30.42(2.30↑)
w/ Intervention 67.03 66.19 80.73 80.41 26.91 21.30 35.88 31.63

Llama2 (7B)
Direct 59.88 59.19 72.29 69.63 18.02 9.97 11.01 6.88

TELLER 62.46(2.58↑) 62.45(3.26↑) 79.94(7.65↑) 79.80(10.16↑) 23.29(5.27↑) 15.51(5.55↑) 32.73(21.72↑) 25.55(18.67↑)
w/ Intervention 64.15 62.77 81.93 81.84 23.92 15.14 34.30 27.58

Llama2 (13B)
Direct 56.90 56.90 69.31 63.77 7.32 2.85 10.86 8.25
Ours 66.04(9.14↑) 66.03(9.13↑) 82.52(13.21↑) 82.37(18.60↑) 25.81(18.49↑) 17.71(14.86↑) 38.08(27.22↑) 29.27(21.02↑)

w/ Intervention 67.73 66.97 84.21 84.03 25.10 16.78 38.63 30.60

GPT-3.5-turbo

Direct 42.40 51.48 76.27 74.21 20.46 20.34 26.20 25.12
TELLER - - 79.15(2.88↑) 78.90(4.69↑) - - 31.94(5.74↑) 29.53(4.41↑)

Zero-shot COT 30.88 41.87 72.49 70.83 7.16 9.20 39.81 36.49
Few-shot 61.67 64.05 81.02 81.00 25.65 25.56 46.81 44.61

Few-shot COT 52.04 56.15 74.48 76.21 20.69 17.20 45.63 36.36
Few-shot Logic 49.26 48.85 61.67 60.92 16.37 13.98 20.54 19.22

Table 1: Results on LIAR dataset. "Closed" represents the cognitive system does not have access to any external
knowledge source, while "Open" indicates that it can utilize gold evidence collected by human experts. The best
results for each setting are highlighted with bold numbers and an underline, whereas sub-optimal results are only
highlighted in bold. The number indicates that the performance of w/ Intervention is worse than TELLER. The
number with ↑ indicates the performance gain of TELLER over Direct.

LLMs Method
Constraint PolitiFact GossipCop

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-large
Direct 78.06 77.97 56.62 54.84 67.43 58.76

TELLER 80.32(2.27↑) 80.11(2.14↑) 67.65(11.03↑) 67.65(12.81↑) 69.53(2.10↑) 59.39(0.63↑)
w/ Intervention 80.46 80.31 68.38 68.29 70.28 60.74

FLAN-T5-xl
Direct 75.32 74.79 55.88 50.72 67.73 52.80

TELLER 83.77(8.45↑) 83.66(8.88↑) 68.82(9.14↑) 64.68(13.95↑) 69.58(1.85↑) 58.72(5.91↑)
w/ Intervention 83.95 83.88 69.12 68.79 72.23 63.84

FLAN-T5-xxl
Direct 74.80 73.23 52.21 43.65 68.93 52.82

TELLER 83.39(8.59↑) 83.24(10.01↑) 69.12(16.91↑) 68.57(24.92↑) 69.18(0.25↑) 57.21(4.39↑)
w/ Intervention 83.62 83.54 69.12 68.95 71.48 62.12

Llama2 (7B)
Direct 81.83 81.73 77.21 77.00 66.78 52.23

TELLER 83.72(1.89↑) 83.54(1.81↑) 83.82(6.62↑) 83.81(6.81↑) 70.68(3.90↑) 59.58(7.35↑)
w/ Intervention 85.13 85.04 83.82 83.82 73.38 65.32

Llama2 (13B)
Direct 57.53 51.75 77.94 77.10 52.55 52.27

TELLER 87.31(29.78↑) 87.29(35.53↑) 79.41(1.47↑) 79.41(2.30↑) 74.48(21.93↑) 66.32(14.06↑)
w/ Intervention 87.78 87.71 78.68 78.65 75.92 69.30

Table 2: Results on Constraint, PolitiFact, and GossipCop datasets without access to retrieved background informa-
tion. The best results for each setting are highlighted with bold numbers. The number and the number with ↑ have
the same meaning as in Table. 1.

However, as the number of conjunctive and dis-
junctive layers grows, it is difficult for human be-
ings to investigate logic rules derived from our
decision system. To address this issue, we propose
a strategy to prune unnecessary weights in the DNF
Layer. For example, we present the rules extracted
from the pruned model for GossipCop in Table 4,
where each conjunctive clause identifies one can-
didate rule. The pruning algorithm and rules for
other datasets are described in Appendix C.

Table 4 can be interpreted as learning DNF rules
for both true and false labels of input news. Specif-
ically, the true label is predicted if either ¬conj34
or ¬conj43 is true, i.e., either ¬P2 ∧P3 ∧P6 ∧P8

or P3 ∧ P6 ∧ P8 is false when removing the nega-
tion. Given the semantics of these logic predicates

shown in Table 6, we know that P2, P3 and P8

check the consistency between the background in-
formation and a given message, whereas P6 scruti-
nizes improper intention from the message alone.
On the other hand, the news will be predicted as
false if conj27 is true, i.e., P4 is false which means
that the background information in the message is
neither accurate or objective according to Table 6.

4.4 Generalizability Verification

Ensuring the generalization ability of fake news de-
cision systems is vital for their sustainable and prac-
tical deployment. As observed in Table 3, TELLER

consistently outperforms Direct across all domains
and LLMs without the assistance of any generaliza-
tion algorithm, while only exhibiting a negligible
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LLMs Method
CP−→G GP−→C CG−→P

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-xl
Direct 67.73 52.80 75.32 74.79 55.88 50.72

TELLER 68.13(0.40↑) 56.54(3.74↑) 82.40(7.0↑) 82.09(7.31↑) 61.76(5.88↑) 60.92(10.19↑)

FLAN-T5-xxl
Direct 68.93 52.82 74.80 73.23 52.21 43.65

TELLER 69.13(0.2↑) 53.15(0.34↑) 77.44(2.64↑) 76.21(2.98↑) 66.18(13.97↑) 66.17(22.52↑)

Llama2 7B
Direct 66.78 52.23 81.83 81.73 77.21 77.00

TELLER 68.33(1.55↑) 59.33(7.10↑) 81.60(−0.24↓) 81.04(−0.69↓) 83.09(5.88↑) 82.82(5.82↑)

Llama2 13B
Direct 52.55 52.27 57.53 51.75 77.94 77.10

TELLER 70.93(18.38↑) 60.90(8.63↑) 85.09(27.56↑) 84.87(33.1↑) 79.41(1.47↑) 79.41(2.30↑)

Table 3: Results on cross-domain experiments. C, P and G represent Constraint, PolitiFact, and GossipCop datasets.

conj34 = ¬P2 ∧ P3 ∧ P6 ∧ P8

conj43 = P3 ∧ P6 ∧ P8

conj27 = ¬P4

Ptrue = ¬conj34 ∨ ¬conj43
Pfalse = conj27

Table 4: Extracted rules for the GossipCop dataset when
using Llama2 (13B)
performance drop in the GP−→C domain using
Llama2 7B. This is attributed to the remarkable
zero-shot ability of LLMs and the effectiveness of
the DNF layer which further compensates for bi-
ased predictions made by LLMs through rule-based
aggregation. Particularly, the performance gains
of TELLER in cross-domain and in-domain exper-
iments (refer to Table 2) are positively correlated,
implying that the decision system manages to learn
domain-agnostic rules. Moreover, the Pearson cor-
relation coefficient between these two groups of
performance gains shows a substantial improve-
ment from 0.01 to 0.53 when transitioning from the
FLAN-T5 series to the more powerful Llama2 se-
ries. This finding suggests that leveraging stronger
LLMs to drive the cognition system enhances the
generalization capability of our framework.

4.5 Controllability Verification
Controllability ensures that fake news detection sys-
tems are subject to effective human oversight and
intervention. We demonstrate TELLER satisfies this
attribute from two aspects. Firstly, we verify the
feasibility of manually rectifying rules learned by
our decision system that may exhibit irrational be-
havior. For instance, we observe that P3 (i.e., "The
message contains adequate background informa-
tion") should have a positive logical relation with
Ptrue instead of negation in Table 4. To correct
this, we perform a manual adjustment by setting
the corresponding weight to zero, effectively re-
moving P3 from the logic rule. However, this mod-
ification only leads to a negligible improvement in
the test split. Further investigation reveals that the
truth value of logic atoms pertaining to P3 of most
real samples is negative, possibly due to the prefer-

ence of LLMs. This suggests the superiority of our
logic-based decision system in reducing the nega-
tive effect of incorrect predictions made by LLMs
automatically. Secondly, we simulate human ex-
perts by intervening in the actions of our cognition
system. We achieve this by guiding LLMs to ex-
pand the question template set Q using Algorithm
1, referred to as w/ intervention in Tables 1 and
2. The new question template set for intervention
is shown in Table 7. The results consistently in-
dicate that w/ intervention outperforms TELLER,
highlighting the potential of LLMs as an agency
for automatically regulating the behaviors of the
cognition system. Thus, our framework ensures a
comprehensive control mechanism by simultane-
ously facilitating human and AI agents’ oversight.

Furthermore, we conduct additional experiments
to verify the effectiveness of the DNF Layer in
logic formulation over other decision systems,
namely decision trees, Naive Bayes classifiers and
MLP. We replace the DNF Layers with these three
algorithms to derive the final decisions. The results
are shown in Tables 15 and 16 for in-domain and
cross-domain settings, respectively in Appendix D.

5 Conclusion

In this work, we address the limitations of existing
fake news detection methods, which struggle to
establish reliability and end-user trust. To tackle
this issue, we identify three crucial aspects for con-
structing trustworthy misinformation detection sys-
tems: explainability, generalizability, and controlla-
bility. By prioritizing these principles, we propose
a dual-system framework TELLER that incorpo-
rates cognition and decision systems. To validate
our framework’s feasibility, explainability, general-
izability, and controllability, we conduct extensive
experiments on diverse datasets and LLMs. These
results affirm the effectiveness and trustworthiness
of our approach and highlight its significant poten-
tial through evolving both subsystems in the future.
While we achieve trustworthiness from an algorith-
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mic perspective, we emphasize the importance of
further research to improve the trustworthiness of
the entire lifecycle of fake news detection systems.

Limitations

We identify three main limitations of our work.
Firstly, although our framework focuses on enhanc-
ing the trustworthiness of fake news detection algo-
rithms, trustworthiness is also influenced by other
stages of the AI system lifecycle, such as data col-
lection and deployment. Given the advancements
in AI techniques and the importance of online in-
formation security, we encourage future research
to address the challenges of building trustworthy
AI systems comprehensively.

Secondly, as shown in Table 1, integrating exter-
nal tools to acquire high-quality background knowl-
edge significantly improves the performance of
fake news detection systems. However, collecting
information that can effectively support detection
tasks using such tools is non-trivial due to the com-
plexities of open-domain information retrieval and
the diversity of news content. For instance, we
search for background information by inputting
check-worthy claims of P1 into a search engine
and filter out as much useful information as possi-
ble using GPT-3.5-turbo. However, integrating this
evidence led to a slight performance drop on Con-
straint, PolitiFact, and GossipCop datasets (Due to
page limitations, we do not include this experiment
in our paper). Therefore, we leave this for future
research.

Thirdly, despite the excellent and robust perfor-
mance of our decision system, especially in gen-
eralization ability, the expressiveness of the DNF
Layer is still limited due to its simple architecture.
For example, the DNF Layer learns rules from data
without considering the semantics of logic predi-
cates. It may be crucial to develop more powerful
decision models to fully unleash the potential of
large language models, such as incorporating the
semantics of logic predicates. However, given the
low-dimensional input and the need for trustwor-
thiness, the DNF layer remains a prudent choice.
Moreover, there also exists a trade-off between
trustworthiness and the complexity of the decision
system.

Ethics Statement

This paper adheres to the ACM Code of Ethics and
Professional Conduct. Specifically, the datasets we

utilize do not include sensitive private information
and do not pose any harm to society. Furthermore,
we will release our codes following the licenses of
any utilized artifacts.

Of paramount importance, our proposed dual-
system framework serves as an effective measure
to combat fake news and safeguard individuals,
particularly in the current era dominated by large
generative models that facilitate the generation of
deceptive content with increasing ease. Moreover,
our approach fulfills explainability, generalizabil-
ity, and controllability, thereby mitigating concerns
regarding the security of AI products and enabling
their deployment in real-world scenarios.
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A Details of Cognition System

Deep learning has attracted increasing interest
from academia and industry (Xiao et al., 2023,
2024). Unlike convolutional deep learning-based
fake news detection frameworks that classify in
a latent space, the cognition system of TELLER,
aims to emulate human fact-checking experts by
complying with specific policies to ensure trans-
parency and controllability of the detection pro-
cess. In this section, we describe the construc-
tion of the set of question templates Q and Q′ for
TELLER and w/Intervention respectively in Ap-
pendix A.1. Furthermore, we introduce a trick for
batch training by fixing the number of logic atoms
for different inputs in Appendix A.2 and outline
some potential techniques for further improvement
of the cognition system in Appendix A.3.

A.1 Construction of Question Templates
To provide an overview, we present the referenced
human-checking process in Table 5. In this table,
Steps I, VI and VII are excluded from detection
algorithms, as they either fall into the preliminary
procedures or the post-processing stages of the fake
news detection pipeline. These steps may involve
data crawling, human-computer interaction, ma-
chine translation, etc. As a result, we concentrate
on the other steps.

Subsequently, we decompose the process into a
Yes/No question template set Q, where each tem-
plate Qi in Q corresponds to a predicate Pi in
the predicate set P . All question templates and
their corresponding predicates are listed in Table 6.
Specifically, for Q1, our objective is to determine
the trustworthiness of statements in the input news.
Here, statements represent crucial information in
news articles, playing a vital role in debunking mis-
information. Additionally, extracting statements
from news is a challenging task. While previous
studies like Liao et al. (2023); Fung et al. (2021)
used pre-trained language models to generate sum-
maries as statements, we choose to utilize GPT-
3.5-turbo to generate statements for simplicity in
implementation. The prompt used for this purpose
is as follows:

To verify the MESSAGE, what are the critical
claims related to this message we need to
verify? Please use the following format to
answer. If there are no important claims,

answer “not applicable”.

MESSAGE:
CLAIM:
CLAIM:

MESSAGE: $MESSAGE$.

Then, we replace the "$MESSAGE$" with input
news and take the generated claims as statements
for Q1 (P1).

Additionally, when verifying the controllabil-
ity of our framework, we propose adjusting the
question template set to deal with the diversity
of fake news. While this adjustment should be
done by fact-checking experts to ensure the reason-
ableness of new questions, our empirical findings
demonstrate the feasibility of guiding large lan-
guage models, such as GPT-3.5-turbo, to generate
new question templates. These templates are then
manually filtered by us to create the final question
template set Q′, and the corresponding predicate
set P ′ for intervention, as outlined in Algorithm
1. Such human verification is incorporated into
our intervention method to ensure more control-
lability because the main point of controllability
is to intervene via human knowledge instead of
relying on models entirely. Moreover, such man-
ual checking is not time-consuming, with only a
few candidate questions being generated. Table 7
presents these newly added question templates and
predicates. The prompt R used in this algorithm is
as follows:

Write some questions that can be used to de-
termine whether a news report is misinforma-
tion. The questions should be answerable by
large language models in a close-book situa-
tion without requiring additional information.
Please format each question using the <s> and
</s> tags, such as <s>A question</s>.

A.2 Trick for Batch Training
To enable batch training, we fix the number of logic
atoms, denoted as Mi for each predicate Pi. Specif-

ically, If Mi <
Ni∏
j=1

|Xi,j |, we randomly select Mi

atoms. Conversely, if Mi >
Ni∏
j=1

|Xi,j |, we pad the

vector by 0 accordingly. In the end, µ can be repre-
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sented as [µ1,1, . . . , µ1,M1 , . . . , µN,1, . . . , µN,MN
],

where µ ∈ RM and M =
N∑
i
Mi.

A.3 The Potential of Cognition System
It is noteworthy that specific techniques can be
employed to improve the performance of our cog-
nitive system. For instance, when obtaining the an-
swers to questions as truth values for corresponding
logic atoms in Sec. 3.1.2, we exclusively consider
"Yes" and "No" tokens. However, considering the
relationship between model outputs and final pre-
dictions, "Right" and "Wrong" tokens can also be
suitable candidates. Therefore, drawing motivation
from (Gao et al., 2021; Cui et al., 2022), existing
manual or automatic verbalizer techniques that es-
tablish mappings between diverse model outputs
and final labels can be leveraged to enhance per-
formance. Additionally, the ensemble of prompts,
similar to "Yes or No? The answer is: ", has proven
effective for the "Yes" and "No" classification task
in (Gallego, 2023). Consequently, our dual-system
framework exhibits substantial potential for future
improvements in the cognitive system.

Algorithm 1 Question Template Generation for
Intervention Algorithm

Input: Prompt R, the original question template
set Q, and a copy of Q denoted as Q̂

Output: The question template set Q′ for inter-
vention

1: Set the number of iteration steps as T
2: for Iteration t = 1, . . . , T do
3: Use R to guide GPT-3.5-turbo in generating

a set of new question templates Q′

4: for each question template Q′
i in Q′ do

5: Compute the average similarity score be-
tween Q′

i and all templates in Q̂ using
Sentence BERT.

6: end for
7: Add Q′

i ∈ Q′ with the lowest similarity
score to Q̂.

8: end for
9: Q′ = Q̂ \ Q

10: Manually refine Q′ by removing duplicate and
impractical templates that are non-verifiable
through LLMs, resulting in the final Q′.
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Step I: Selecting claims
(1) To filter the information on news websites, social media, and online databases through manual selection
and computer-assisted selection.
(2) The public can submit suspicious claims.
(3) Selecting suspicious claims based on their hotness in Hong Kong, considering factors such as the
amount of likes, comments, and shares the message has received.

A) Is the content checkable?
B) Any misleading or false content?
C) Does it meet public interest?
D) Is it widespread?

Step II: Tracing the source
(1) Determining the source of the information.
(2) Identifying the publication date.
(3) Investigating the publisher and their background and reputation.
(4) Checking for similar information.
(5) Capturing a screen record and attaching the URL link.
(6) Providing two or more additional sources of information.
Step III: Fact-checking the suspicious information
(1) Applying the Five Ws and an H: When, Where, Who, What, Why, How.
(2) Searching for evidence to verify the information, such as official press releases, authoritative media
reports, and research reports.
(3) Attempting to engage the person or organization making the claim through email or telephone, if
necessary.
(4) Consulting experts in the relevant field, if necessary.
Step IV: Retrieving contextual information
(1) Checking if the original claim contains adequate background information.
(2) Assessing the accuracy and objectivity of the background information.
(3) Identifying any intentionally eliminated content that distorts the meaning.
Step V: Evaluating improper intentions
(1) Assessing if there is any improper intention (e.g., political motive, commercial purpose) in the
information.
(2) Investigating if the publisher has a history of publishing information with improper intentions.
Step VI: Self-checking
(1) Fact-checkers signing a Declaration of Interest Form before joining the team.
(2) Ensuring fact-checkers maintain objectivity and avoid biases during the process.
(3) Upholding the principle of objectivity and avoiding emotional involvement.
Step VII: Publishing and reviewing reports
(1) Completing a draft of the fact-check report, followed by editing and reviewing by professional editors
and consultants.
(2) Updating the report if any mistakes or defects are found, and providing clarification on correction
reasons and date.

Table 5: Fake news detection policy of HKBU FACT CHECK Team (Tsang, 2023)
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Question Template Logic Predicate: Logic Semantics Annotation
Q1: Background Information: X1,1.
Statement: X1,2. Is the statement true?

P1(X1,1,X1,2): Given the back-
ground information X1,1, the
statement is true.

X1,1: Background information for
input news, X1,2: Check-worthy
statements in input news.

Q2: Background Information: X2,1.
Message: X2,2. Is the message true?

P2(X2,1,X2,2): Given the back-
ground information X2,1, the mes-
sage is true.

X2,1: Background information for
input news, X2,2: Input news.

Q3: Message: X3,1. Did the message
contain adequate background informa-
tion?

P3(X3,1): The message con-
tains adequate background infor-
mation.

X3,1: Input news.

Q4: Message: X4,1. Is the background
information in the message accurate and
objective?

P4(X4,1): The background infor-
mation in the message is accurate
and objective.

X4,1: Input news.

Q5: Message: X5,1. Is there any content
in the message that has been intention-
ally eliminated with the meaning being
distorted?

P5(X5,1): The content in the mes-
sage has been intentionally elimi-
nated with the meaning being dis-
torted

X5,1: Input news.

Q6: Message: X6,1. Is there an im-
proper intention (political motive, com-
mercial purpose, etc.) in the message?

P6(X6,1): The message has an im-
proper intention.

X6,1: Input news.

Q7: Publisher Reputation: X7,1. Does
the publisher have a history of publish-
ing information with an improper inten-
tion?

P7(X7,1): Given the publisher
reputation X7,1, the publisher has
a history of publishing informa-
tion with an improper intention.

X7,1: Publishing history.

Q8: Background Information: X8,1.
Message: X8,2. Is the message false?

P8(X8,1,X8,2): Given the back-
ground information X8,1, the mes-
sage is false.

X8,1: Background information for
input news, X8,2: Input news.

Table 6: Question template set Q and logic predicate set P

Question Template Logic Predicate: Logic Semantics Annotation
Q9: News Report: X9,1. Is the news report
based on facts or does it primarily rely on
speculation or opinion?

P9(X9,1): The news report is based on
facts and relies on speculation or opinion.

X9,1: Input news.

Q10: News Report X10,1: Are there any
logical fallacies or misleading arguments
present in the news report?

P10(X10,1): The news report has logical
fallacies or misleading arguments.

X10,1: Input news.

Q11: Message: X11,1. Does the message
exhibit bias?

P11(X11,1): The message exhibits bias. X11,1: Input news.

Q12: News report: X12,1. Are there any
grammatical or spelling errors in the news
report that may indicate a lack of profes-
sional editing??

P12(X12,1): The news report has grammat-
ical and spelling errors.

X12,1: Input news.

Q13: News report: X13,1. Does the news
report use inflammatory language or make
personal attacks?

P13(X13,1): The news report uses inflam-
matory language and makes personal at-
tacks.

X13,1: Input news.

Table 7: Question template set Q′ and logic predicate set P ′ generated by GPT-3.5-turbo for intervention
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B Details of Experimental Setting

B.1 Datasets
LIAR is a publicly available dataset for fake
news detection, sourced from POLITIFACT.COM.
This dataset comprises six fine-grained labels for
truthfulness ratings: true, mostlytrue, halftrue,
barelytrue, false, and pantsfire. To align with
the binary classification problem, we merge true,
mostlytrue into true and merge barelytrue,
false, and pantsfire into false, following (Liao
et al., 2023). Moreover, Wang (2017); Alhindi
et al. (2018) curated relevant evidence from fact-
checking experts (e.g., publisher information, back-
ground information, etc.), which serve as gold
knowledge in an open setting.
Constraint is a manually annotated dataset of real
and fake news related to COVID-19. We adopt
the data pre-processing procedures described in
(Patwa et al., 2021), which involve removing all
links, non-alphanumeric characters, and English
stop words.
PolitiFact and GossipCop are two binary classifi-
cation subsets extracted from FakeNewsNet (Shu
et al., 2020). The PolitiFact subset comprises polit-
ical news, while the GossipCop subset comprises
entertainment stories. To optimize experimental
costs and adhere to maximum context limitations,
we exclude news samples longer than 3,000 words.

For dataset partitioning, we follow the default
partition if specified; otherwise, we use a 7:1:2
ratio. Table 8 presents the statistics of each dataset.

Split LIAR Constraint PolitiFact GossipCop
Train 10202 6299 469 6999

Validation 1284 2139 66 999
Test 1271 2119 136 2002

Table 8: Statistics of four benchmarks

B.2 Data Leakage Analysis
In our work, we used four publicly available
datasets to evaluate our proposed framework,
TELLER. To begin with, following recent work
(Oren et al., 2023), we refer to the problem of data
leakage (data contamination) as the situation where
the pretraining and finetuning dataset of LLMs con-
tains the testing splits of datasets used in our work.
To mitigate the risks associated with data leakage
during our evaluation, we took three precaution-
ary steps to ascertain that the probability of the

occurrence of data leakage is particularly low:
Manual Check: For the open-public Flan-T5 and
Llama 2 series, we double-checked the dataset
cards of these two model families and did not find
a data leaking problem. Concretely, we checked
the finetuning data (i.e., Appendix F Finetuning
Data Card of (Chung et al., 2022)) and pre-training
data (i.e., C4 dataset in Sec. 3.4.1 of (Raffel
et al., 2020)) for the family of Flan-T5 models
and checked the pre-training data of Llama 1 (i.e.,
Sec. 2.1 of (Touvron et al., 2023a)) while the pre-
training data of Llama 2 seems not publicly avail-
able yet.
Assumption Experiment: If data leakage were
present, we would expect the detection accuracy
of LLMs to scale with model size, given that the
memorization ability of LLMs is positively cor-
related to the size of models empirically (Kaplan
et al., 2020). However, our results in Tables 1 and
2 do not support this hypothesis, suggesting a low
likelihood of data leakage.
Empirical Analysis: Some measurements for data
leakage exist (Oren et al., 2023; Touvron et al.,
2023b). We used the Sharded Rank Comparison
Test, proposed by Oren et al. (2023) to analyze po-
tential data leakage in our datasets on Llama2 (7B).
We did not analyze the data leakage problem of the
GPT series here due to the limited and expensive
access, while Llama2 and FLAN-T5 are LLMs we
mainly use. The results in Table 9 indicate no data
leakage risk for Llama2 (i.e., when the p-value>
0.05 means there is no data leakage risk). However,
these measurements of data leakage problems may
compromise the accuracy of determining whether
dataset contamination occurs and have contributed
to evaluation performance sometimes because of
many confounding factors (a detailed discussion in
A.6 of (Touvron et al., 2023b)).

While TELLER has shown satisfactory accuracy
on four open-public datasets, our main contribution
is the systematic framework that adheres to explain-
ability, generalizability, and controllability. As per
our experimental results, TELLER’s detection per-
formance can scale by integrating more powerful
LLMs and external techniques, demonstrating the
effectiveness of our approach as LLMs and related
techniques continue to evolve. Consequently, even
if the possible data leakage problem may have a
deceptively good influence on the detection accu-
racy, we argue that it will not decrease our work’s
contribution.
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Table 9: The Sharded Rank Comparison Test for data
leakage problem. We run this test on all testing splits of
four datasets for Llama2 (7B).

Dataset P-value
LIAR 0.8355

Constraint 0.7869
PolitiFact 0.7712

GossipCop 0.7802

B.3 Illustration of Different Baselines
We compare our model against Direct, Few-shot
Direct, Zero-shot COT, Few-shot COT, Few-shot
Logic. Direct utilizes LLMs to calculate the prob-
ability of each label using Eqs. 1-2 and then se-
lects the label with the highest likelihood as the
predicted label. Building upon Direct, Few-shot
Direct incorporates demonstration samples with
known labels as contextual information to enhance
the model’s performance. Zero-shot COT and Few-
shot COT employ the chain-of-thought (COT) tech-
nique (Wei et al., 2022), enabling LLMs to engage
in step-by-step reasoning. While Zero-shot COT
immediately adds the prompt "Let us think step
by step!", Few-shot COT provides multiple COT
exemplars. For Few-shot Logic, we replace the
thought process in COT with instantiated questions
accompanied by corresponding answers generated
by our cognition system. We omit comparisons
with Few-shot and COT-based prompt methods for
Llama 2 and FLAN-T5 because COT prompts have
been found to yield performance gains basically
when used with models of approximately 100B
parameters (Wei et al., 2022), and both Few-shot
and COT-based methods show no additional im-
provement over Direct as revealed by Table 12, we
exclusively implement COT-related methods using
GPT-3.5-turbo.

Below we show the templates for these five base-
lines for the fake news detection task in the closed
setting without access to any external knowledge
source.
Direct:

Message: $MESSAGE$.
Is the message $Label$?
Yes or No? Response:

Then, we replace the "$MESSAGE$" with input
news, "$Label$" with candidate truthfulness labels.
Few-shot Direct:

Following given examples to answer Yes/No
questions.

Message: Says the Annies List political
group supports third-trimester abortions on
demand.
Is the message true?
Yes or No? Response: No

Message: Says the Annies List political
group supports third-trimester abortions on
demand.
Is the message false?
Yes or No? Response: Yes

(· · · more examples here · · ·)

Message: $MESSAGE$.
Is the message $Label$?
Yes or No? Response:

Then, we replace the "$MESSAGE$" with in-
put news, "$Label$" with candidate truthfulness
labels. Furthermore, during the testing phase, the
examples are randomly selected from the training
set.
Zero-shot COT:

You will be provided with a statement, and
your task is to classify its truthfulness into one
of two categories: true and false.
Message: $MESSAGE$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$MESSAGE$" with the
input news.
Few-shot COT:

You will be provided with a statement, and
your task is to classify its truthfulness into one
of two categories: true and false.

Example One
Message: Says the Annies List political group
supports third-trimester abortions on demand.
Let’s think step by step and give answer with
suffix “So the final answer is".
Annie’s List was comfortable with candidates
who oppose more limits on late-term abortions
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while he also supported candidates who voted
for more limits this year. Both dose not
mention of third-trimester abortions.
So the final answer is false.

(· · · more examples here · · ·)

Message: $MESSAGE$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$MESSAGE$" with the
input news.
Few-shot Logic:

You will be provided with a statement, and
your task is to classify its truthfulness into one
of two categories: true and false.

Example One
Message: Says the Annies List political group
supports third-trimester abortions on demand.
Decomposed Questions:
(1) Statement: The Annies List is a political
group. Is the statement true?
Yes
(2) Statement: The Annies List supports
third-trimester abortions. Is the statement
true?
No
(3) Did the message contain adequate back-
ground information?
False

(· · · more examples here · · ·)

Message: $MESSAGE$.
Let’s think step by step and give answer with
the suffix “So the final answer is".

Then, we replace the "$MESSAGE$" with the
input news.

Additionally, we conducted supplementary ex-
periments comparing our framework with other
non-LLM-based misinformation detectors (referred
to as small models following convention), includ-
ing BERT4 and RoBERTa5, presented in Tables 13
and 14 for in-domain and cross-domain settings,

4https://huggingface.co/bert-base-uncased
5https://huggingface.co/FacebookAI/

roberta-base

respectively. These small models are finetuned on
misinformation detection datasets. Especially for
the cross-domain setting, we consider each dataset
as a separate domain and fine-tune these models us-
ing the train split from source domains, choose the
model on the validation split of source ones, and re-
port results on the test split from the target domain.
Moreover, we do not compare our framework here
with existing transfer learning algorithms because
we assume the domain label and target domain data
are unavailable in our work.

B.4 Model Training for Decision System
In the decision system of our framework, we em-
ploy the DNF Layer to learn human-readable rules
from data differentially. To train this model, we
utilize the Adam optimizer with a learning rate of
1e-3. Regarding the hyperparameters, we search
the conjunction number C within the range [10, 20,
30, 40, 50], and the weight decay within the range
[1e-3, 5e-4, 1e-4]. Furthermore, to showcase the
superiority of our approach, we maintain consistent
hyperparameters across different LLMs in each set-
ting. For instance, all hyperparameters of TELLER

in the closed setting for the binary classification
task on the LIAR dataset remain unchanged. The
batch size is set to 64, and the number of epochs is
set to 30. Additionally, we progressively converge
the model towards symbolic semantics by adjusting
δ (refer to Appendix G for detail) to 1 or -1 before
the first 15 epochs using exponential decay.
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C Details of Explainability Study

To enhance the accessibility of the rules generated
by the DNF Layer, we propose a pruning algo-
rithm that extracts more concise logic clauses by
eliminating insignificant weights. The algorithm is
described in Algorithm 2. Furthermore, to demon-
strate the explainability of our framework, we visu-
alize the extracted rules obtained from the pruned
model for Constraint, PolitiFact, and GossipCop
datasets in Tables 10, 11 and 4, respectively. In
these tables, Ptrue and Pfalse represent the proposi-
tion that the input news is identified as true or false,
respectively. In our visualization experiments, we
employ Llama2 (13B) as the LLM in the cogni-
tion system. We set the number of conjunctive
layers C as 50, the performance drop threshold ϵ
as 0.005, and b as 0.0001 to reduce the number of
conjunction clauses. More details regarding these
parameters can be found in Appendix G.

Similar to Symbolic AI, such as expert sys-
tems, our learned rules can be intuitively trans-
lated into natural language. For instance, con-
sider the rules provided in Table 4, conj27 = ¬P4,
Pfalse = conj27 and the semantics of P4 in Table 6
is “The background information in the message is
accurate and objective”, Pfalse can be translated as
“The input message (news) is false when the back-
ground information in the message is not accurate
and objective".

Algorithm 2 Pruning Algorithm for the DNF Layer
Input: Trained DNF Layer Φ, performance drop threshold ϵ
Output: Pruned DNF Layer Φ′ and extracted rule set R
1: Initialize R′ as an empty set
2: Initialize R by extracting rules from Φ
3: Initialize Φ′ using Φ
4: while |R′| ̸= |R| do
5: Initialize R by extracting rules from Φ′

6: Prune disjunctions if the removal of a disjunction
results in a performance drop smaller than ϵ

7: Prune unused conjunctions that are not utilized by any
disjunction

8: Prune conjunctions if the removal of a conjunction
results in a performance drop smaller than ϵ

9: Prune disjunctions that use empty conjunctions
10: Prune disjunctions again if the removal of a disjunc-

tion results in a performance drop smaller than ϵ
11: Update the pruned model as Φ′ and extract rules from

Φ′ to obtain R′;
12: end while

conj48 = P4 ∧ ¬P8

conj25 = ¬P4 ∧ ¬P5 ∧ P8

conj40 = P2 ∧ P4

Ptrue = conj48
Pfalse = conj25 ∨ ¬conj40

Table 10: Extracted rules for the Constraint dataset
when using Llama2 (13B).

conj36 = P3 ∧ P6 ∧ P8

conj44 = P5 ∧ P1 ∧ P8

conj0 = P1

conj49 = P2 ∧ P3 ∧ P4

Ptrue = ¬conj36 ∨ ¬conj44
Pfalse = ¬conj0 ∨ ¬conj49

Table 11: Extracted rules for the PolitiFact dataset when
using Llama2 (13B).
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LLMs Method
Constraint PolitiFact GossipCop

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-xl
Direct 75.32 74.79 55.88 50.72 67.73 52.80

Few-shot 75.17 74.48 52.20 45.07 67.13 51.20
Few-shot COT 52.67 45.76 58.08 56.62 46.65 46.50

FLAN-T5-xxl
Direct 74.80 73.23 52.21 43.65 68.93 52.82

Few-shot 75.97 75.97 50.73 41.10 68.53 51.87
Few-shot COT 52.66 45.33 50.61 41.43 65.98 47.15

Llama2 (7B)
Direct 81.83 81.73 77.21 77.00 66.78 52.23

Few-shot 71.68 71.30 75.74 75.74 66.13 59.62
Few-shot COT 52.10 34.77 55.14 42.89 47.95 47.43

Llama2 (13B)
Direct 57.53 51.75 77.94 77.10 52.55 52.27

Few-shot 57.24 50.48 80.14 79.56 51.55 51.39
Few-shot COT 53.79 44.98 50.01 33.33 65.28 50.92

Table 12: Comparison between different prompt methods on FLAN-T5 and Llama2 series.

Method
Constraint PolitiFact GossipCop LIAR

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)
BERT 96.98 97.11 85.29 85.71 81.97 86.45 63.06 62.42

RoBERTa 97.07 97.21 88.97 89.36 82.72 87.07 64.55 63.16
TELLER (best) 87.78 87.71 83.82 83.82 75.92 69.30 67.73 66.97

Table 13: Comparison between small models and TELLER on four datasets for binary classification task in an
in-domain setting.

Method
CP−→G GP−→C CG−→P

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)
BERT 46.97 31.12 65.69 70.65 48.53 46.97

RoBERTa 47.45 38.26 64.56 65.79 52.21 48.00
TELLER (best) 70.93 60.90 85.09 84.87 83.09 82.82

Table 14: Comparison between small models and TELLER for binary classification task in a cross-domain setting.
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D Comparison with Different Decision
Models

In our work, we utilize the DNF Layer to construct
our decision system, guaranteeing explainability
and controllability. However, there are also other
alternatives, such as existing neural symbolic archi-
tectures and interpretable machine learning algo-
rithms. By comparing the DNF Layer with these
candidates, we demonstrate that our dual-system
framework can achieve better performance by in-
venting a more effective decision model to unleash
the ability of LLMs.

While existing neural symbolic architectures can
extract useful rules from data (Booch et al., 2021),
they indeed have certain limitations. Firstly, these
architectures often require complex mechanisms to
implement logical operations, which makes them
unsuitable for immediate application in fake news
detection tasks. For example, Qu et al. (2021);
Cheng et al. (2023) developed neural-symbolic
models for knowledge graph completion, but their
reliance on well-defined graph structures makes
them infeasible for our task. Secondly, these ar-
chitectures often suffer from efficiency issues. For
instance, δLP proposed in (Evans and Grefenstette,
2018) had high computational complexity, and HRI
(Glanois et al., 2022) was incompatible with batch
training, which externally required users to pre-
define rule templates to constrain the search space.
Furthermore, to the best of our knowledge, there
may be no neural-symbolic framework available
that can simultaneously handle the challenges of
missing values and multi-grounding problems (i.e.,
one predicate can be instantiated as multiple logic
atoms), which are common in our tasks. There-
fore, we acknowledge the need for future research
to develop a more suitable and powerful neural-
symbolic framework in the context of fake news
detection.

Since each dimension in µ is precisely bonded
to a question template (logic predicate), we can
employ traditional machine learning classification
algorithms, including decision tree6, naive Bayes
Classifier7 and multi-layer perceptron (MLP), to
replace the DNF Layer to drive our decision system,
while maintaining partial aspects of trustworthy AI.
Therefore, we compare the DNF Layer with these

6https://scikit-learn.org/stable/modules/tree.
html

7https://scikit-learn.org/stable/modules/
naive_bayes.html

three methods in both in-domain and cross-domain
settings on three datasets, shown in Tables 15 and
16, respectively.

According to the results, we conclude that the
decision tree and MLP perform better when the
training and testing data are from the same do-
main. Meanwhile, the naive Bayes Classifier
demonstrates more satisfactory generalization per-
formance in cross-domain experiments across var-
ious LLMs. This implies that our proposed dual-
system framework shows potential in developing a
more powerful decision module, such as an ensem-
ble of these algorithms. However, the DNF Layer
still outperforms these three methods in most cases
when using Llama2 (13B) as the driver of the cog-
nition system, achieving a better trade-off between
accuracy and generalization ability. Moreover, the
DNF Layer also exhibits advantages over these
methods in terms of its ability to handle missing
values and multi-grounding problems, as well as
its flexibility in efficiently searching logic rules
in a large space, whereas the decision tree is con-
strained by depth and width.

15578

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html


LLMs Method
Constraint PolitiFact GossipCop

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-large

Decision Tree 78.53 78.30 67.65 67.19 70.88 62.76
Bayes Classifier 80.93 80.86 66.18 66.15 68.33 61.04

MLP 81.26 81.16 71.42 63.43 71.62 63.74
TELLER 80.32 80.11 67.65 67.65 69.53 59.39

FLAN-T5-xl

Decision Tree 84.29 84.27 66.91 66.10 71.13 61.58
Bayes Classifier 82.40 82.22 68.38 67.88 68.23 60.23

MLP 84.52 84.44 70.28 60.74 70.78 62.76
TELLER 83.77 83.66 68.82 64.68 69.58 58.72

FLAN-T5-xxl

Decision Tree 84.14 84.12 72.06 71.00 72.13 67.08
Bayes Classifier 82.49 82.30 68.38 67.61 68.38 57.62

MLP 83.29 83.15 72.78 65.82 72.52 65.98
TELLER 83.39 83.24 69.12 68.57 69.18 57.21

Llama2 (7B)

Decision Tree 84.33 84.32 79.41 77.00 72.38 65.24
Bayes Classifier 83.11 82.97 76.47 76.29 71.98 66.67

MLP 84.99 84.94 74.68 68.80 74.83 68.86
TELLER 83.72 83.54 83.82 83.81 70.68 59.58

Llama2 (13B)

Decision Tree 86.50 86.49 83.09 83.07 74.43 68.99
Bayes Classifier 84.99 84.92 80.15 80.06 73.58 69.59

MLP 87.31 87.31 77.37 72.72 76.97 72.01
TELLER 87.31 87.29 79.41 79.41 74.48 66.32

Table 15: Results of different decision models on Constraint, PolitiFact, and GossipCop datasets without access to
retrieved background information. The best results for each dataset are highlighted with bold numbers.

LLMs Method
CP−→G GP−→C CG−→P

Acc(%) Macro-F1(%) Acc(%) Macro-F1(%) Acc(%) Macro-F1(%)

FLAN-T5-xl

Decision Tree 68.98 62.33 73.67 73.32 63.97 62.71
Bayes Classifier 67.13 59.26 82.49 82.49 64.71 64.64

MLP 67.63 55.67 74.80 74.78 64.71 63.76
TELLER 68.13 56.54 82.40 82.09 61.76 60.92

FLAN-T5-xxl

Decision Tree 68.33 55.53 70.60 70.35 61.03 60.98
Bayes Classifier 68.33 54.71 82.63 82.51 62.50 62.50

MLP 67.58 53.96 74.23 74.22 66.18 65.81
TELLER 69.13 53.15 77.44 76.21 66.18 66.17

Llama2 7B

Decision Tree 52.20 52.05 76.40 75.02 66.91 64.84
Bayes Classifier 65.98 62.46 82.82 82.60 67.65 65.49

MLP 65.73 64.87 81.50 80.82 75.00 74.65
TELLER 68.33 59.33 81.60 81.04 83.09 82.82

Llama2 13B

Decision Tree 61.59 61.14 71.54 68.21 71.32 71.32
Bayes Classifier 71.53 69.09 82.59 82.25 78.68 78.25

MLP 71.33 68.48 78.76 77.62 80.15 79.96
TELLER 70.93 60.90 85.09 84.87 79.41 79.41

Table 16: Results of different decision models on cross-domain experiments. C, P and G represent Constraint,
PolitiFact, and GossipCop datasets, respectively. The best results for each dataset are highlighted with bold numbers.
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E Comparison with Existing Work on
Three Principles

It is imperative to compare our LLM-based frame-
work with prevailing misinformation detection
methods across dimensions of explainability, gen-
eralizability, and controllability. We conduct addi-
tional experiments to compare with small models
to demonstrate the strength of TELLER in gener-
alizability. However, quantitatively measuring ex-
plainability and controllability in deep learning is
presently challenging (Li et al., 2023), necessitat-
ing substantial research endeavors.
Generalizability: We conduct additional experi-
ments comparing with small models (BERT and
RoBERTa) in Tables 13 and 14 for in-domain
(with finetuning) and cross-domain settings, re-
spectively. These results illustrate that small mod-
els only outperform TELLER in an in-domain set-
ting, but TELLER excels in zero-shot generalization
(around 30% improvement in terms of Accuracy
and F1-Score) and can handle more complex misin-
formation detection tasks, exemplified by superior
performance on the LIAR dataset. This advantage
aligns with many real scenarios, characterized by
the absence of training data and the presence of
sophisticated misinformation (Pelrine et al., 2023).
Consequently, TELLER proves significantly advan-
tageous in such contexts.

Moreover, the feasibility and adaptability of
TELLER are underscored by the resource-intensive
nature of gathering adequate data for small models.
Additionally, our framework, as a general and sys-
tematic framework, can achieve better in-domain
accuracy by integrating small fine-tuned models
into our cognition system, treating their binary clas-
sification outputs as truth values
Explainability: Current interpretative methods us-
ing feature importance, attention visualization, and
multiview learning (Cui et al., 2019; Xu et al., 2022;
Liao et al., 2023; Ying et al., 2023) may be unre-
liable and possess limited explanatory power, as
indicated by (Liu et al., 2022). Another approach
(Liu et al., 2023), employing neural-symbolic learn-
ing for multimodal misinformation detection, falls
short of clause length and readability caused by
its unexplainable predicates. Unlike small-model-
based misinformation detectors, our cognition sys-
tem incorporates expert knowledge to construct a
more well-grounded worldview, which is unreal-
istic for small models to achieve. Furthermore,
another group of work (Huang and Sun, 2023;

Hu et al., 2023; Yue et al., 2024; Qi et al., 2024)
explored large generative language models (e.g.,
ChatGPT) and regarded the intermediate chain of
thoughts as an explanation. Nevertheless, these
explanations may not be reliable due to the halluci-
nation phenomenon and the misalignment problem
of AGI (Chen and Shu, 2023). Compared with
them, our decision system can learn interpretable
rules to explicitly aggregate generated logic atoms
for further double-checking instead of relying on
the implicit aggregation of LLMs.
Controllability: As shown in Sec. 2.2, some stud-
ies integrated human-in-loop techniques (Wu et al.,
2022) for data sampling and model evaluation,
whereas our framework prioritizes algorithm de-
sign. Moreover, while recent RLHF techniques
(Rafailov et al., 2023) can incorporate human guid-
ance in model behaviors based on reinforcement
learning, they indeed require external high-quality
fine-tuning data and sophisticated finetuning. In
contrast, our framework achieves controllability
through natural manipulation of the question set
and logic rules in our cognition and decision sys-
tems

In summary, TELLER effectively addresses chal-
lenges in explainability, generalizability, and con-
trollability. We also emphasize TELLER is a gen-
eral framework and does not sacrifice performance
for explainability, generalizability, and controlla-
bility, considering its potential to integrate fine-
tuned small models to improve the in–domain per-
formance.
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F Cost Analysis

One crucial consideration of TELLER is the ex-
pense associated with the N queries to LLMs. The
specific costs, including inference time and token
cost, will be discussed below.
Inference Time: Due to the limited access times of
GPT-3.5-turbo in minutes, it is time-consuming to
perform N queries for our framework. However,
it is worthwhile that it may also require multiple
queries for GPT-3.5-turbo to adopt self-consistency
and least-to-most prompt techniques to achieve the
comparable performance as our framework, given
there is a performance gap between Direct and
TELLER in Table 1.

Furthermore, our experiments indicate that utiliz-
ing smaller LLMs, like FLAN-T5 (XL and XXL)
and Llama 2 (7B and 13B), suffices for effective
misinformation detection. In this case, our frame-
work stands out from COT-based methods (Pan
et al., 2023; Pelrine et al., 2023; Wang and Shu,
2023) as it eliminates the necessity of generating
numerous immediate reasoning steps sequentially.
Specifically, our cognition system only requires
decoding the first token (i.e., "yes"/"no") to com-
pute truth values. Since the primary bottleneck in
the inference time of LLMs arises from subsequen-
tial decoding, the cost of TELLER is lower than
COT-based methods. For instance, consider a COT-
based model that generates 100 tokens for input
news. The theoretical inference time of our frame-
work is thus 1

100 of COT-based methods, assuming
parallel decoding of the first token of N questions.
Token Cost: Assuming our framework needs N
queries and other LLM-based methods requires
one with input query length L and output length
M , cin is the price of input tokens, cout is the
price of output tokens, and the token cost ratio be-
tween our framework and LLM-based methods is
N×(L×cin+1×cout)

L×cin+M×cout
. In general, cout is higher than

cin. Then if M is significantly high when the out-
put of other LLM-based methods contains lots of
tokens such as COT, the total cost does not give
much difference.

Additionally, we conduct experiments on various
language models to verify the versatility of our
framework, especially for FLAN-T5-large (780M)
in Table 1. That is to say, our framework can build
on smaller models (780M) while the size of bert-
large has been 334M. While there have been more
and more distillation techniques for LLMs to obtain
lightweight models, many engineering efforts can

be made to reduce the running cost, which is not
the focus of our work. Consequently, we conclude
that the cost of my framework is acceptable.
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G Formal Description of DNF Layer

In this section, we introduce modified Disjunctive
Normal Form (DNF) Layer employed in our frame-
work. The DNF Layer is built from semi-symbolic
layers (SL), which can progressively converge to
symbolic semantics such as conjunction ∧ and dis-
junction ∨.

Specifically, for the truth value vector µ ∈ RM

mentioned in Sec. 3.1.2, SL can be formulated as
follows:

µo = tanh




M∑

j

wjµj + β


 , (4)

β = δ


b−

∑

j

|wjµj |


 , (5)

where wj represents learnable parameters, b =
max

j
|wjµj | and δ ∈ [−1, 1] represents the seman-

tic gate selector. µj is the truth value for the jth
logic atom obtained from the cognitive system. The
sign of the learned weight wj indicates whether µj

(if wj is positive) or its negation (if wj is negative)
contributes to µo. Thus, logical negation (e.g., ¬pj)
can be computed as the multiplicative inverse of
the input: −µj .

Eq. 4 resembles a standard feed-forward layer,
aiming to compute a single truth value from a col-
lection of values µj corresponding to different in-
stantiations of a single predicate/question. β serves
as the bias term. As shown by (Cingillioglu and
Russo, 2021), by adjusting δ from 0 to 1 during
training, SL tends to converge to conjunctive se-
mantics as SL∧ (e.g., p1 ∧ p2, . . . ,∧pM ), indicat-
ing that if at least one wjµj is false, the output
µo will be false; otherwise, µo will be true. Con-
versely, by gradually adjusting δ from 0 to −1,
SL can attain disjunctive semantics as SL∨ (e.g.,
p1 ∨ p2, . . . ,∨pM ), where if at least one wjµj is
true, µo will be true; otherwise, µo will be false.
Additionally, b can guarantee µo being true (false)
when all wjµj are true (false) for SL∧ (SL∨).

Since each dimension in µ corresponds to the
same predicate for different inputs, SL effectively
represents the relationship among different instanti-
ations and the target output µo, enabling the learn-
ing of generic rules for various inputs. Moreover,
by employing rule-based aggregation, our frame-
work exhibits noise tolerance against incorrect pre-
dictions of LLMs in the cognition system, particu-
larly owing to the SL∨.

Notably, one predicate can be instantiated by
multiple assignments, i.e., Pi pertains to Mi logic
atoms in Appendix A.2. Thus, the parameters
bound to these Mi logic atoms should naturally
share the logical semantics of Pi. Instead of gath-
ering all possible combinations of Mi logic atoms

for training (
Mi∏
j=1

j), we let these logic atoms share

the same w. In this scenario, SL can be represented
as follows:

µo = tanh(

N∑

i

Mi∑

j

wiµi,j + β), (6)

β = δ(b−
N∑

i

Mi∑

j

|wiµi,j |), (7)

where N is the number of predicates.
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Model Method Acc Macro-F1 F1(T) P(T) R(T) F1(F) P(F) R(F)
FLAN-T5-xl Direct 75.55 75.12 71.82 79.90 65.22 78.42 72.78 85.00

TELLER 84.10 84.02 82.95 84.97 81.03 85.10 83.36 86.90
FLAN-T5-xxl Direct 75.13 73.59 67.21 90.76 53.36 79.97 69.03 95.03

TELLER 82.73 82.59 81.06 85.11 77.37 84.13 80.90 87.62
Llama2 (7B) Direct 71.68 71.31 74.60 65.26 87.06 68.02 82.96 57.63

TELLER 85.18 85.11 84.35 0.8511 83.60 85.93 85.24 86.63
Llama2 (13B) Direct 57.24 50.48 68.78 52.80 0.9862 32.19 93.89 19.42

TELLER 87.49 87.47 0.8687 87.09 86.66 88.06 87.86 88.26

Table 17: Results on Constraint dataset, reporting F1, Precision, Recall metrics on real and fake news, separately. T
and F represent fake or real news, respectively.
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