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Abstract

Word Sense Disambiguation (WSD) is the task
of associating a word in a given context with its
most suitable meaning among a set of possible
candidates. While the task has recently wit-
nessed renewed interest, with systems achiev-
ing performances above the estimated inter-
annotator agreement, at the time of writing it
still struggles to find downstream applications.
We argue that one of the reasons behind this
is the difficulty of applying WSD to plain text.
Indeed, in the standard formulation, models
work under the assumptions that a) all the spans
to disambiguate have already been identified,
and b) all the possible candidate senses of each
span are provided, both of which are require-
ments that are far from trivial. In this work, we
present a new task called Word Sense Linking
(WSL) where, given an input text and a ref-
erence sense inventory, systems have to both
identify which spans to disambiguate and then
link them to their most suitable meaning. We
put forward a transformer-based architecture
for the task and thoroughly evaluate both its
performance and those of state-of-the-art WSD
systems scaled to WSL, iteratively relaxing the
assumptions of WSD. We hope that our work
will foster easier integration of lexical seman-
tics into downstream applications.

1 Introduction

Leveraging the advances in pretrained transformer
architectures (Devlin et al., 2019), Word Sense
Disambiguation (WSD) systems have nowadays
reached performances on several evaluation bench-
marks that are on par with their estimated inter-
annotator agreement (Bevilacqua and Navigli,
2020; Barba et al., 2021b). However, despite these
advances, the task is still well known for struggling
to find downstream applications. We argue that one
of the possible causes is the difficulty of applying
WSD in unconstrained settings due to its heavy as-
sumptions. Indeed, three requirements need to be

met for a generic state-of-the-art system to perform
WSD on some input text: R1) a sense inventory,
that is, a semantic resource providing a compre-
hensive list of all the senses of interest, must be
provided, R2) the list of spans to disambiguate in
the input text must have already been identified,
and R3) an oracle that pairs each span to its set
of possible senses, realized through a manually
curated word-to-sense mapping, must be available.

While the first condition is intrinsic to the dis-
ambiguation objective and, thus, unavoidable, we
argue that the second two (i.e. R2 and R3) are
system-specific assumptions that can be relaxed.
We formulate this idea into a new task called Word
Sense Linking (WSL), which more accurately re-
flects the conditions of downstream applications
such as Neural Machine Translation (Liu et al.,
2018; Iyer et al., 2023), Information Extraction
(Moro and Navigli, 2013; Delli Bovi et al., 2015)
and the enrichment of contextual representations in
neural models (Peters et al., 2019). In WSL, given
an input text and a reference sense inventory, sys-
tems have to identify which spans to disambiguate
and link them to their most suitable meaning in the
sense inventory.

Similarly to Entity Linking (Broscheit, 2019),
WSL can be split into three simpler subtasks, with
traditional WSD taking place after two initial stages
of Concept Detection (CD), that is, the identifica-
tion of the spans to be disambiguated in the input
text (R2), and Candidate Generation (CG), the gen-
eration of a list of sense candidates for each tar-
get span (R3). For example, given some reference
sense inventory and the sentence “Bus drivers drive
buses for a living.”, Concept Detection might iden-
tify [bus drivers, drive, buses, living] as
the spans to disambiguate, while Candidate Gen-
eration might provide [vehicle, electrical
conductor] as the sense candidates for buses.

In this work, we first formally introduce the task
of Word Sense Linking, along with its three com-
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ponents, and, then, put forward a novel architecture
for the task, based on the retriever-reader paradigm
(Karpukhin et al., 2020). We thoroughly study the
behavior of our architecture and that of state-of-
the-art WSD systems, once they have been scaled
to WSL, as we iteratively relax the sandboxed as-
sumptions of WSD, starting with R2 and contin-
uing with R3. Our analysis highlights a number
of important – yet neglected – challenges when
it comes to performing disambiguation in uncon-
strained settings. In particular, straightforward and
natural extensions of WSD systems to WSL re-
sult in large performance drops. In contrast, our
model demonstrates considerably more robustness
and consistently outperforms such extensions of
WSD systems by a large margin. The contributions
of this work are therefore as follows:

• We introduce the task of Word Sense Link-
ing, which we believe to better represent the
settings of downstream applications for WSD.

• We introduce for the first time a Word Sense
Linking evaluation dataset, enriching the de-
facto standard WSD benchmark (Raganato
et al., 2017).

• We put forward a novel flexible architecture
for this task and evaluate, in multiple settings,
both its behavior and that of state-of-the-art
WSD systems scaled to WSL.

• Overall, our findings underline several crucial
yet neglected challenges when scaling WSD
systems to a real-world scenario.

We release code, data, and model weights at
https://github.com/Babelscape/WSL.

2 Word Sense Linking

Word Sense Linking is the task of identifying and
disambiguating all the spans of an input text with
their most suitable senses chosen from a refer-
ence inventory. Formally, let t be the input text,
with t1, . . . , t|t| being its words, and I the refer-
ence inventory, containing a set of senses. Then,
a WSL system can be represented as a function f
that takes as input the tuple (t, I) and outputs a
list of triples [(s1, e1, g1), . . . , (sn, en, gn)] where
each triple (si, ei, gi), i ∈ [1, n], represents a dis-
ambiguated span, with si and ei being the start
and end token index of the span, and gi ∈ I repre-
senting the corresponding sense chosen from the

inventory. Conceptually, WSL can be divided into
three subtasks, namely, Concept Detection, Candi-
date Generation, and Word Sense Disambiguation.

Concept Detection (CD) is the task of identify-
ing the spans to disambiguate in an input text t
given a reference inventory I . A Concept Detec-
tion system can be represented as a function that
takes as input the tuple (t, I) and outputs a list
of pairs [(s1, e1), . . . , (sn, en)], each marking the
boundaries of a span to disambiguate. Specifically,
∀i ∈ [1, n], si and ei are the start and end token
index of the i-th span to disambiguate.

Candidate Generation (CG) is the task of gen-
erating a set of possible candidate senses that an
input span occurring in some text t can assume
given the reference inventory I . A Candidate Gen-
eration system can be represented as a function that
takes as input t, I and the start and end token in-
dices (s, e) of the span, and outputs a set of sense
candidates PC ⊆ I , that the span can assume.

Word Sense Disambiguation (WSD) aims at
identifying, for each target span occurring in an
input text t, the most suitable sense among a
set of possible candidates. A WSD system can
be represented as a function that takes as input
t, I , a list of span indices [(s1, e1), . . . , (sn, en)]
and corresponding sets of possible candidates
[PC1, . . . , PCn]. It then outputs a list of triples
[(s1, e1, g1), . . . , (sn, en, gn)] where, ∀i ∈ [1, n],
each span (si, ei) is paired with the sense gi cho-
sen by the system among the candidates provided
in PCi.

Finally it is easy to see that a WSL system can
be built by concatenating, in cascade, a Concept
Detection, a Candidate Generation, and a Word
Sense Disambiguation module. This structure not
only facilitates the extension of WSD systems to
WSL but also serves as a flexible framework rather
than a strict recipe. In fact, as we will show in the
next section, the architecture we put forward does
not follow this flow and inverts the CD and CG
steps.

3 Model

The flow CD-then-CG presents an intrinsic limi-
tation: each span identified by Concept Detection
ought to correspond to the occurrence of a specific
sense candidate among those produced by Candi-
date Generation and, yet, CG occurs after CD. That
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  Bus drivers  drive  buses  for a  living

Text segment

Top-K candidate senses

bus driver: someone who drives a bus

drive: operate or control a vehicle

1

2

3

4

5

6

7

8

drive: work as a driver

bus traffic: buses coming and going

living: the financial means whereby one 
lives

bus: a vehicle carrying many passengers

bus: ride in a bus

drive: urge forward

Figure 1: Our WSL process. First, the retriever identifies the top-k candidate senses (Candidate Generation). Then,
the reader identifies the spans to be disambiguated (Concept Detection) and pairs each of these with their most
suitable sense (Word Sense Disambiguation).

is, we need to identify the span we will, later on,
link to a specific sense without actually knowing
this sense. To overcome this limitation, inspired
by the work presented by Zhang et al. (2022b) for
Entity Linking, we invert the CD and CG steps,
and propose a novel flexible architecture for WSL
based on the retriever-reader paradigm. In this sec-
tion, we first outline its formulation (Section 3.1)
and, then, discuss its two components, namely the
retriever (Section 3.2) and the reader (Section 3.3).

3.1 Formulation

Starting from the input text t and the reference
inventory I , our formulation is as follows. First,
we perform CG on the entire input text, producing
an ordered list of unique candidates PC(t) ⊆ I ,
each coming from I and likely to represent the
meaning of some arbitrary span in t. Then, mov-
ing to CD and using vector representations contex-
tualized on both t and PC(t), we let a classifier
identify the start and end token indices of every
span in t; this operation results in a list of n tuples
[(s1, e1), . . . , (sn, en)]. Finally, we perform WSD
on the identified spans, pairing each (s, e) with its
most suitable sense g∗ ∈ PC(t).1 Figure 1 reports
a visual outline of this process.

We implement our formulation with transformer-
based architectures that operate on textual inputs.
However, this makes it necessary for our inputs to
have such representations and, while t inherently
satisfies this requirement, the same does not hold
for the senses in I . To overcome this issue, for
each sense g ∈ I , we define a textual representa-
tion, which we build by concatenating its lemmas2,
provided through the mapping from word to possi-

1We extend the ∈ operator to work on lists as well.
2If a mapping between senses and words is available.

ble senses, and its textual definition in I .3

Finally, we note that t can be arbitrarily long.
Consequently, providing the entire t as input to our
formulation can be challenging, both computation-
ally and from a modeling perspective. To overcome
this, we adopt a sliding window approach, with win-
dow size w and stride τ, and actually feed, to the
previous steps, single chunks of t, rather than the
entire sequence. Once all chunks have been pro-
cessed for t, we retain only conflict-free predictions,
i.e., every triple (s, e, g∗) such that the processing
of every chunk that includes (s, e) in its window
always results in assigning the same g∗ to (s, e).
Henceforth, with no loss of generality, we replace
our input, and the meaning of notation t, with a
generic chunk, rather than the entire sequence.

3.2 Retriever
We implement the initial Candidate Generation step
via dense passage retrieval (Karpukhin et al., 2020),
using a transformer-based retriever consisting of
an encoder E to produce a dense representation of
text passages and senses. Starting from the input
text t and the inventory I , we use E to compute
a vector representation vt for t, and vg for every
sense g ∈ I . Then, we use the dot product vt · vg
to rank all the senses in I and, finally, extract the
top k among these. The resulting g1, . . . , gk senses
constitute our sense candidate set PC(t) for t.

To train our model, we use a multi-label variant
of noise contrastive estimation (Zhang et al., 2022b,
NCE), maximizing the following objective:

∑

g∈Γ(t)
log

exp(vt · vg)
exp(vt · vg) +

∑
g′∈N(t) exp(vt · vg′)

3Although we did not explicitly mention it before, it is
customary for sense inventories to provide, for each of their
senses, a textual definition (gloss) that defines its meaning.
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where Γ(t) ⊂ I is the set of gold senses appearing
in t and N(t) ⊂ I \ Γ(t) represents a selection of
negative examples. Considering the crucial role of
N(t) in retriever-based architectures (Karpukhin
et al., 2020), we adopt a strategy aimed at selecting
adequately informative negative examples, while,
at the same time, accounting for the presence of
unannotated tokens. Starting from I \ Γ(t), we
first discard the senses that never appear in the
training set or whose part of speech does not match
any sense-annotated span in t. Then, denoting by
IR(t) the set of resulting senses in I for t, we
define N(t) as the union of the two sets N1(t), a
collection of hard negatives (Gillick et al., 2019)
in IR(t), and N2(t), a subsample of IR(t) that
aims at counterbalancing the bias towards the most
frequent senses in the training corpus. Specifically,
we build N1(t) by selecting the ν1 senses in IR(t)
to which the retriever assigns the highest score, and
N2(t) constructed using ν2 gold senses from other
samples in the same mini-batch.

3.3 Reader

Having identified the sense candidates PC(t) =
g1, . . . , gk, we now describe the remaining Con-
cept Detection and WSD steps, which we formulate
as a multi-task multi-label classification problem.
To this end, we concatenate t and g1, . . . , gk into
a single sequence m, prepending a special symbol
[Si] for each sense candidate gi:

m = t [S1] g
1 . . . [Sk] g

k (1)

We feed m to a transformer encoder, producing a
series of vector representations for the tokens in m;
let h1, . . . , h|t| be the representations correspond-
ing to the tokens in t, and hg the one associated
with the special symbol of a generic sense candi-
date g ∈ PC(t). With these contextualized repre-
sentations, we realize CD and WSD as follows.

We begin with CD, identifying the spans to dis-
ambiguate. Specifically, we apply two classifica-
tion heads, namely Hstart and Hend, on each repre-
sentation to determine whether the corresponding
token is a start or end of some span in t; both heads
consist of two linear transformations with a ReLU
activation in between. However, their behavior –
and input – differ: while Hstart receives single to-
ken representations, Hend operates at span level.
That is, once Hstart has identified some index s
as a span start, to determine whether some other
index e ≥ s is its end, Hend takes as input [hs;he],

that is, the concatenation of hs and he. Once com-
pleted, this step results in a list of span indices
[(s1, e1), . . . , (sn, en)].

Then, moving to WSD, we let each extracted
span (s, e) identify the sense g∗ ∈ PC(t) it refers
to. We start by computing the following vectors:

h
′
se = [f1(hs); f2(he)]

h
′
g = [f1(hg); f2(hg)] ∀g ∈ PC(t)

where f1 and f2 are both functions consisting of
two identical but independent linear transforma-
tions, interleaved by a ReLU activation. Then,
we pair the span (s, e) with the sense g∗ =
argmaxg∈PC(t) h

′
se · h

′
g. We replicate this strat-

egy for all the extracted spans, hence eventually
producing as output [(s1, e1, g∗1), . . . , (sn, en, g

∗
n)].

Our reader is trained by jointly maximizing three
cross-entropy objectives, respectively over i) the
gold start indices in t, ii) the gold end indices in t
and iii) the gold sense for every span in t.

We note that our architecture presents a number
of interesting properties. First, since h1, . . . , h|t|
are vectors contextualized over the entire input se-
quence m (Equation 1), which includes g1, . . . , gk,
the choice of the extracted spans does indeed
take into account the sense candidates available.
Second, this contextualization is not limited to
h1, . . . , h|t| but, in fact, applies to hg1 , . . . , hgk as
well. This means that the sense candidates are also
contextualized on each other, allowing for better
representations, as in Barba et al. (2021a). Third,
computationally speaking, the only demanding op-
eration corresponds to the encoding of h1, . . . , h|t|.
However, since this operation depends only on t
and PC(t), we can disambiguate all the spans in t
in a single forward pass, which makes it very fast
and hence suited for downstream applications.

4 Evaluation

We now investigate the effectiveness of our model
and how it relates to the R2 and R3 assumptions of
WSD (Section 1). To this end, we first outline its
implementation details (Section 4.1) and the novel
dataset introduced for the WSD and WSL evalua-
tion (Section 4.2), which will remain unchanged
throughout our experiments. Then, we evaluate
it on plain English WSD (Section 4.3), so as to
set an initial reference for what regards its disam-
biguation capabilities. Finally, we move to WSL
and gradually relax these sandboxed assumptions,
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dropping R2 (Section 4.4) and examining different
relaxations on R3 (Section 4.5).

4.1 Model Details
Formulation Hyperparameters We use w = 16
and τ = 8 for our sliding window approach. This
ensures that each window captures sufficient con-
text for an effective disambiguation while main-
taining a manageable overlap between consecutive
windows.

Retriever We employ mean pooling over E5base
(Wang et al., 2022), a pretrained transformer-based
architecture, for our retriever encoder E. The entire
system is trained with a batch size of 16 input texts
for 150,000 steps using AdamW (Loshchilov and
Hutter, 2019), with 20% warm-up and 2 · 10−5

learning rate, and setting k = 100. At training time,
we construct the sense candidate set by including
the gold senses, ν1 = 5% of negatives from N1(t)
and the remaining ν2 from N2(t).

Reader We use the base version of DeBERTa-
v3 (He et al., 2021a) as the transformer-based en-
coder in our reader. The four linear transformations,
namely two for span detection and two for Word
Sense Disambiguation, present the same interme-
diate dimensionality, that is, 768; instead, the final
dimension is 1 for the span detection mappings,
as they are classification heads, but 768 for the
WSD mappings. The overall system is trained with
a batch size of 4096 tokens for 100,000 steps us-
ing AdamW (Loshchilov and Hutter, 2019) with a
learning rate of 10−4 and a layerwise decay rate of
0.8.

4.2 WSL Benchmark
The framework presented by Raganato et al. (2017)
represents the de facto standard benchmark for
WSD and is based on the WordNet sense in-
ventory (Miller et al., 1990). Specifically, it is
composed of Senseval-2 (Edmonds and Cotton,
2001, SE02), Senseval-3 (Snyder and Palmer, 2004,
SE03), SemEval-2007 (Pradhan et al., 2007, SE07),
SemEval-2013 (Navigli et al., 2013, SE13) and
SemEval-2015 (Moro and Navigli, 2015, SE15).
The original task datasets might include spans of
text that contain content words but were not as-
signed any specific meaning by annotators from
among those contained in the reference sense in-
ventory. This could have occurred for a variety of
reasons, such as in the case of SE13, where only
nouns were chosen to be annotated. Whereas for

the WSD setting the absence of this information
does not pose a problem for evaluation, for WSL
it renders evaluation impossible. Specifically, we
cannot in such case measure the precision of a WSL
system as we cannot discern between wrongly pre-
dicted spans and annotation omissions. To address
this issue and overcome the lack of a WSL-specific
dataset, we introduce a dedicated evaluation re-
source aimed at bridging the annotation gap, not
just in terms of precision, but also in terms of recall.
We comprehensively annotated the standard WSD
evaluation datasets, increasing the annotation count
from 7253 to 11623 annotations, and resulting in
the complete coverage of all the content words.

This substantial increase in annotations allows
for a comprehensive benchmark, facilitating future
research in the field by providing a more robust
framework for evaluating the precision, recall, and
F1 of WSL systems.

Annotation process We have annotated the stan-
dard WSD evaluation dataset (i.e., ALL, the one
utilized in the previously presented WSD evalu-
ation framework (Raganato et al., 2017)). This
process aimed to ensure a comprehensive and ac-
curate representation of terms and their meanings,
using WordNet as the sense inventory. We selected
these guidelines for the annotators:

1. Multiwords: Annotators marked terms such
as "lung cancer" as single entities, focusing
on those recognized in WordNet with contex-
tually coherent meanings.

2. Sub-words: Annotators also marked the indi-
vidual components of multiword expressions,
but only when the sub-words had coherent
meanings within the sentence context. This
dual-level annotation strategy captured both
the general and specific meanings of terms.

3. Non-content Words: Annotators excluded
non-content words, such as auxiliary verbs,
from annotation. These words are essential
for grammatical structure but do not carry any
semantic weight.

Employing WordNet as the sense inventory facil-
itated a uniform and precise approach to annotation
across the entire dataset and maintained consis-
tency with WSD tasks, ensuring alignment with es-
tablished standards and methodologies in the field.

Due to the complexity of the task, a single ex-
pert linguist, who is also an author of this paper
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and has a robust background in the annotation of
lexical-semantic tasks, conducted the majority of
the annotation work. Nonetheless, to validate the
reliability and consistency of the annotation pro-
cess, we conducted an inter-annotator agreement
evaluation. This involved a subset of the dataset,
constituted by 20 sentences independently anno-
tated by three different expert linguists,4 result-
ing in 222 distinct annotations. The agreement
among annotators was measured using Cohen’s
kappa statistic, which yielded a score of 0.83, in-
terpreted as an almost perfect level of agreement,
showing a high degree of annotation consistency.
These results underscore the robustness and relia-
bility of our annotation methodology, despite the
inherent challenges of subjective interpretation and
the detailed demands of manual annotation. Fur-
ther statistics about the newly introduced dataset
can be found in Appendix B.

4.3 Word Sense Disambiguation

Setting We evaluate our model on all-word En-
glish WSD using WordNet as our sense inven-
tory. WordNet provides a comprehensive and struc-
tured database of English word senses, making it
a widely accepted benchmark for WSD. By utiliz-
ing WordNet, we ensure that our evaluation aligns
with established standards in the field, facilitating
comparison with previous work and other state-of-
the-art models.

Comparison Systems We compare our model
with recent state-of-the-art systems for WSD,
which we divide into two different categories. On
the one hand, we consider systems that frame WSD
as a sequence-level classification problem, that is,
systems that disambiguate a single span at a time.
We include in our evaluation: Barba et al. (2021a,
ESCHER), the first approach reformulating WSD
as a text extraction problem; Zhang et al. (2022a,
KELESC), a knowledge-enhanced version of ES-
CHER, incorporating additional information com-
ing from WordNet; Song et al. (2021, ESR), an
architecture framing WSD as a binary classifica-
tion problem; and Barba et al. (2021b, ConSeC),
the system that, thanks to iterative disambiguation,
holds the state of the art on the reference bench-
mark at the time of writing.

On the other hand, we report models that frame
WSD as a token-level classification problem, thus

4We paid the annotators according to the standard salary
for their geographical location.

Models Params SE07 ALL ALLFULL

Se
qu

en
ce ESCHER 400M 76.3 80.7 81.2

KELESC 400M 76.7 81.2 81.4
ESR 350M 77.0 81.1 81.3
ConSeC 400M 77.4 82.0 82.5

To
ke

n

WMLC 340M 72.2 77.6 78.1
EWISER 340M 71.0 78.3 78.9
BEM 220M 74.5 79.0 79.7
Our Model 295M 75.2 80.2 80.8

Table 1: WSD results for sequence-level and token-level
classifiers.

disambiguating all the spans in a sentence to-
gether. We include: Blevins and Zettlemoyer
(2020, BEM), a bi-encoder system incorporat-
ing gloss knowledge; Bevilacqua and Navigli
(2020, EWISER), a classifier modeling the rela-
tional knowledge in WordNet using a Personalized
PageRank approach; and Conia and Navigli (2021,
WMLC), a classification formulation for WSD that
leverages the relational knowledge in WordNet at
training time. We use this division to highlight
not only the different designs of our comparison
systems but, also, their corresponding trade-offs.
Indeed, while sequence-level classifiers typically
achieve higher performances, token-level classi-
fiers emphasize speed and are considerably more
usable in downstream applications.

Data We evaluate our model using the framework
presented by Raganato et al. (2017). Specifically,
we train our system on SemCor (Miller et al., 1993),
perform model selection on SE07, and test on the
other available datasets. We measure performances
in terms of F1 score and, as in previous works,
report this score on the concatenation of each eval-
uation dataset (identified as ALL). Finally, to set
a reference for the WSL setting, we evaluate our
model and the comparison systems on the novel
benchmark presented in Section 4.2 under the WSD
assumptions (identified as ALLFULL).

Our Model Behavior Comparison systems op-
erate in this setting assuming the availability of an
oracle for both CD and CG. To enable a fair com-
parison, we i) limit the candidates retrieved from
the retriever module only to those that the spans to
disambiguate can assume in WordNet and ii) force
the reader to select for each span only the senses
that it can assume in WordNet.

Results Table 1 shows how all the systems un-
der comparison fare on the standard framework.
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As a first result, we note that our model, a token-
level classifier as all spans are disambiguated to-
gether, outperforms all the other token-level sys-
tems, almost reaching sequence-level ESCHER’s
performance. Furthermore, while the difference in
comparison to ConSeC, i.e., the best-performing
model, is significant in terms of F1 score (1.8
points), the speed comparison reveals a compelling
advantage: using ALL as a reference, our model
can process the 7253 instances in less than 17 sec-
onds, while ConSeC requires a total of 73 seconds.5

These results suggest that our model provides a
solid foundation for our setting, showing not only
strong performance on WSD, but also that it is
flexible enough to support CD and CG. Finally,
and most importantly, we can see that the perfor-
mances obtained by the comparison systems on the
ALLFULL dataset align with those on the standard
benchmark, allowing us to study how they change
when relaxing the WSD constraints .

4.4 Word Sense Linking: Dropping the
Concept Detection Oracle

Setting Here, we drop the R2 condition. In the
context of WSL, this means that the system is re-
quired to identify spans of text that need to be
disambiguated. By removing this oracle, we simu-
late a more challenging and practical setting where
the system has to detect the spans to disambiguate
before proceeding to candidate generation and dis-
ambiguation.

Comparison Systems Given the task’s novelty,
there are no direct comparison systems. We take
advantage of this opportunity to assess the com-
plexity of Concept Detection and its impact on
ConSeC and BEM, that is, the best sequence-level
and token-level classifiers described in the previous
section. Specifically, to establish baselines, we im-
plement two natural straightforward solutions for
CD and pipeline each of these with our reference
WSD systems. Our first solution consists of a sim-
ple heuristic approach: given an input text, we find
all the longest spans such that the corresponding
lemma is linked, through the mapping from word to
possible senses, to any sense in WordNet. As an al-
ternative to this strategy, we consider a supervised
implementation to determine whether each token
represents the start, inside, or outside of a span to

5To perform the comparison, we use the code made avail-
able by the authors at https://github.com/SapienzaNLP/
consec using an RTX 3090 for both experiments.

SE07 ALLFULL

Models P R F1 P R F1

BEMSUP 67.6 40.9 51.0 74.8 50.7 60.4
BEMHEU 70.8 51.2 59.4 76.6 61.2 68.0
ConSeCSUP 76.4 46.5 57.8 78.9 53.1 63.5
ConSeCHEU 76.7 55.4 64.3 80.4 64.3 71.5
Our Model 73.8 74.9 74.4 75.2 76.7 75.9

Table 2: WSL results with no CD oracle.

Models Lemmas P R F1 ∆ F1

ConSeCHEU all 80.4 64.3 71.5 –
ConSeCHEU one 71.6 56.4 63.1 -8.4
ConSeCHEU no 0.0 0.0 0.0 -71.5

Our Model all 75.2 76.7 75.9 –
Our Model one 70.4 73.1 71.7 -4.2
Our Model no 68.5 62.5 65.4 -10.5

Table 3: WSL analysis on CG oracle.

disambiguate. We train6 a variant of the architec-
ture of Mueller et al. (2020) widely used in Named
Entity Recognition tasks using BERT-base as an
encoder. We denote the four variants by BEMSUP ,
BEMHEU , ConSeCSUP and ConSeCHEU .

Data To address the issue of missing annotations
in the training phase of our WSL system, specifi-
cally when using SemCor, which is known for its
incomplete annotations, we propose a mitigation
strategy. We use ConSeCHEU to identify and an-
notate all the missing spans in SemCor, leading to
the creation of SemCorC . This procedure results in
133,727 new annotations, in addition to the origi-
nal 226,036 already in SemCor. We note that the
usage of these annotations proves to be crucial for
our model but irrelevant, if not actually harmful in
some cases, for both BEM and ConSeC. Further
details are available in Appendix C. Therefore, in
what follows, the results we report always refer to
the usage of SemCorC for our model and of solely
SemCor for our comparison systems.

Our Model Behavior Differently from the previ-
ous section, here we run the model in a WSL set-
ting. The retriever identifies the sense candidates
and the reader their corresponding spans. However,
as the other systems use a CG oracle, for a fair com-
parison, for a given identified span, we limit the
reader to selecting only the senses it can assume.

6We use the span information contained in SemCor for
training and SemEval-2007 for model selection.
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Results Table 2 reports the behavior of our model
and the comparison systems. We note that all sys-
tems experience, in this unconstrained setting, a
large drop in performance, with scores diverging
markedly from those reported for WSD in Table 1
on ALLFULL (e.g., 82.5 vs 71.5 for ConSeC). All
the same, our model behaves significantly better, at-
taining 75.9 (5 point drop) and surpassing the best
alternatives, i.e., ConSeCHEU , by almost 5 points.
Interestingly, while our model does, in fact, lose to
ConSeCHEU in terms of precision (80.4 vs 75.2),
it displays large improvements in recall (64.3 vs
76.7).

To better understand these results, we investigate
how CD approaches fare in terms of span recall.7

What we find is that, while our model achieves 92.1,
the two baselines lag behind by a considerable mar-
gin, with HEU and SUP reaching 80.6 and 68.2,
respectively. Besides showing the effectiveness of
our model on CD, this has several implications.
First, tackling CD in a supervised fashion, in the
current regime of WSL data, without taking into
account the reference inventory, is not sufficient for
good performance. Second, while HEU is a better
baseline, neglecting the semantics, i.e. choosing
the longest span with at least one valid sense, is
deleterious. Paired together, these findings suggest
that hybrid schemes like ours, where both training
examples and the inventory are jointly employed,
represent a better alternative. Finally, while HEU
achieves nearly acceptable performance in English,
the same does not hold for other languages where
word inflection is a more complex phenomenon,
and the mapping from word to senses lacks cov-
erage compared to English8: for instance, testing
span recall in Italian, using XL-WSD (Pasini et al.,
2021), results in 70.7, 10 points less than English.

4.5 Word Sense Linking: Relaxing the
Candidate Generation Oracle

Setting and Comparison Systems Here, we
drop the R2 condition and examine different re-
laxations of R3. That is, compared to the setting
of the previous section, we assume the mapping
from word to possible senses, which we used up
to this point as our Candidate Generation oracle,
to be either incomplete or absent. Such scenarios
are realistic as they mimic low-resource language

7This refers to the accuracy of systems in identifying spans
in ALL, irrespective of their associated senses.

8This refers to the resources available to the research com-
munity.

settings in which dedicated WordNet and the re-
lated word-to-sense mappings are incomplete. We
compare our model with ConSeCHEU .

Data To highlight the importance of having a
complete mapping between senses and their lem-
mas, we analyze the performance of both systems
in three different settings, that is, when, for each
synset, we have at our disposal: i) all the lemmas
with which it can be expressed, ii) only its most
frequent lemma, or iii) no lemma at all.

In the first setting, where all possible lemmas
are available, the system can utilize all the lexical
variations for disambiguation. The second setting,
which restricts the information to only the most
frequent lemma, simulates a scenario with limited
lexical resources, requiring the system to rely only
on the most common representation of each sense.
This may impact the system’s ability to accurately
disambiguate less frequent word forms. The third
setting, where no lemma information is provided,
forces the system to rely solely on the definition,
and this is the most challenging scenario.

Our Model Behavior Our model behavior is un-
changed compared to the previous section. The
only difference across the three settings regards the
textual representation of each sense in I , which
now consists of its definition postpended to i) all its
lemmas, ii) only its most frequent lemma, or iii) no
lemma at all.

Results As evidenced by Table 3, both systems
perform worse when leveraging an incomplete map-
ping. However, our model shows a more robust be-
havior in such a setting compared to ConSeCHEU .
Indeed, as it performs the CG step independently
from the mapping (with the retriever module), and
takes advantage of the lemmas only to enhance
sense representations, it is less reliant on this map-
ping. In contrast, ConSeCHEU requires the sense
mapping in order to retrieve the candidates for the
WSD step.

More in detail, when limiting to only the main
lemma for each sense, ConSeCHEU can only pre-
dict senses that are expressed by their primary
lemma. As expected, this results in a decrease
of 8.4 F1 points. Our model, instead, is able to
predict all senses, with a lower impact of 4.2 F1
points. Moving to the scenario where no lemmas
are available, our system is still able to recognize
and disambiguate spans, but its performance drops
significantly by 10.5 F1 points. Yet, compared
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with ConSeCHEU , this is still a huge improvement:
indeed, ConSeCHEU is completely unable to per-
form the task as it lacks candidates.

Our objective is to evaluate our models’ effec-
tiveness in scenarios with limited CG oracles, typ-
ical of most mid- and low-resource languages in
WSD. The results we report not only underline
the robustness of our model but also highlight the
inadequacy of modern WSD systems.

5 Related Work

Since this work is the first to introduce Word Sense
Linking, unsurprisingly, there is no previous liter-
ature that covers it. However, what is surprising
is the total absence, to the best of our knowledge,
of studies that examine how recent state-of-the-art
WSD systems scale to real-world scenarios. This
is especially puzzling when we consider the grow-
ing interest that WSD has been receiving. Indeed,
thanks to the introduction of pretrained transformer-
based language models (Devlin et al., 2019; Lewis
et al., 2020; He et al., 2021b), this task has been wit-
nessing renewed attention, with the research com-
munity focusing on challenging directions such as
unseen prediction, cross-inventory generalization,
and data efficiency, inter alia. Among the alterna-
tives explored, the usage of definitions, which we
also follow in this work, has proved to be partic-
ularly effective (Huang et al., 2019; Blevins and
Zettlemoyer, 2020; Barba et al., 2021a), achieving
unprecedented performances and allowing sense
representations to be disentangled from their occur-
rences in the training corpus.

Yet, in spite of this trend and its promising re-
sults, to the best of our knowledge, no assessment
of how these models might actually be applied
in general real-world scenarios has been made,
thereby overlooking the relevance of Concept De-
tection and Candidate Generation. We suspect
that this oversight is due mainly to two reasons:
i) the performances on WSD benchmarks being
too scarce, at least until recently, for any down-
stream application, and ii) the research community
assuming that adequate word sense mappings are
always available for CG and that a simple heuristic
approach could solve CD. In our CD approach, we
chose the greedy strategy, a decision supported by
Martínez-Rodríguez et al. (2020), who observed its
widespread use in span identification within texts.
However, our study clearly shows that is not a triv-
ial task. Both heuristic and supervised techniques

report definitely suboptimal behaviors.
Finally, to provide some background on Candi-

date Generation, the task has generally been ap-
proached by striving to enumerate all the possible
senses a word can assume. However, this is a pro-
hibitively challenging endeavor, especially when
wishing to scale across languages. While the re-
search community has put forward a number of
studies and mitigating strategies (Taghizadeh and
Faili, 2016; Al Tarouti and Kalita, 2016; Khodak
et al., 2017; Neale, 2018), the resulting resources
are still incomplete.

Arguably closest to our work, especially to our
WSL model, is Zhang et al. (2022b), who address
Entity Linking by initially generating candidates,
followed by Mention Detection (akin to our Con-
cept Detection) and Entity Disambiguation (simi-
lar to our Word Sense Disambiguation). However,
their reader architecture differs significantly from
ours: they link one candidate at a time, whereas
our model can simultaneously process all spans in
an input sequence. A comparison with our model
can be found in Appendix D.

6 Conclusion

In this work, we challenge the assumptions be-
hind Word Sense Disambiguation (WSD) and in-
troduce a novel task called Word Sense Linking
(WSL). WSL requires a system to identify and dis-
ambiguate all the spans in an input text using only
the information contained in a reference inventory,
offering a scenario that is more aligned with practi-
cal downstream applications than the conventional
WSD approach. Along with the WSL formaliza-
tion, we discuss a first comprehensive study in this
direction, presenting a novel retrieved-reader archi-
tecture for the task, a complete and comprehensive
benchmark for WSL systems, and an analysis of
its performances and those of state-of-the-art WSD
systems in multiple settings. Our findings highlight
several important yet overlooked challenges that
arise when scaling to unconstrained settings. In
particular, natural expansions of WSD systems to
WSL appear to be quite brittle, resulting in large
performance drops. Conversely, our proposed ar-
chitecture appears to be considerably more robust,
achieving superior performances across all WSL
settings. Looking ahead, we plan to investigate the
expansion of WSL to a multilingual setting and
analyze the usage of WSL systems in downstream
applications.
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7 Limitations

This work has two inherent limitations: first, due
to space constraints, we have deferred the eval-
uation of the model in a multilingual setting to
future work. Potential challenges include the ne-
cessity for an extension of the sense inventories
and the availability of training resources, which
are requirements that go beyond the scope of the
current study. Second, the lack of WSL-specific an-
notated data meant that we had to rely on datasets
designed for Word Sense Disambiguation for train-
ing our models. Although these datasets offered
valuable insights and exhibited promising results
on our WSL-specific benchmarks, the prevalence
of annotation gaps could hinder the performance of
WSL systems. The effort to develop such datasets
would be extensive, mirroring the significant un-
dertaking required for our WSL-specific evaluation
benchmark.
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A Retriever Performances

In this section, we show the results of the Retriever
module using the same hyperparameters for train-
ing as those described in Section 4.1 and making
just one change to the configuration showing the
impact on the performances in terms of recall top-
100 (R@100). We report the results of our experi-
ments in Table 4. The baseline retriever achieves a
96.5 R@100, confirming our thesis that performing
the Candidate Generation step is possible without
knowing the spans a priori. Moreover, these results
set a remarkable upper bound for the Reader mod-
ule performances. The architecture of our baseline
model is based on bert − base − uncased (De-
vlin et al., 2019) initialized with the weights from
Sentence-Transformers (Reimers and Gurevych,
2019) and in particular using the weights of E5base
(Wang et al., 2022). In this baseline setting, the
textual representation of the senses of I is the stan-
dard one, namely, that composed by the concate-
nation of all its available lemmas and its textual
definition. We can see that initializing our weights
from the generic bert− base− uncased yield to
7.8 points performance loss in recall shows that
sentence-embedding pretraining is useful. Further-
more, using a more parameter-efficient architecture
(33M, MiniLM-L6) compared to our reference one
(109M, bert-base-uncased) still leads to compet-
itive results (92.5). Finally, we can see that the
standard setting where the senses of I are repre-
sented with all the lemmas yields the best results;
we gain +4.0 points over the textual representation
composed by just one lemma and +11.2 points
gain compared to the settings when lemmas are not
used at all.

B Dataset Details

We introduced a substantial addition of new in-
stances across various datasets, achieving an over-
all 60% increase as shown in Figure 4.

Before our annotation process, significant gaps
were present in the POS tags across various
datasets, with certain categories, such as verbs, ad-
jectives, and adverbs in the semeval2013 dataset,
and adjectives and adverbs in the semeval2007
dataset, being completely absent. This is evident
from the missing data points in Figure 3. Filling
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Models Params ALL R@100 (∆)

baseline 109M 96.5
- bert-base-uncased 109M 88.7 (-7.8)
- E5small 33M 94.2 (-2.3)
- just main lemma 109M 92.5 (-4.0)
- no lemma 109M 85.3 (-11.2)

Table 4: Results in terms of the ablation study on the
Retriever Module. Each row represents a change made
to the baseline model and the corresponding impact on
performance.

these gaps is crucial for constructing robust and
comprehensive evaluation benchmarks. Incomplete
datasets can lead to evaluations that fail to mea-
sure the true capabilities of language processing
systems in real-world scenarios. Our annotation
efforts were, therefore, critical in ensuring that all
POS categories were fully represented, thereby en-
hancing the validity and reliability of subsequent
system evaluations. Moreover, we preserved the
distribution across POS tags as shown in Figure 2.

C Evaluation of SemCor with
ConSeCHEU Annotations

Given the known limitations of SemCor due to its
incomplete annotations, we have devised a miti-
gation strategy. By employing ConSeCHEU , we
aimed to identify and annotate all missing spans
within SemCor, thereby creating an enhanced ver-
sion, SemCorC . This process, as detailed in Ta-
ble 5, resulted in the addition of 133,727 new an-
notations to the existing 226,036 in SemCor. Sub-
sequently, we assessed the performance of leading
Word Sense Disambiguation systems ESC, BEM,
and ConSeC using this enriched dataset. How-
ever, as indicated in Table 6, the enhancements
in SemCorC did not necessarily translate into im-
proved performance of the WSD models; with
BEM achieving an F1 score of 79.0, ESCHER at
80.7, and ConSeC at 82.0. Upon transitioning to
the SemCorC dataset, a noticeable decline in per-
formance is observed for each model: BEM expe-
riences a slight reduction to 78.8 (a 0.2 decrease),
ESCHER to 80.3 (a 0.4 decrease), and ConSeC
exhibits a more significant drop to 81.2 (a 0.8 de-
crease). We argue that this outcome originates from
the ’silver’ quality of the newly added annotations.

However, despite the quality of the new annota-
tions in SemCorC not matching the ’gold’ standard
of the original dataset, it plays an important role

in our WSL setting. This integration improves the
model’s capacity for the production of accurate rep-
resentation and identification of spans in the text.

D Comparison with EntQA

In this section, we present a detailed comparison be-
tween EntQA (Zhang et al., 2022b), and our model
in the context of a WSL unconstrained environment.
While EntQA represents a significant benchmark
in the field, particularly for tasks similar to our
WSL model, such as Entity Linking through the
pipeline: candidate generation, Mention Detection
(comparable to our Concept Detection), and En-
tity Disambiguation (analogous to our Word Sense
Disambiguation), the two architectures diverge par-
ticularly in the reader part. Unlike EntQA, which
processes candidates sequentially, our model can
simultaneously handle all spans within an input
sequence. We used the same Retriever for both
reader models. In particular, we re-implemented
the EntQA reader model.

The performance outcomes, as shown in Ta-
ble 7, show that our model outperforms EntQA.
Our model obtained an F1 score of 75.9 compared
to EntQA’s 72.0. This superiority in performance
underscores the effectiveness of our model, espe-
cially in terms of recall and overall F1 score. We
argue that, in our model, contextualizing all the
candidates of a sentence together plays a crucial
role in the performance gain. Moreover, our model
not only outperforms EntQA but it is also more
efficient. By processing all candidates together, our
model significantly reduces processing times, in
contrast to EntQA’s sequential candidate method.
This efficiency is quantitatively evident as our sys-
tem processes the ALLFULL dataset in merely 17
seconds, a substantial improvement over the 63
seconds required by EntQA. To perform the com-
parison, we evaluated the same machine using an
RTX 3090 for both experiments. This speed-up
not only demonstrates our model’s enhanced per-
formance in terms of speed but also reinforces its
practicality for integration into downstream tasks,
further establishing our method’s advantage in the
field of WSL unconstrained settings.

E Qualitative analysis

In this section, we present a qualitative analysis of
the model’s output. We identified instances that
highlight mismatches and inherent data discrepan-
cies rather than direct errors in model processing.
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Dataset Sentences Tokens Instances New Instances

Tr
ai

n SemCor 37176 820410 226036 -
SemCorC 37176 820410 359763 -

E
va

lu
at

io
n

semeval2007 135 3219 455 941 (+206%)
semeval2013 306 8533 1644 2194 (+133%)
semeval2015 138 2643 1022 157 (+15%)
senseval2 242 5829 2282 444 (+19%)
senseval3 352 5640 1850 634 (+34%)
all 1173 25864 7253 4370 (+60%)

Table 5: Statistics for training and evaluation corpora. The columns represent the number of sentences, the total
number of tokens, the number of annotated terms, and the number of newly annotated instances added in each
dataset.

Models SemCor SemCorC

BEM 79.0 78.8 (-0.2)
ESCHER 80.7 80.3 (-0.4)
ConSeC 82.0 81.2 (-0.8)

Table 6: WSD F1 score results on the SemCorC the
dataset containing the silver annotations annotations
from ConSecHEU .

SE07 ALLFULL

Models P R F1 P R F1

ConSeCHEU 76.7 55.4 64.3 80.4 64.3 71.5
EntQA 75.1 64.7 69.5 78.4 66.5 72.0
Our Model 73.8 74.9 74.4 75.2 76.7 75.9

Table 7: Our model comparison with EntQA in the WSL
task tested on ALLFULL dataset.

These cases highlight the complexities of match-
ing model interpretations with established lexical
databases such as WordNet. Some examples in-
clude:

• Lexical Variants and Inventory Gaps: The
model can identify terms that are absent in
the sense inventory, highlighting a gap be-
tween model recognition capabilities and stan-
dardized lexical entries. Some examples are
shown in Table 8. For instance, in the sen-
tence “training and development of ageing
workers in both the work place and the com-
munity,” the model accurately identifies the
span [work place] and annotates it with the
sense [a place where work is done]. This
instance reveals a mismatch due to the lex-
ical variant “work place” not being directly
mapped to its standard form “workplace” in
WordNet.

• Named Entities and Sense Attribution: The
model tends to abstract named entities into

broader conceptual categories, as shown in
Table 9. For instance, in the sentence the
sentence “Trouble is following hard on the
heels of the uproar around Josef Ackermann,
CEO of Deutsche Bank,” the model catego-
rizes [Josef Ackermann] as [the corporate
executive responsible for the operations of
the firm;]. Although WordNet contains some
named entities, specific ones like “Josef Ack-
ermann” may not be explicitly available in the
inventory. Moreover, in the Semcor training
samples, often named entities are annotated
with generic synsets like person or location,
illustrating the challenge of capturing the full
specificity of named entities within existing
sense inventories.

These examples highlight WSL’s challenges
with lexical variations and named entity interpreta-
tion, emphasizing the importance of refining sense
inventories and training methods for better align-
ment with lexical standards.

-
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Example Text WSL disambiguation
Training and development of ageing workers
in both the work place and the community.

a place where work is done

In the amount USD 45 billion ( nearly EUR
30 billion ) in one go .

the basic monetary unit of most members of
the European Union

Auditors found crookery the first day on the
job.

verbal misrepresentation intended to take ad-
vantage of you in some way

Played on the 23rd of November against Ajax
in European Champions League

- any number of entities (members) considered
as a unit;
- an active diversion requiring physical exer-
tion and competition

Ctrl Q Quit Shuts the program. cease to operate or cause to cease operating

Table 8: This table showcases examples of model’s disambiguation capabilities and lexical recognition gaps,
showing specific instances where the model accurately identifies and annotates lexical variants not directly mapped
in standard sense inventories

Example Text WSL disambiguation
Trouble is following hard on the heels of
the uproar around Josef Ackermann, CEO of
Deutsche Bank.

the corporate executive responsible for the op-
erations of the firm;

In his program, François Hollande confines
himself to banalities.

a human being

The World Labor Organisation estimates that
for example in Germany..

an international alliance involving many dif-
ferent countries

Friendly game today, at 3:05 pm at the Na-
tional Stadium in San Jose.

location, a point or extent in space

The two justices have been attending Federal-
ist Society events for years.

any number of entities (members) considered
as a unit

Table 9: This table showcases examples of how the model abstracts named entities into broader conceptual categories.
Each row shows the model’s disambiguation of specific named entities.

-
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Figure 2: The counts of four POS categories (NOUN, VERB, ADJ, ADV) for three different datasets (Senseval2,
Senseval3, Semeval2015). Each POS category is subdivided into ’OLD’ (blue) and ’NEW’ (orange) data points,
indicating the frequency of each annotation before and after our comprehensive annotation process.
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Figure 3: The count of POS categories for the Se-
meval2007 and Semeval2013 datasets. Notably, the orig-
inal Semeval2007 dataset lacks annotations for ADJ and
ADV categories, and Semeval2013 lacks annotations
for VERB, ADJ, and ADV, as indicated by the absence
of ’OLD’ (blue) bars for these categories. The ’NEW’
(orange) bars represent the counts post-annotation.
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Figure 4: The counts of four POS categories within the
’ALL’ dataset, which aggregates data across multiple
sources. The ’OLD’ (blue) bars represent the origi-
nal annotation counts, while the ’NEW’ (orange) bars
indicate the increased counts following our extensive
annotation process.
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