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Abstract

Event extraction has gained considerable inter-
est due to its wide-ranging applications. How-
ever, recent studies draw attention to evalua-
tion issues, suggesting that reported scores may
not accurately reflect the true performance. In
this work, we identify and address evaluation
challenges, including inconsistency due to vary-
ing data assumptions or preprocessing steps,
the insufficiency of current evaluation frame-
works that may introduce dataset or data split
bias, and the low reproducibility of some pre-
vious approaches. To address these challenges,
we present TEXTEE, a standardized, fair, and
reproducible benchmark for event extraction.
TEXTEE comprises standardized data prepro-
cessing scripts and splits for 16 datasets span-
ning eight diverse domains and includes 14
recent methodologies, conducting a compre-
hensive benchmark reevaluation. We also eval-
uate five varied large language models on our
TEXTEE benchmark and demonstrate how they
struggle to achieve satisfactory performance.
Inspired by our reevaluation results and find-
ings, we discuss the role of event extraction
in the current NLP era, as well as future chal-
lenges and insights derived from TEXTEE. We
believe TEXTEE, the first standardized compre-
hensive benchmarking tool, will significantly
facilitate future event extraction research.1

1 Introduction

Event extraction (Ji and Grishman, 2008) has al-
ways been a challenging task in the field of natural
language processing (NLP) due to its demand for
a high-level comprehension of texts. Since event
extraction benefits many applications (Zhang et al.,
2020; Han et al., 2021), it has attracted increasing
attention in recent years (Luan et al., 2019; Lin
et al., 2020; Nguyen et al., 2021; Hsu et al., 2022;

1TEXTEE benchmark platform is available at https:
//github.com/ej0cl6/TextEE

Ma et al., 2022). However, due to the complicated
nature of event extraction datasets and systems,
fairly evaluating and comparing different event ex-
traction approaches is not straightforward. Recent
attempts (Zheng et al., 2021; Peng et al., 2023a,b)
point out that the reported scores in previous work
might not reflect the true performance in real-world
applications because of various shortcomings and
issues during the evaluation process. This poses
a potential obstacle to the development of robust
techniques for research in event extraction.

Motivated by the evaluation concern, this work
aims to establish a standardized, fair, and repro-
ducible benchmark for assessing event extraction
approaches. We start by identifying and discussing
several significant issues in the current evaluation
process. First, we discuss the inconsistency issue
caused by discrepant assumptions about data, dif-
ferent preprocessing steps, and the use of exter-
nal resources. Next, we highlight the insufficiency
problem of existing evaluation pipelines, which
cover limited datasets and rely on fixed data splits,
potentially introducing bias when evaluating per-
formance. Finally, we emphasize the importance of
reproducibility, which indirectly causes the afore-
mentioned inconsistency and insufficiency issues.

To address these evaluation concerns, we pro-
pose TEXTEE, an evaluation platform that covers
16 datasets spanning diverse domains. To ensure
fairness in comparisons, we standardize data pre-
processing procedures and introduce five standard-
ized data splits. Furthermore, we aggregate and
re-implement 14 event extraction approaches pub-
lished in recent years and conduct a comprehen-
sive reevaluation. TEXTEE offers the benefits of
consistency, sufficiency, reproducibility in evalu-
ation. Additionally, we benchmark several large
language models (LLMs) (Touvron et al., 2023;
Tunstall et al., 2023; Jiang et al., 2024) for event
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extraction with TEXTEE and show the unsatisfac-
tory performance of LLMs for this task.

Based on our reevaluation results and findings,
we discuss the role of event extraction in the current
era of LLMs, along with challenges and insights
gleaned from TEXTEE. Specifically, we discuss
how event extraction systems can be optional tools
for LLMs to utilize, as well as highlight future
challenges, including enhancing generalization, ex-
panding event coverage, and improving efficiency.

In summary, our contributions are as follows: (1)
We highlight and address the difficulties of fair eval-
uation for event extraction tasks. (2) We present
TEXTEE as a benchmark platform for event extrac-
tion research and conduct a thorough reevaluation
of recent approaches as well as LLMs. (3) Based
on our results and findings, we discuss limitations
and future challenges in event extraction.

2 Background and Related Work

2.1 Event Extraction
Event extraction (EE) aims to identify structured
information from texts. Each event consists of an
event type, a trigger span, and several arguments
along with their roles.2 Figure 1 shows an exam-
ple of a Justice-Execution event extracted from the
text. This event is triggered by the text span exe-
cution and contains two argument roles, including
Indonesia (Agent) and convicts (Person).

Previous work can be categorized into two types:
(1) End-to-end (E2E) approaches extract event
types, triggers, and argument roles in an end-to-
end manner. (2) Pipeline approaches first solve the
event detection (ED) task, which detects trigger
spans and the corresponding event types, then deal
with the event argument extraction (EAE) task,
which extracts arguments and the corresponding
roles given an event type and a trigger span.

2.2 Related Work

Event extraction. Most end-to-end approaches
construct graphs to model the relations between
entities and extract triggers and argument roles ac-
cordingly (Luan et al., 2019; Wadden et al., 2019;
Han et al., 2019; Lin et al., 2020; Huang et al.,
2020; Nguyen et al., 2021; Zhang and Ji, 2021;
Huang and Peng, 2021). There is a recent fo-
cus on employing generative models to generate

2In this work, we only cover closed-domain EE with a
given ontology. We consider event mentions as events and do
not consider event coreference resolution.

Figure 1: An example of a Justice-Execution event.
One trigger span (execution) and two argument roles,
Indonesia (Agent) and convicts (Person), are identified.

summaries for extracting events (Lu et al., 2021;
Hsu et al., 2022). Unlike end-to-end approaches,
pipeline methods train two separate models for
event detection and event argument extraction. Dif-
ferent techniques are introduced, such as question
answering (Du and Cardie, 2020; Liu et al., 2020;
Li et al., 2020a; Lu et al., 2023), language genera-
tion (Paolini et al., 2021; Hsu et al., 2022), query-
ing and extracting (Wang et al., 2022), pre-training
(Wang et al., 2021), and multi-tasking (Lu et al.,
2022; Wang et al., 2023b). Some works focus on
zero-shot or few-shot settings (Huang et al., 2018;
Hsu et al., 2022).
Event detection. There are many prior studies
focusing on extracting triggers only. Most works
pay attention to the standard supervised setting (Liu
et al., 2018; Lai et al., 2020; Veyseh et al., 2021; Li
et al., 2021a; Huang et al., 2022a; Liu et al., 2022a;
Li et al., 2023b). Some others study the few-shot
setting (Deng et al., 2021; Zhao et al., 2022; Zhang
et al., 2022; Ma et al., 2023; Wang et al., 2023a)
Event argument extraction. Event argument ex-
traction has caught much attention in recent years
(Veyseh et al., 2022b; Li et al., 2021b; Hsu et al.,
2023a; Zeng et al., 2022; Ma et al., 2022; Huang
et al., 2022b; Xu et al., 2022; Hsu et al., 2023b;
Nguyen et al., 2023; He et al., 2023; Huang et al.,
2023; Parekh et al., 2024a). Some works focus on
training models with only a few examples (Sainz
et al., 2022a; Yang et al., 2023; Wang et al., 2023c).
Event extraction datasets. Most of event extrac-
tion datasets come from Wikipedia and the news
domain (Sundheim, 1992; Doddington et al., 2004;
Song et al., 2015; Ebner et al., 2020; Li et al.,
2020b, 2021b; Veyseh et al., 2022a; Li et al., 2022).
To increase the event type coverage, some works
focus on general domain datasets (Wang et al.,
2020; Deng et al., 2020; Parekh et al., 2023; Li
et al., 2023b). Recently, datasets in specific do-
mains have been proposed, including cybersecurity
(Satyapanich et al., 2020; Trong et al., 2020), phar-
macovigilance (Sun et al., 2022), epidemic (Parekh
et al., 2024b), and historical text (Lai et al., 2021).
Event extraction evaluation and analysis. Re-
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cently, some works point out several pitfalls when
training event extraction models and attempt to
provide solutions (Zheng et al., 2021; Peng et al.,
2023a,b). Our observation partially echos their find-
ings, while our proposed TEXTEE covers more di-
verse datasets and includes more recent approaches.
On the other hand, some studies discuss ChatGPT’s
performance on event extraction but only for one
dataset (Li et al., 2023a; Gao et al., 2023).

3 Issues in Past Evaluation

Despite a wide range of works in EE, we identify
several major issues of the past evaluation. We
classify those issues into three categories: inconsis-
tency, insufficiency, and low reproducibility.
Inconsistency. Due to the lack of a standardized
evaluation framework, we notice that many studies
utilize varied experimental setups while comparing
their results with reported numbers in the literature.
This leads to unfair comparisons and makes the
evaluation less reliable and persuasive. We identify
and summarize the underlying reasons as follows:
• Different assumptions about data. In the past,

different approaches tend to have their own
assumptions about data. For instance, some
works allow trigger spans consisting of multiple
words (Lin et al., 2020; Hsu et al., 2022, 2023a),
whereas others consider only single-word trig-
gers (Liu et al., 2020; Du and Cardie, 2020;
Wang et al., 2022); some studies assume that
there are no overlapping argument spans (Zhang
and Ji, 2021), while others can handle overlap-
ping spans (Wadden et al., 2019; Huang et al.,
2022b); some methods filter out testing data
when the texts are too long (Liu et al., 2022a),
while others do not (Hsu et al., 2023b; Ma et al.,
2022). Due to these discrepancies in assump-
tions, the reported numbers from the original
papers are actually not directly comparable.

• Different data preprocessing steps. Many pre-
vious works benchmark on the ACE05 (Dod-
dington et al., 2004) and RichERE (Song et al.,
2015) datasets. Since these datasets are behind
a paywall and not publicly accessible, people
can only share the data preprocessing scripts.
Unfortunately, we observe that some popular
preprocessing scripts can generate very differ-
ent data. For instance, the processed ACE05
datasets from Wadden et al. (2019), Li et al.
(2020a), and Veyseh et al. (2022b) have varying
numbers of role types (22, 36, and 35 respec-

tively). In addition, it is crucial to note that
variations in Python package versions can lead
to different generated data even when using the
same script. For example, different versions of
nltk packages may have discrepancies in sen-
tence tokenization and word tokenization, result-
ing in different processed data. Such differences
in preprocessing largely affect model evaluation,
leading to significant discrepancies (e.g., over
4 F1 score), thereby reducing persuasiveness
(Peng et al., 2023b).

• Different external resources. We notice that
many approaches utilize additional resources
without clearly describing the differences in ex-
perimental settings. For example, Wang et al.
(2023a) employs part-of-speech tags for event
detection; Sainz et al. (2022b) and Wang et al.
(2022) consider gold entity annotations for event
argument extraction. These setting differences
can lead to potentially unfair comparisons.

Insufficiency. We argue that the existing evalu-
ation process used by the majority of approaches
cannot thoroughly evaluate the capabilities of event
extraction models due to the following aspects:
• Limited dataset coverage. Early works usu-

ally utilize ACE05 (Doddington et al., 2004)
and RichERE (Song et al., 2015) as the evalu-
ation datasets. Consequently, most follow-up
works adopt the same two datasets for compari-
son regardless that several new datasets across
diverse domains are proposed (Li et al., 2021b;
Sun et al., 2022; Tong et al., 2022; Parekh et al.,
2023). The limited dataset coverage may intro-
duce domain bias and lead to biased evaluations.

• Data split bias. Although many works address
model randomness by averaging multiple exper-
imental runs (Zhang and Ji, 2021; Hsu et al.,
2022; Wang et al., 2022), they often overlook
randomness in data splits and report numbers
only for a single and fixed split for train, dev,
and test sets. This can lead to a notable bias,
especially for event extraction where there is a
high variance of annotation density across sen-
tences or documents. For example, following the
preprocessing step of Wadden et al. (2019) ap-
plied to ACE05, the resulting processed dataset
has 33 event types in the train set, 21 event types
in the dev set, and 31 event types in the test set.
Accordingly, it is likely to have a significant per-
formance discrepancy between the dev and the
test set, making the reported numbers biased.
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Dataset Task #Docs #Inst #ET #Evt #RT #Arg Event Entity Relation Domain

ACE05 (Doddington et al., 2004) E2E, ED, EAE 599 20920 33 5348 22 8097 ✓ ✓ ✓ News
RichERE (Song et al., 2015) E2E, ED, EAE 288 11241 38 5709 21 8254 ✓ ✓ ✓ News
MLEE (Pyysalo et al., 2012) E2E, ED, EAE 262 286 29 6575 14 5958 ✓ ✓ ✓ Biomedical
Genia2011 (Kim et al., 2011) E2E, ED, EAE 960 1375 9 13537 10 11865 ✓ ✓ Biomedical
Genia2013 (Kim et al., 2013) E2E, ED, EAE 20 664 13 6001 7 5660 ✓ ✓ ✓ Biomedical
M2E2 (Li et al., 2020b) E2E, ED, EAE 6013 6013 8 1105 15 1659 ✓ ✓ Multimedia
CASIE (Satyapanich et al., 2020) E2E, ED, EAE 999 1483 5 8469 26 22575 ✓ Cybersecurity
PHEE (Sun et al., 2022) E2E, ED, EAE 4827 4827 2 5019 16 25760 ✓ Pharmacovigilance
MAVEN (Wang et al., 2020) ED 3623 40473 168 96897 – – ✓ General
FewEvent (Deng et al., 2020) ED 12573 12573 100 12573 – – ✓ General
SPEED (Parekh et al., 2024b) ED 1975 1975 7 2217 – – ✓ Epidemic
MEE (Veyseh et al., 2022a) ED 13000 13000 16 17257 – – ✓ ✓ Wikipedia
WikiEvents (Li et al., 2021b) EAE 245 565 50 3932 58 5501 ✓ ✓ Wikipedia
RAMS (Ebner et al., 2020) EAE 9647 9647 139 9647 65 21206 ✓ ✓ News
MUC-4 (Sundheim, 1992) EAE 1700 2360 1 2360 5 4776 ✓ News
GENEVA (Parekh et al., 2023) EAE 262 3684 115 7505 220 12314 ✓ ✓ General

Table 1: TEXTEE supports fourteen datasets across various domains. #Docs, #Inst, #ET, #EvT, #RT, and #Arg
represent the number of documents, instances, event types, events, roles, and arguments, respectively. Event, Entity,
and Relation indicate if the dataset contains the corresponding annotations.

Low reproducibility. Because of the complex na-
ture of event extraction tasks, the event extraction
models have become increasingly complicated. Re-
leasing code and checkpoints for reproducing re-
sults has become essential, as many details and
tricks need to be taken into account during the re-
implementation process. However, many promis-
ing approaches do not provide an official codebase
(Li et al., 2020a; Nguyen et al., 2021; Wei et al.,
2021; Liu et al., 2022b), which potentially impedes
the progress of research in event extraction.

4 Benchmark and Reevaluation

To address the issues listed in Section 3, we present
TEXTEE, a framework aiming to standardize and
benchmark the evaluation process of event extrac-
tion. TEXTEE has several advantages as follows.
Better Consistency. We propose a standardized
experimental setup for fair comparisons.
• Normalizing assumptions about data. We

adopt the loosest assumption about data to align
with real-world cases effectively. This includes
allowing multiple-word triggers, considering
overlapping argument spans, and retaining all
instances without filtering.

• Standardizing data preprocessing steps. We
provide a standard script for data preprocessing,
including tokenization and label offset mapping.
To avoid the difference caused by variations
in Python package versions, we use stanza
1.5.0 for tokenization and save all the offsets.
Our script will load the saved offsets during pre-
processing, ensuring that everyone can generate
exactly the same data.

• Specifying additional resources. We clearly
specify the resources utilized by all baselines
(Table 2). For approaches that require additional
gold annotations (such as POS tags, AMR, and
gold entities), considering the purpose of fair
comparisons, we either train a new predictor
from training annotations (for entities) or use a
pre-trained model (for POS tags and AMR), and
consider the predicted labels as a substitute for
the gold annotations.

Improved Sufficiency. We improve the sufficiency
of the evaluation process as follows.
• Increasing dataset coverage. As listed in Ta-

ble 1, we increase the dataset coverage by includ-
ing sixteen event extraction datasets that cover
various domains.

• Providing standard data splits. For each
dataset, we merge all the labeled data and re-
generate data splits. To mitigate the data split
bias, we offer five split for each dataset and re-
port the average results. To reduce the distribu-
tion gap among the train, dev, and test sets, we
select splits that these sets share the most simi-
lar statistics, such as the number of event types
and role types, as well as the number of events
and arguments. Appendix A lists the detailed
statistics of each split for each dataset.

• New evaluation metrics. Most prior works
follow Lin et al. (2020) and consider Trigger
F1-score and Argument F1-score as the evalu-
ation metrics. Specifically, they calculate F1-
scores regarding the following: (1) TI: if the
(start_idx, end_idx) of a predicted trigger match
the gold ones. (2) TC: if the (start_idx, end_idx,
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Model Task Event Entity Relation POS Tags AMR Verbalization Template

Classification-Based Models

DyGIE++ (Wadden et al., 2019) E2E ✓ ✓ ✓

OneIE (Lin et al., 2020) E2E ✓ ✓ ✓

AMR-IE (Zhang and Ji, 2021) E2E ✓ ✓ ✓ ✓

EEQA (Du and Cardie, 2020) ED, EAE ✓ ✓

RCEE (Liu et al., 2020) ED, EAE ✓ ✓

Query&Extract (Wang et al., 2022) ED, EAE ✓ ✓ ✓

TagPrime-C (Hsu et al., 2023a) ED, EAE ✓ ✓

TagPrime-CR (Hsu et al., 2023a) EAE ✓ ✓

UniST (Huang et al., 2022a) ED ✓ ✓

CEDAR (Li et al., 2023b) ED ✓ ✓

Generation-Based Models

DEGREE (Hsu et al., 2022) E2E, ED, EAE ✓ ✓ ✓

BART-Gen (Li et al., 2021b) EAE ✓ ✓

X-Gear (Huang et al., 2022b) EAE ✓

PAIE (Ma et al., 2022) EAE ✓ ✓ ✓

AMPERE (Hsu et al., 2023b) EAE ✓ ✓ ✓ ✓

Table 2: TEXTEE supports various models with different assumptions. Event, Entity, Relation, POS Tags, and AMR
indicate if the model considers the corresponding annotations. Verbalization: if the model requires verbalized type
strings. Template: if the model needs a human-written template to connect the semantics of triggers and arguments.

event_type) of a predicted trigger match the
gold ones. (3) AI: if the (start_idx, end_idx,
event_type) of a predicted argument match the
gold ones. (4) AC: if the (start_idx, end_idx,
event_type, role_type) of a predicted argument
match the gold ones. However, we notice that AI
and AC cannot precisely evaluate the quality of
predicted arguments. There can be multiple trig-
gers sharing the same event type in an instance,
but the current score does not evaluate if the pre-
dicted argument attaches to the correct trigger.
Accordingly, we propose two new scores to eval-
uate this attachment: (5) AI+: if the (start_idx,
end_idx, event_type, attached_trigger_offsets)
of a predicted argument match the gold ones. (6)
AC+: if the (start_idx, end_idx, event_type, at-
tached_trigger_offsets, role_type) of a predicted
argument match the gold ones.

Reproducibility. We open-source the proposed
TEXTEE framework for better reproducibility. Ad-
ditionally, we encourage the community to con-
tribute their datasets and codebases to advance the
research in event extraction.

4.1 TEXTEE Benchmark
TEXTEE supports 16 datasets across various do-
mains and 14 models proposed in recent years.
Dataset. In addition to the two most common
datasets, ACE05 (Doddington et al., 2004) and
RichERE (Song et al., 2015), which particularly fo-
cus on the news domain, we consider as many other
event extraction datasets across diverse domains as

possible, including MLEE (Pyysalo et al., 2012),
Genia2011 (Kim et al., 2011), and Genia2013
(Kim et al., 2013) from the biomedical domain,
CASIE (Satyapanich et al., 2020) from the cyber-
security domain, PHEE (Sun et al., 2022) from
the pharmacovigilance domain, SPEED (Parekh
et al., 2024b) from the epidemic domain, M2E2

(Li et al., 2020b), MUC-4 (Sundheim, 1992), and
RAMS (Ebner et al., 2020) from the news domain,
MEE (Veyseh et al., 2022a) and WikiEvents (Li
et al., 2021b) from Wikipedia, MAVEN (Wang
et al., 2020), FewEvent (Deng et al., 2020), and
GENEVA (Parekh et al., 2023) from the general
domain. We also notice that there are other valu-
able datasets, such as GLEN (Li et al., 2023b) and
VOANews (Li et al., 2022), but we do not include
them as their training examples are not all anno-
tated by humans. Table 1 summarizes the statistics
for each dataset after our preprocessing steps. Ap-
pendix A describes the details of the preprocessing
steps and our assumptions.
Models. We do our best to aggregate as many mod-
els as possible into TEXTEE. For those works hav-
ing public codebases, we adapt their code to fit our
evaluation framework. We also re-implement some
models based on the description from the original
papers. Currently, TEXTEE supports the follow-
ing models: (1) Joint training models that train
ED and EAE together in an end-to-end manner,
including DyGIE (Wadden et al., 2019), OneIE
(Lin et al., 2020), and AMR-IE (Zhang and Ji,
2021). (2) Classification-based models that formu-
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Model
ACE05 RichERE MLEE Genia2011

TI TC AC AC+ TI TC AC AC+ TI TC AC AC+ TI TC AC AC+

DyGIE++ 74.7 71.3 56.0 51.8 69.7 59.8 42.0 38.3 82.6 78.2 57.8 54.4 74.2 70.3 56.9 52.1
OneIE 75.0 71.1 59.9 54.7 71.0 62.5 50.0 45.2 82.7 78.5 26.9 13.1 76.1 72.1 57.0 33.6
AMR-IE 74.6 71.1 60.6 54.6 70.5 62.3 49.5 44.7 82.4 78.2 15.2 4.7 76.4 72.4 42.8 29.0
EEQA 73.8 70.0 55.3 50.4 69.3 60.2 45.8 41.9 81.4 76.9 51.1 38.1 74.4 71.3 50.6 38.4
RCEE 74.0 70.5 55.5 51.0 68.6 60.0 46.2 42.1 81.3 77.2 49.3 35.4 73.3 70.1 49.0 37.2
Query&Extract 68.6 65.1 55.0 49.0 67.5 59.8 48.9 44.5 – – – – – – – –
TagPrime 73.2 69.9 59.8 54.6 69.6 63.5 52.8 48.4 81.8 79.0 65.2 60.3 74.9 72.2 62.8 57.8
DEGREE-E2E 70.3 66.8 55.1 49.1 67.7 60.5 48.7 43.7 74.7 70.2 33.8 23.3 61.6 59.2 35.6 25.4
DEGREE-PIPE 72.0 68.4 56.3 50.7 68.3 61.7 48.9 44.8 74.0 70.4 49.6 42.7 63.7 60.5 49.3 39.8

Model
Genia2013 M2E2 CASIE PHEE

TI TC AC AC+ TI TC AC AC+ TI TC AC AC+ TI TC AC AC+

DyGIE++ 76.3 72.9 60.5 57.2 53.1 51.0 33.4 30.8 44.9 44.7 36.4 29.5 71.4 70.4 60.8 45.7
OneIE 78.0 74.3 51.0 32.9 52.4 50.6 36.1 32.1 70.8 70.6 54.2 22.1 70.9 70.0 37.5 29.8
AMR-IE 78.0 74.5 34.8 23.1 52.4 50.5 35.5 31.9 71.1 70.8 10.7 3.1 70.2 69.4 45.7 34.1
EEQA 72.4 69.4 48.1 35.7 53.6 51.0 32.6 30.2 43.2 42.8 35.1 26.2 70.9 70.3 40.4 32.0
RCEE 71.4 68.0 45.8 31.6 50.1 48.1 31.0 28.0 42.3 42.1 32.8 23.7 71.6 70.9 41.6 33.1
Query&Extract – – – – 51.4 49.4 33.9 28.8 – – – – 66.2 55.5 41.4 31.8
TagPrime 75.7 73.0 60.8 57.4 52.2 50.2 35.5 32.4 69.5 69.3 61.0 49.1 71.7 71.1 51.7 40.6
DEGREE-E2E 66.4 62.6 33.3 24.8 50.9 49.5 32.5 30.0 60.9 60.7 27.0 14.6 70.0 69.1 49.3 36.5
DEGREE-PIPE 64.9 61.0 49.4 41.9 50.4 48.3 33.1 30.1 57.4 57.1 48.0 33.7 69.8 69.1 50.2 36.7

Table 3: Reevaluation results for end-to-end event extraction (E2E). All the numbers are the average score of 5 data
splits. Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.

Model
ACE05 RichERE MLEE Genia2011 Genia2013 M2E2

TI TC TI TC TI TC TI TC TI TC TI TC

DyGIE++ 74.7 71.3 69.7 59.8 82.6 78.2 74.2 70.3 76.3 72.9 53.1 51.0
OneIE 75.0 71.1 71.0 62.5 82.7 78.5 76.1 72.1 78.0 74.3 52.4 50.6
AMR-IE 74.6 71.1 70.5 62.3 82.4 78.2 76.4 72.4 78.0 74.5 52.4 50.5
EEQA 73.8 70.0 69.3 60.2 82.0 77.4 73.3 69.6 74.7 71.1 53.6 51.0
RCEE 74.0 70.5 68.6 60.0 82.0 77.3 73.1 69.3 74.6 70.8 50.1 48.1
Query&Extract 68.6 65.1 67.5 59.8 78.0 74.9 71.6 68.9 73.0 70.1 51.4 49.4
TagPrime-C 73.2 69.9 69.6 63.5 81.8 79.0 74.9 72.2 75.7 73.0 52.2 50.2
UniST 73.9 69.8 69.6 60.7 80.2 74.9 73.8 70.3 73.7 69.9 51.1 49.0
CEDAR 71.9 62.6 67.3 52.3 71.0 65.5 70.2 66.8 73.6 67.1 50.9 48.0
DEGREE 72.0 68.4 68.3 61.7 74.0 70.4 63.7 60.5 64.9 61.0 50.4 48.3

Model
CASIE PHEE MAVEN FewEvent MEE-en SPEED

TI TC TI TC TI TC TI TC TI TC TI TC

DyGIE++ 44.9 44.7 71.4 70.4 75.9 65.3 67.7 65.2 81.7 79.8 69.6 64.9
OneIE 70.8 70.6 70.9 70.0 76.4 65.5 67.5 65.4 80.7 78.8 69.5 65.1
AMR-IE 71.1 70.8 70.2 69.4 – – 67.4 65.2 – – – –
EEQA 43.4 43.2 70.9 70.3 75.2 64.4 67.0 65.1 81.4 79.5 69.9 65.3
RCEE 43.5 43.3 71.6 70.9 75.2 64.6 67.0 65.0 81.1 79.1 70.1 65.1
Query&Extract 51.6 51.5 66.2 55.5 – – 66.3 63.8 80.2 78.1 70.2 66.2
TagPrime-C 69.5 69.3 71.7 71.1 74.7 66.1 67.2 65.6 81.5 79.8 70.3 66.4
UniST 68.4 68.1 70.7 69.6 76.7 63.4 67.5 63.1 80.5 78.3 – –
CEDAR 68.7 67.6 71.2 70.3 76.5 54.5 66.9 52.1 81.5 78.6 67.6 61.7
DEGREE 61.5 61.3 69.8 69.1 76.2 65.5 67.9 65.5 80.2 78.2 66.5 62.2

Table 4: Reevaluation results for event detection (ED). All the numbers are the average score of 5 data splits. Darker
cells imply higher scores. We use “–” to denote the cases that models are not runnable.

late the event extraction task as a token classifi-
cation problem, a sequential labeling problem, or
a question answering problem, including EEQA
(Du and Cardie, 2020), RCEE (Liu et al., 2020),
Query&Extract (Wang et al., 2022), TagPrime
(Hsu et al., 2023a), UniST (Huang et al., 2022a),
and CEDAR (Li et al., 2023b). (3) Generation-
based models that convert the event extraction task

to a conditional generation problem, including DE-
GREE (Hsu et al., 2022), BART-Gen (Li et al.,
2021b), X-Gear (Huang et al., 2022b), PAIE (Ma
et al., 2022), and AMPERE (Hsu et al., 2023b).
Table 2 presents the different assumptions and re-
quirements for each model. It is worth noting that
some models need additional annotations or infor-
mation, as indicated in the table. Appendix B lists
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Model
ACE05 RichERE MLEE Genia2011 Genia2013 M2E2

AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+

DyGIE++ 66.9 61.5 60.0 58.5 49.4 47.3 67.9 64.8 62.4 66.1 63.7 61.0 71.7 69.3 66.9 41.7 38.9 38.5
OneIE 75.4 71.5 70.2 71.6 65.8 63.7 31.0 28.9 15.7 62.9 60.3 38.9 57.2 55.7 38.7 59.0 55.2 53.3
AMR-IE 76.2 72.6 70.9 72.8 65.8 63.0 23.2 16.6 6.1 49.1 47.6 35.3 38.9 38.1 26.4 56.0 51.3 50.4
EEQA 73.8 71.4 69.6 73.3 67.3 64.9 64.8 62.1 49.5 63.2 60.8 49.4 64.7 61.1 47.5 57.6 55.9 55.3
RCEE 73.7 71.2 69.4 72.8 67.0 64.5 61.1 58.2 45.1 62.3 59.9 49.6 60.7 57.4 42.7 57.9 56.4 55.8
Query&Extract 77.3 73.6 72.0 76.4 70.9 69.2 – – – – – – – – – 59.9 56.2 54.2
TagPrime-C 80.0 76.0 74.5 78.8 73.3 71.4 78.9 76.6 74.5 79.6 77.4 75.8 79.8 77.4 74.9 63.4 60.1 59.0
TagPrime-CR 80.1 77.8 76.2 78.7 74.3 72.5 79.2 77.3 74.6 78.0 76.2 74.5 76.6 74.5 72.3 63.2 60.8 59.9
DEGREE 76.4 73.3 71.8 75.1 70.2 68.8 67.6 65.3 61.5 68.2 65.7 62.4 68.4 66.0 62.5 62.3 59.8 59.2
BART-Gen 76.0 72.6 71.2 74.4 68.8 67.7 73.1 69.8 68.7 73.4 70.9 69.5 76.4 73.6 72.2 62.5 60.0 59.6
X-Gear 76.1 72.4 70.8 75.0 68.7 67.2 64.8 63.3 59.4 68.4 66.2 63.1 64.1 61.9 58.6 62.7 59.8 59.0
PAIE 77.2 74.0 72.9 76.6 71.1 70.0 76.0 73.5 72.4 76.8 74.6 73.4 77.8 75.2 74.2 62.9 60.6 60.4
Ampere 75.5 72.0 70.6 73.8 69.2 67.7 69.2 67.1 62.6 69.5 67.1 63.8 73.2 71.0 67.7 62.1 59.1 58.4

Model
CASIE PHEE WikiEvents RAMS GENEVA MUC-4

AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+ AI AC AC+

DyGIE++ 58.0 56.0 51.5 63.4 54.6 54.2 39.8 35.3 34.7 44.3 35.3 35.3 66.0 62.5 62.3 56.5 55.6 55.6
OneIE 58.3 55.3 27.7 55.9 40.6 40.4 17.5 15.0 7.9 48.0 40.7 40.7 38.9 37.1 36.9 55.1 53.9 53.9
AMR-IE 35.5 11.0 4.0 60.4 45.3 44.9 17.8 16.0 10.4 49.6 42.3 42.3 23.7 16.6 16.4 – – –
EEQA 56.1 54.0 49.0 53.7 45.6 45.4 54.3 51.7 46.1 48.9 44.7 44.7 69.7 67.3 67.0 32.7 27.4 27.4
RCEE 47.6 45.3 39.5 54.1 45.8 45.6 53.7 50.9 44.0 45.4 41.5 41.5 66.2 63.8 63.4 33.0 28.1 28.1
Query&Extract – – – 64.6 54.8 54.4 – – – – – – 52.2 50.3 50.0 – – –
TagPrime-C 71.9 69.1 66.1 66.0 55.6 55.3 70.4 65.7 64.0 54.4 48.3 48.3 83.0 79.2 79.0 55.3 54.4 54.4
TagPrime-CR 71.1 69.2 66.1 65.8 56.0 55.7 70.3 67.2 65.5 54.1 49.7 49.7 82.8 80.4 80.1 55.5 54.7 54.7
DEGREE 61.0 59.0 54.7 61.7 52.5 52.3 60.4 57.3 53.9 50.5 45.5 45.5 67.2 64.1 63.9 52.5 51.5 51.5
BART-Gen 63.7 60.0 58.3 57.1 47.7 47.5 68.5 64.2 63.9 50.4 45.4 45.4 67.3 64.4 64.3 51.3 49.8 49.8
X-Gear 65.7 63.4 59.3 67.6 58.3 58.2 58.7 55.6 52.4 52.1 46.2 46.2 78.9 75.1 74.9 51.5 50.4 50.4
PAIE 68.1 65.7 64.0 74.9 73.3 73.1 69.8 65.5 65.2 55.2 50.5 50.5 73.5 70.4 70.3 48.8 47.9 47.9
Ampere 61.1 58.4 53.9 61.4 51.7 51.6 59.9 56.7 53.3 52.0 46.8 46.8 67.8 65.0 64.8 – – –

Table 5: Reevaluation results for event argument extraction (EAE). All the numbers are the average score of 5 data
splits. Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.

more details about implementations.
Reevalutation results. For a fair comparison, we
utilize RoBERTa-large (Liu et al., 2019) for all the
classification-based models and use BART-large
(Lewis et al., 2020) for all the generation-based
models. Table 3, 4, and 5 present the reevaluation
results of end-to-end EE, ED, and EAE, respec-
tively. Appendix C lists more detailed results. We
first notice that for end-to-end EE and ED, there
is no obvious dominant approach. It suggests that
the reported improvements from previous studies
may be influenced by dataset bias, data split bias,
or data processing. This verifies the importance of
a comprehensive evaluation framework that cov-
ers various domains of datasets and standardized
data splits. TagPrime (Hsu et al., 2023a) and PAIE
(Ma et al., 2022) seem to be the two dominant
approaches across different types of datasets for
EAE. These results validate the effectiveness of
those two models, aligning with our expectations
for guiding reliable and reproducible research in
event extraction with TEXTEE.

In addition, we observe a gap between the es-
tablished evaluation metrics (AI and AC) and the
proposed ones (AI+ and AC+). This implies a po-
tential mismatch between the earlier metrics and

the predictive quality. We strongly recommend
reporting the attaching score (AI+ and AC+) for fu-
ture research in event extraction to provide a more
accurate assessment of performance.

5 Have LLMs Solved Event Extraction?

Given the demonstrated potential of large lan-
guage models (LLMs) across various NLP tasks,
we discuss their capability in solving event ex-
traction tasks. In contrast to previous studies
(Li et al., 2023a; Gao et al., 2023), which eval-
uate a single LLM on a single EE dataset, we in-
vestigate multiple popular LLMs across multiple
datasets provided by TEXTEE. We consider GPT-
3.5-Turbo as well as some open-source LLMs
that achieve strong performance on Chatbot Arena
(Zheng et al., 2023)3, including Llama-2-13b-
chat-hf and Llama-2-70b-chat-hf (Touvron et al.,
2023), Zephyr-7b-alpha (Tunstall et al., 2023),
and Mixtral-8x7B-Instruct (Jiang et al., 2024),
with vLLM framework (Kwon et al., 2023). We
evaluate them on the pipelined tasks of event de-
tection (ED) and event argument extraction (EAE).
As part of the prompt, we provide LLMs with the

3https://leaderboard.lmsys.org
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Model TI TC

OneIE (Lin et al., 2020) 73.5 69.5
TagPrime-C (Hsu et al., 2023a) 72.5 69.5

Llama-2-13b-chat-hf (2-shot) 23.5 9.3
Llama-2-13b-chat-hf (6-shot) 28.0 10.4

Llama-2-70b-chat-hf (2-shot) 30.6 11.3
Llama-2-70b-chat-hf (6-shot) 32.2 12.4

Zephyr-7b-alpha (2-shot) 25.0 6.6
Zephyr-7b-alpha (6-shot) 26.1 8.0
Zephyr-7b-alpha (16-shot) 26.1 9.1
Zephyr-7b-alpha (32-shot) 25.2 10.1
Zephyr-7b-alpha (64-shot) 23.8 9.7

Mixtral-8x7B-Instruct-v0.1 (2-shot) 30.4 10.2
Mixtral-8x7B-Instruct-v0.1 (6-shot) 34.4 10.6
Mixtral-8x7B-Instruct-v0.1 (16-shot) 35.4 12.1
Mixtral-8x7B-Instruct-v0.1 (32-shot) 36.7 13.8
Mixtral-8x7B-Instruct-v0.1 (64-shot) 37.5 14.6

gpt-3.5-turbo-1106 (2-shot) 33.9 11.8
gpt-3.5-turbo-1106 (16-shot) 35.2 12.3

Table 6: Average results over all datasets for event de-
tection (ED) on sampled 250 documents.

task instructions, a few demonstration examples
(positive and negative ones), and the query text. It
is worth noting that the number of demonstration
examples will be limited by the maximum length
supported by LLMs. Appendix D illustrates the
best prompt we use.
Results. Due to the cost and time of running LLMs,
we evaluate only on sampled 250 documents for
each dataset. Table 6 and 7 list the average results
of LLMs as well as some well-performed models
selected from TEXTEE.4 Unlike other NLP tasks
such as named entity recognition and common-
sense knowledge, where LLMs can achieve com-
petitive performance with fine-tuning models using
only a few in-context demonstrations (Wei et al.,
2022; Qin et al., 2023), it is noteworthy that there
is a large gap between LLMs and the baselines
for both the ED and EAE tasks. Our hypothesis
is that event extraction requires more recognition
of abstract concepts and relations, which is harder
compared to other NLP tasks (Li et al., 2023a).

5.1 Analysis
We also manually examine the cases where LLMs
make mistakes. The major errors of LLMs can be
categorized into the following three cases, suggest-
ing that there is still room for improving LLMs’
performance.
Overly aggressive predictions. We observed that

4The results do not include SPEED and MUC-4.

Model AI AC AI+ AC+

TagPrime-CR (Hsu et al., 2023a) 73.3 69.5 71.9 68.1
PAIE (Ma et al., 2022) 72.0 68.9 71.3 68.1

Llama-2-13b-chat-hf (2-shot) 26.5 19.0 24.1 17.1
Llama-2-13b-chat-hf (4-shot) 25.0 18.7 22.8 17.0

Llama-2-70b-chat-hf (2-shot) 30.6 24.4 28.5 22.8
Llama-2-70b-chat-hf (4-shot) 30.1 23.6 28.3 22.3

Zephyr-7b-alpha (2-shot) 28.9 22.6 27.0 21.3
Zephyr-7b-alpha (4-shot) 29.3 23.9 27.0 22.4
Zephyr-7b-alpha (8-shot) 29.7 25.2 27.7 23.5
Zephyr-7b-alpha (16-shot) 27.2 22.5 26.3 21.8
Zephyr-7b-alpha (32-shot) 24.3 19.7 23.7 19.3

Mixtral-8x7B-Instruct-v0.1 (2-shot) 28.5 23.6 26.7 22.2
Mixtral-8x7B-Instruct-v0.1 (4-shot) 30.5 24.7 28.4 23.4
Mixtral-8x7B-Instruct-v0.1 (8-shot) 32.9 27.2 30.4 25.4
Mixtral-8x7B-Instruct-v0.1 (16-shot) 34.1 28.1 31.4 25.8
Mixtral-8x7B-Instruct-v0.1 (32-shot) 35.1 29.2 32.0 26.5

gpt-3.5-turbo-1106 (2-shot) 33.2 25.9 30.5 23.8
gpt-3.5-turbo-1106 (8-shot) 34.9 26.9 31.8 24.7

Table 7: Average results over all datasets for event argu-
ment extraction (EAE) on sampled 250 documents.

LLMs struggle to accurately capture the concept
of certain event types solely from in-context
examples, leading to a tendency to generate many
false positives. For instance, considering the
following input:

Alleged ties to Gulen-In a statement to the United
Nations on May 15, the legal Christian advo-
cacy group, American Center for Law and Justice
(ACLJ), said Brunson was told that he was being
detained as a "national security risk”.

LLMs would predict detained as the trigger word
for several event types, Conflict-Attack, Life-Die,
Movement-Transport, and Justice-Arrest-Jail,
while the correct event type is only Justice-Arrest-
Jail. This reveals that LLMs might rely heavily
on the format of the in-context examples to
generate output, rather than fully understanding
the semantics of the event types.
Imprecise span boundaries. We find that another
key challenge of generation-based models is to
predict accurate offsets. For example, considering
the following input:

In 1988 , Spain supplied Iran with 200,000 respi-
rators.

LLMs would identify respirators as the argument
of role Theme, while the ground truth argument is
200,000 respirators.
Hallucination or paraphrasing. We also notice
that LLMs may generate spans that are not present
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in the input text. Most of the time, this can be
detected by a post-processing script to filter out
invalid predictions. However, in some cases, LLMs
generate reasonable answers but in different textual
formats, such as predicting Los Angeles when the
ground truth is LA. The current evaluation pipeline
would count this as an error.

6 Future Challenges and Opportunities

In this section, we discuss the role of event ex-
traction in the current NLP era, as well as some
challenges and insights derived from TEXTEE.
How should we position event extraction in the
era of LLMs? Based on the findings in Section 5,
LLMs struggle with extracting and comprehending
complicated structured semantic concepts. This
indicates the need for a dedicated system with spe-
cialized design to effectively recognize and extract
abstract concepts and relations from texts. We be-
lieve that a good event extractor, capable of iden-
tifying a wide range of events, could serve as a
tool that provides grounded structured information
about texts for LLMs. Accordingly, LLMs can flex-
ibly decide whether they require this information
for the following reasoning steps or inference pro-
cess. To achieve this goal, we expect event extrac-
tors to be universal, efficient, and accurate, which
introduces the following research challenges.
Broader event coverage and generalizablity. We
anticipate that a strong event extractor can recog-
nize a wide range of events and even identify new
event concepts that may not have appeared dur-
ing training. This requires two efforts: (1) Ex-
panding domain coverage in datasets. Most ex-
isting event extraction datasets suffer from a re-
stricted coverage of event types. For instance, all
the datasets incorporated by TEXTEE have no more
than 200 event types, which is significantly below
the amount of human concepts encountered in daily
life. Although some recent studies have attempted
to tackle this issue (Li et al., 2023b), their data often
contains label noise and lacks detailed role annota-
tions. We believe that efficiently collecting or syn-
thesizing high-quality data that covers a wild range
of events is crucial for enhancing the emerging abil-
ity to generalize event recognition. (2) Better model
design for generalization. Most existing event ex-
traction models focus on in-domain performance.
Therefore, their design can fail when encountering
novel events. While exploring prompting in LLMs
shows promise, as discussed in Section 5, the re-

sults remain unsatisfactory. Some recent works (Lu
et al., 2022; Ping et al., 2023) explore learning a
unified model across multiple information extrac-
tion tasks for improved generalization, but their
integration is constrained by limited domains. We
expect that TEXTEE can serve as a starting point
for aggregating diverse datasets and training more
robust unified models.
Enhanced model efficiency. Inference time can
pose a bottleneck for effective event extraction,
especially when the number of event (role) types
increases. For instance, well-performing methods
in TEXTEE (e.g., TagPrime and PAIE) require enu-
merating all the event (role) types, resulting in mul-
tiple times of model inference, which significantly
slows down as more events (roles) are considered.
Similar challenges arise with LLMs, as we have
to prompt them per event. Therefore, there is a
critical necessity for model designs that not only
prioritize performance but also optimize efficiency.

7 Conclusion

In this work, we identify and discuss several evalu-
ation issues for event extraction, including incon-
sistent comparisons, insufficiency, and low repro-
ducibility. To address these challenges, we propose
TEXTEE, a consistent, sufficient, and reproducible
benchmark for event extraction. We also study and
benchmark the capability of five large language
models in event extraction. Additionally, we dis-
cuss the role of event extraction in the current NLP
era, as well as challenges and insights derived from
TEXTEE. We expect TEXTEE and our reevalua-
tion results will serve as a reliable benchmark for
research in event extraction.
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Limitations

In this work, we make efforts to incorporate as
many event extraction datasets as possible. How-
ever, for some datasets, it is hard for us to obtain
the raw files. Moreover, there is a possibility that
we may overlook some datasets. Similarly, we aim
to include a broad range of event extraction ap-
proaches, but we acknowledge that it is not feasible
to cover all works in the field. We do our best to
consider representative methods that published in
recent years. Additionally, for works without re-
leased codebases, we make efforts to reimplement
their proposed methods based on the descriptions
in the original papers. There can be discrepancies
between our implementation and theirs due to dif-
ferences in packages and undisclosed techniques.
We will continue to maintain our proposed library
and welcome contributions and updates from the
community.
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A Details of Dataset Preprocessing

We describe the detailed preprocessing steps for
each dataset in the following. Table 8 and 9 lists
the statistics of each dataset.

ACE05-en (Doddington et al., 2004). We down-
load the ACE05 dataset from LDC5 and consider
the data in English. The original text in ACE05
dataset is document-based. We follow most prior
usage of the dataset (Lin et al., 2020; Wadden et al.,
2019) to split each document into sentences and
making it a sentence-level benchmark on event ex-
traction. We use Stanza (Qi et al., 2020) to perform
sentence splitting and discard any label (entity men-
tion, relation mention, event arguments, etc.) where
its span is not within a single sentence. Similar to
prior works (Lin et al., 2020; Wadden et al., 2019),
we consider using head span to represent entity
mentions and only include event arguments that are
entities (i.e., remove time and values in the ACE05
annotation). The original annotation of the dataset
is character-level. However, to make the dataset
consistent with others, we perform tokenization
through Stanza and map the character-level anno-
tation into token-level. We split the train, dev, and
test sets based on documents with the ratio 80%,
10%, and 10%.

RichERE (Song et al., 2015). Considering the
unavailability of the RichERE dataset used in prior
works (Lin et al., 2020; Hsu et al., 2022), we down-
load the latest RichERE dataset from LDC6 and
only consider the 288 documents labeled with Rich
ERE annotations. Similar to the pre-processing
step in ACE05-en, we use Stanza (Qi et al., 2020) to
perform sentence splitting and making it a sentence-
level benchmark. Following the strategy in (Lin
et al., 2020), we use head span to represent en-
tity mentions and only consider named entities,
weapons and vehicles as event argument candi-
dates. Again, the original annotation of the dataset
is character-level, and we perform tokenization
through Stanza and map the annotation into token-
level, forming the final RichERE dataset we use.
We split the train, dev, and test sets based on docu-
ments with the ratio 80%, 10%, and 10%.

5https://catalog.ldc.upenn.edu/
LDC2006T06

6https://catalog.ldc.upenn.edu/
LDC2023T04

MLEE (Pyysalo et al., 2012). The original
MLEE dataset is document-level.7 We use Stanza
(Qi et al., 2020) to do the sentence tokenization and
the word tokenization. For the purpose of evaluat-
ing most baselines, we divide the documents into
several segment-level instances with a sub-token
window size being 480 based on the RoBERTa-
large tokenizer (Liu et al., 2019). We split the train,
dev, and test sets based on documents with the ratio
70%, 15%, and 15%.

Genia2011 (Kim et al., 2011). The original Ge-
nia2011 dataset is document-level.8 We use Stanza
(Qi et al., 2020) to do the sentence tokenization and
the word tokenization. For the purpose of evaluat-
ing most baselines, we divide the documents into
several segment-level instances with a sub-token
window size being 480 based on the RoBERTa-
large tokenizer (Liu et al., 2019). We split the train,
dev, and test sets based on documents with the ratio
60%, 20%, and 20%.

Genia2013 (Kim et al., 2013). The original Ge-
nia2013 dataset is document-level.9 We use Stanza
(Qi et al., 2020) to do the sentence tokenization and
the word tokenization. For the purpose of evaluat-
ing most baselines, we divide the documents into
several segment-level instances with a sub-token
window size being 480 based on the RoBERTa-
large tokenizer (Liu et al., 2019). We split the train,
dev, and test sets based on documents with the ratio
60%, 20%, and 20%.

M2E2 (Li et al., 2020b). The M2E2 dataset con-
tains event argument annotations from both texts
and images.10 We consider only the text annota-
tions in our benchmark. We directly use the tok-
enized words without any modifications. We merge
the original train, dev, and test sets, and split them
into the new train, dev, and test sets based on docu-
ments with the ratio 70%, 15%, and 15%.

CASIE (Satyapanich et al., 2020). The original
CASIE dataset is document-level.11 We use Stanza
(Qi et al., 2020) to do the sentence tokenization and
the word tokenization. For the purpose of evaluat-
ing most baselines, we divide the documents into

7https://www.nactem.ac.uk/MLEE/
8https://bionlp-st.dbcls.jp/GE/2011/

downloads/
9https://2013.bionlp-st.org/tasks/

10https://blender.cs.illinois.edu/
software/m2e2

11https://github.com/Ebiquity/CASIE
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several segment-level instances with a sub-token
window size being 480 based on the RoBERTa-
large tokenizer (Liu et al., 2019). We split the train,
dev, and test sets based on documents with the ratio
70%, 15%, and 15%.

PHEE (Sun et al., 2022). We download the
PHEE dataset from the official webpage.12 We
directly use the tokenized words without any modi-
fications. We merge the original train, dev, and test
sets, and split them into the new train, dev, and test
sets based on documents with the ratio 60%, 20%,
and 20%.

MAVEN (Wang et al., 2020). We consider the
sentence-level annotations from the original data.13

We directly use the tokenized words without any
modifications. Because the labels of the original
test set are not publicly accessible, we merge the
original train and dev sets and split it into new train,
dev, and test sets by documents with the ratio 70%,
15%, and 15%.

MEE-en (Veyseh et al., 2022a). We download
the MEE dataset14 and consider the English anno-
tations. We use the annotations for event detection
only because we observe that the quality of the
annotations for event argument extraction is not
good and many important arguments are actually
missing. We directly use the tokenized words with-
out any modifications. We merge the original train,
dev, and test sets, and split them into the new train,
dev, and test sets based on documents with the ratio
80%, 10%, and 10%.

FewEvent (Deng et al., 2020). We download the
FewEvent dataset from the official webpage.15 No-
tice that we consider FewEvent as a normal super-
vised event detection dataset. We use Stanza (Qi
et al., 2020) to do the word tokenization. For the
purpose of evaluating most baselines, we discard
the instances with the length longer than 300. We
split the train, dev, and test sets based on documents
with the ratio 60%, 20%, and 20%.

SPEED (Parekh et al., 2024b). We download
the SPEED dataset from the official webpage.16

12https://github.com/ZhaoyueSun/PHEE
13https://github.com/THU-KEG/

MAVEN-dataset
14http://nlp.uoregon.edu/download/MEE/

MEE.zip
15https://github.com/231sm/Low_

Resource_KBP
16https://github.com/PlusLabNLP/SPEED

Notice that we consider only the COVID-related
examples. We split the train, dev, and test sets
based on documents with the ratio 60%, 20%, and
20%.

RAMS (Ebner et al., 2020). We use the latest
version of the RAMS dataset.17 We directly use the
tokenized words without any modifications. For the
purpose of evaluating most baselines, we discard
the instances with the sub-token length larger than
500 based on the RoBERTa-large tokenizer (Liu
et al., 2019). We merge the original train, dev, and
test sets, and split them into the new train, dev, and
test sets based on documents with the ratio 80%,
10%, and 10%.

WikiEvents (Li et al., 2021b). We download the
WikiEvents dataset from the official webpage.18

We directly use the tokenized words without any
modifications. For the purpose of evaluating most
baselines, we divide the documents into several
segment-level instances with a sub-token window
size being 480 based on the RoBERTa-large tok-
enizer (Liu et al., 2019). We split the train, dev, and
test sets based on documents with the ratio 80%,
10%, and 10%.

MUC-4 (Sundheim, 1992). We use the prepro-
cessed data from the GRIT repository.19 We use
Stanza (Qi et al., 2020) to do the sentence tokeniza-
tion and the word tokenization. For the purpose
of evaluating most baselines, we divide the doc-
uments into several segment-level instances with
a sub-token window size being 480 based on the
RoBERTa-large tokenizer (Liu et al., 2019). We
split the train, dev, and test sets based on documents
with the ratio 60%, 20%, and 20%.

GENEVA (Parekh et al., 2023). We download
the GENEVA dataset from the officail webpage.20

We directly use the tokenized words without any
modifications. We split the train, dev, and test sets
based on documents with the ratio 70%, 15%, and
15%.

B Details of Model Implementations

We utilize RoBERTa-large (Liu et al., 2019) for
all the classification-based models and use BART-

17https://nlp.jhu.edu/rams/RAMS_1.0c.
tar.gz

18s3://gen-arg-data/wikievents/
19https://github.com/xinyadu/grit_doc_

event_entity/
20https://github.com/PlusLabNLP/GENEVA
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Dataset Task Split
Train Dev Test

#Docs #Inst #ET #Evt #RT #Arg #Docs #Inst #ET #Evt #RT #Arg #Docs #Inst #ET #Evt #RT #Arg

ACE05-en
E2E
ED

EAE

1 481 16531 33 4309 22 6503 59 1870 30 476 22 766 59 2519 30 563 22 828
2 481 17423 33 4348 22 6544 59 1880 29 555 22 894 59 1617 30 445 22 659
3 481 17285 33 4331 22 6484 59 2123 30 515 22 799 59 1512 30 502 22 814
4 481 16842 33 4437 22 6711 59 1979 30 460 22 728 59 2099 29 451 22 658
5 481 16355 33 4198 22 6392 59 1933 30 509 22 772 59 2632 31 641 22 933

RichERE
E2E
ED

EAE

1 232 9198 38 4549 21 6581 28 876 35 488 21 737 28 1167 34 672 21 936
2 232 8886 38 4444 21 6520 28 1299 36 688 21 978 28 1056 37 577 21 756
3 232 9094 38 4490 21 6517 28 1081 36 678 21 942 28 1066 35 541 21 795
4 232 9105 38 4541 21 6647 28 973 34 571 21 804 28 1163 37 597 21 803
5 232 9169 38 4682 21 6756 28 1135 34 487 21 692 28 937 35 540 21 806

MLEE
E2E
ED

EAE

1 184 199 29 4705 14 4237 39 45 21 1003 9 895 39 42 21 867 12 826
2 184 202 29 4733 14 4258 39 42 19 898 10 854 39 42 21 944 11 846
3 184 200 29 4627 14 4165 39 42 20 1029 10 944 39 44 20 919 10 849
4 184 203 29 4629 14 4236 39 40 20 980 11 872 39 43 20 966 11 850
5 184 201 29 4653 14 4200 39 42 21 887 11 843 39 43 20 1035 11 915

Genia2011
E2E
ED

EAE

1 576 773 9 7396 10 6495 192 348 9 3773 9 3352 192 254 9 2368 8 2018
2 576 843 9 8455 10 7397 192 266 9 2713 9 2358 192 266 9 2369 9 2110
3 576 901 9 8638 10 7687 192 233 9 2042 8 1743 192 241 9 2857 9 2435
4 576 808 9 7836 10 7037 192 277 9 2842 9 2319 192 290 9 2859 9 2509
5 576 853 9 8460 10 7464 192 240 9 2368 9 2061 192 282 9 2709 9 2340

Genia2013
E2E
ED

EAE

1 12 420 13 4077 7 3921 4 105 10 950 7 858 4 139 11 974 7 881
2 12 388 13 3578 7 3561 4 128 11 1284 6 1134 4 148 10 1149 6 965
3 12 381 13 3816 7 3674 4 143 10 1174 7 1079 4 140 11 1011 6 907
4 12 441 13 3971 7 3993 4 111 9 785 7 616 4 112 11 1245 6 1051
5 12 427 13 4225 7 4112 4 120 10 809 6 717 4 117 10 967 7 831

M2E2
E2E
ED

EAE

1 4211 4211 8 748 15 1120 901 901 8 183 15 280 901 901 8 174 15 259
2 4211 4211 8 794 15 1171 901 901 8 148 14 232 901 901 8 163 15 256
3 4211 4211 8 760 15 1138 901 901 8 160 15 252 901 901 8 185 15 269
4 4211 4211 8 770 15 1137 901 901 8 178 15 276 901 901 8 157 15 246
5 4211 4211 8 747 15 1122 901 901 8 164 14 258 901 901 8 194 15 279

CASIE
E2E
ED

EAE

1 701 1047 5 5980 26 15869 149 218 5 1221 26 3175 149 218 5 1268 26 3531
2 701 1046 5 6010 26 15986 149 223 5 1294 26 3492 149 214 5 1165 26 3097
3 701 1044 5 6009 26 16090 149 210 5 1286 26 3344 149 229 5 1174 26 3141
4 701 1040 5 6034 26 15962 149 229 5 1172 26 3211 149 214 5 1263 26 3402
5 701 1043 5 5831 26 15544 149 218 5 1288 26 3369 149 222 5 1350 26 3662

PHEE
E2E
ED

EAE

1 2897 2897 2 3003 16 15482 965 965 2 1011 16 5123 965 965 2 1005 16 5155
2 2897 2897 2 3014 16 15576 965 965 2 1002 16 5090 965 965 2 1003 16 5094
3 2897 2897 2 3009 16 15230 965 965 2 1001 16 5200 965 965 2 1009 16 5330
4 2897 2897 2 3020 16 15496 965 965 2 996 16 5124 965 965 2 1003 16 5140
5 2897 2897 2 3011 16 15498 965 965 2 1000 16 5049 965 965 2 1008 16 5213

Table 8: Detailed statistics of each data split for E2E datasets. #Docs, #Inst, #ET, #EvT, #RT, and #Arg represent the
number of documents, instances, event types, events, roles, and arguments, respectively.

large (Lewis et al., 2020) for all the generation-
based models to have a consistent comparison.

DyGIE++ (Wadden et al., 2019). We re-
implement the model based on the original code-
base.21

OneIE (Lin et al., 2020). We adapt the code from
the original codebase.22

AMR-IE (Zhang and Ji, 2021). We adapt the
code from the original codebase.23

EEQA (Du and Cardie, 2020). We re-
implement the model based on the original

21https://github.com/dwadden/dygiepp
22https://blender.cs.illinois.edu/

software/oneie/
23https://github.com/zhangzx-uiuc/

AMR-IE

codebase.24 Notice that EEQA requires some
human-written queries for making predictions. For
those datasets that EEQA provides queries, we
directly use those queries. For other datasets, we
follow the suggestion from the paper and use “arg”
style queries like “{role_name} in [Trigger]”.

RCEE (Liu et al., 2020). We re-implement the
model based on the description in the original paper.
Notice that RCEE requires a question generator to
generate queries for making predictions. Alterna-
tively, we re-use the queries from EEQA as the
generated queries.

24https://github.com/xinyadu/eeqa

12820

https://github.com/dwadden/dygiepp
https://blender.cs.illinois.edu/software/oneie/
https://blender.cs.illinois.edu/software/oneie/
https://github.com/zhangzx-uiuc/AMR-IE
https://github.com/zhangzx-uiuc/AMR-IE
https://github.com/xinyadu/eeqa


Dataset Task Split
Train Dev Test

#Docs #Inst #ET #Evt #RT #Arg #Docs #Inst #ET #Evt #RT #Arg #Docs #Inst #ET #Evt #RT #Arg

MAVEN ED

1 2537 28734 168 69069 – – 543 5814 167 13638 – – 543 5925 168 14190 – –
2 2537 28341 168 68162 – – 543 5982 167 14233 – – 543 6150 168 14502 – –
3 2537 28348 168 67832 – – 543 6049 167 14185 – – 543 6076 168 14880 – –
4 2537 28172 168 67450 – – 543 6190 167 14637 – – 543 6111 167 14810 – –
5 2537 28261 168 67826 – – 543 6190 167 14493 – – 543 6022 168 14578 – –

MEE-en ED

1 10400 10400 16 13748 – – 1300 1300 16 1764 – – 1300 1300 16 1745 – –
2 10400 10400 16 13801 – – 1300 1300 16 1731 – – 1300 1300 16 1725 – –
3 10400 10400 16 13847 – – 1300 1300 16 1722 – – 1300 1300 16 1688 – –
4 10400 10400 16 13855 – – 1300 1300 16 1701 – – 1300 1300 16 1701 – –
5 10400 10400 16 13802 – – 1300 1300 16 1734 – – 1300 1300 16 1721 – –

FewEvent ED

1 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –
2 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –
3 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –
4 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –
5 7579 7579 100 7579 – – 2513 2513 98 2513 – – 2541 2541 99 2541 – –

SPEED ED

1 1185 1185 7 1334 – – 395 395 7 415 – – 395 395 7 458 – –
2 1185 1185 7 1361 – – 395 395 7 432 – – 395 395 7 424 – –
3 1185 1185 7 1336 – – 395 395 7 449 – – 395 395 7 432 – –
4 1185 1185 7 1328 – – 395 395 7 460 – – 395 395 7 429 – –
5 1185 1185 7 1340 – – 395 395 7 446 – – 395 395 7 431 – –

RAMS EAE

1 7827 7827 139 7287 65 16951 910 910 136 910 64 2132 910 910 135 910 63 2123
2 7827 7827 139 7287 65 16946 910 910 135 910 65 2113 910 910 137 910 65 2147
3 7827 7827 139 7287 65 16937 910 910 135 910 64 2168 910 910 135 910 64 2101
4 7827 7827 139 7287 65 17014 910 910 136 910 62 2093 910 910 137 910 63 2099
5 7827 7827 139 7287 65 17003 910 910 135 910 63 2130 910 910 137 910 65 2073

WikiEvents EAE

1 197 450 50 3131 57 4393 24 53 39 422 43 592 24 62 38 379 46 516
2 197 439 50 2990 57 4234 24 57 39 405 42 571 24 69 37 537 38 696
3 197 435 50 3014 56 4228 24 78 36 471 43 623 24 52 37 447 47 650
4 197 454 50 3143 57 4391 24 46 36 431 43 606 24 65 40 358 47 504
5 197 441 50 3142 57 4370 24 57 38 394 43 562 24 67 40 396 45 569

MUC-4 EAE

1 1020 1407 1 1407 5 2974 340 489 1 489 5 918 340 464 1 464 5 884
2 1020 1408 1 1408 5 2990 340 489 1 489 5 897 340 463 1 463 5 889
3 1020 1419 1 1419 5 2912 340 473 1 473 5 994 340 468 1 468 5 870
4 1020 1425 1 1425 5 2889 340 475 1 475 5 921 340 460 1 460 5 966
5 1020 1427 1 1427 5 2928 340 465 1 465 5 929 340 468 1 468 5 919

GENEVA EAE

1 96 2582 115 5290 220 8618 82 509 115 1016 159 1683 84 593 115 1199 171 2013
2 97 2583 115 5268 220 8660 85 509 114 1014 158 1615 85 592 115 1223 164 1994
3 97 2582 115 5294 220 8638 85 509 115 1010 156 1642 81 593 115 1201 170 1989
4 96 2582 115 5293 220 8705 79 509 115 1003 164 1636 88 593 115 1209 166 1928
5 97 2582 115 5337 220 8673 88 509 115 1004 161 1680 86 593 115 1164 161 1916

Table 9: Detailed statistics of each data split for ED and EAE datasets. #Docs, #Inst, #ET, #EvT, #RT, and #Arg
represent the number of documents, instances, event types, events, roles, and arguments, respectively.

Query&Extract (Wang et al., 2022). We adapt
the code from the original codebase.25 We use the
event type names as the verbalized string for each
event. Since the origin model supports event ar-
gument role labeling rather than event argument
extraction, we learn an additional NER sequential
labeling model during training and use the pre-
dicted entities for event argument role labeling dur-
ing testing.

TagPrime (Hsu et al., 2023a). We adapt the code
from the original codebase.26

PAIE (Ma et al., 2022). We adapt the code
from the original codebase.27 Notice that PAIE

25https://github.com/VT-NLP/Event_
Query_Extract

26https://github.com/PlusLabNLP/
TagPrime

27https://github.com/mayubo2333/PAIE

requires some human-written templates for mak-
ing predictions. For those datasets that PAIE
provides templates, we directly use them. For
other datasets, we create automated templates like
“{role_1_name} [argument_1] {role_2_name} [ar-
gument_2] ... {role_k_name} [argument_k] ”.

DEGREE (Hsu et al., 2022). We adapt the code
from the original codebase.28 Notice that DEGREE
requires some human-written templates for mak-
ing predictions. For those datasets that DEGREE
provides templates, we directly use them. For
other datasets, we re-use the templates generated
by PAIE.

28https://github.com/PlusLabNLP/DEGREE
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BART-Gen (Li et al., 2021b). We re-implement
the model from the original codebase.29 We re-
place the original pure copy mechanism with a
copy-generator since we observe this works bet-
ter. Notice that BART-Gen requires some human-
written templates for making predictions. For those
datasets that BART-Gen provides templates, we
directly use them. For other datasets, we re-use the
templates generated by PAIE.

X-Gear (Huang et al., 2022b). We adapt the
code from the original codebase.30

AMPERE (Hsu et al., 2023b). We adapt the
code from the original codebase.31 Notice that AM-
PERE requires some human-written templates for
making predictions. For those datasets that AM-
PERE provides templates, we directly use them.
For other datasets, we re-use the templates gener-
ated by PAIE.

UniST (Huang et al., 2022a). We re-implement
the model from the original codebase.32 Since the
origin model supports semantic typing only, we
learn an additional span recognition model during
training and use the predicted trigger spans for
trigger span typing during testing.

CEDAR (Li et al., 2023b). We re-implement the
model from the original codebase.33 Notice that
in the original paper, they consider self-labeling
during training as the dataset they consider is
noisy. Our implementation currently ignores the
self-labeling part.

C Detailed Results

Table 10, 11, 12 demonstrate the detailed reevalua-
tion results for end-to-end event extraction, event
detection, and event argument extraction, respec-
tively.

D Prompts for LLMs

Table 13 illustrates the prompts we use for testing
the ability of LLMs in event detection and event
argument extraction.

29https://github.com/raspberryice/
gen-arg

30https://github.com/PlusLabNLP/X-Gear
31https://github.com/PlusLabNLP/AMPERE
32https://github.com/luka-group/unist
33https://github.com/ZQS1943/GLEN
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Model
ACE05 RichERE MLEE

TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+

DyGIE++ 74.7 71.3 59.1 56.0 54.5 51.8 69.7 59.8 47.1 42.0 43.1 38.3 82.6 78.2 60.4 57.8 56.6 54.4
OneIE 75.0 71.1 62.4 59.9 56.9 54.7 71.0 62.5 53.9 50.0 48.4 45.2 82.7 78.5 28.7 26.9 13.6 13.1
AMR-IE 74.6 71.1 63.1 60.6 56.9 54.6 70.5 62.3 53.7 49.5 48.1 44.7 82.4 78.2 21.3 15.2 6.0 4.7
EEQA 73.8 70.0 57.0 55.3 51.9 50.4 69.3 60.2 49.2 45.8 44.7 41.9 81.4 76.9 52.9 51.1 39.0 38.1
RCEE 74.0 70.5 57.2 55.5 52.5 51.0 68.6 60.0 49.8 46.2 45.1 42.1 81.3 77.2 52.0 49.3 36.9 35.4
Query&Extract 68.6 65.1 57.4 55.0 51.2 49.0 67.5 59.8 52.3 48.9 47.5 44.5 – – – – – –
TagPrime 73.2 69.9 61.6 59.8 56.1 54.6 69.6 63.5 56.0 52.8 51.1 48.4 81.8 79.0 66.6 65.2 61.4 60.3
DEGREE-E2E 70.3 66.8 57.6 55.1 51.3 49.1 67.7 60.5 52.2 48.7 46.6 43.7 74.7 70.2 38.6 33.8 25.9 23.3
DEGREE-PIPE 72.0 68.4 58.6 56.3 52.9 50.7 68.3 61.7 52.5 48.9 47.8 44.8 74.0 70.4 50.9 49.6 43.6 42.7

Model
Genia2011 Genia2013 M2E2

TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+

DyGIE++ 74.2 70.3 58.9 56.9 53.7 52.1 76.3 72.9 62.7 60.5 58.8 57.2 53.1 51.0 34.6 33.4 31.7 30.8
OneIE 76.1 72.1 59.0 57.0 34.2 33.6 78.0 74.3 52.3 51.0 33.7 32.9 52.4 50.6 37.8 36.1 33.4 32.1
AMR-IE 76.4 72.4 44.1 42.8 29.8 29.0 78.0 74.5 35.4 34.8 23.3 23.1 52.4 50.5 37.1 35.5 33.1 31.9
EEQA 74.4 71.3 52.6 50.6 39.5 38.4 72.4 69.4 50.7 48.1 37.6 35.7 53.6 51.0 33.7 32.6 31.1 30.2
RCEE 73.3 70.1 50.9 49.0 38.2 37.2 71.4 68.0 48.0 45.8 33.0 31.6 50.1 48.1 32.0 31.0 28.8 28.0
Query&Extract – – – – – – – – – – – – 51.4 49.4 35.5 33.9 30.2 28.8
TagPrime 74.9 72.2 64.1 62.8 58.8 57.8 75.7 73.0 61.8 60.8 58.2 57.4 52.2 50.2 36.5 35.5 33.2 32.4
DEGREE-E2E 61.6 59.2 40.0 35.6 27.7 25.4 66.4 62.6 37.1 33.3 27.0 24.8 50.9 49.5 33.7 32.5 30.9 30.0
DEGREE-PIPE 63.7 60.5 51.1 49.3 40.8 39.8 64.9 61.0 51.0 49.4 43.0 41.9 50.4 48.3 34.0 33.1 30.9 30.1

Model
CASIE PHEE –

TI TC AI AC AI+ AC+ TI TC AI AC AI+ AC+ –

DyGIE++ 44.9 44.7 37.5 36.4 30.4 29.5 71.4 70.4 69.9 60.8 52.4 45.7
OneIE 70.8 70.6 57.2 54.2 23.1 22.1 70.9 70.0 51.5 37.5 40.1 29.8
AMR-IE 71.1 70.8 34.5 10.7 10.0 3.1 70.2 69.4 57.1 45.7 42.2 34.1
EEQA 43.2 42.8 36.2 35.1 27.0 26.2 70.9 70.3 48.5 40.4 38.1 32.0
RCEE 42.3 42.1 34.1 32.8 24.6 23.7 71.6 70.9 49.1 41.6 38.7 33.1
Query&Extract – – – – – – 66.2 55.5 48.1 41.4 36.7 31.8
TagPrime 69.5 69.3 63.3 61.0 50.9 49.1 71.7 71.1 60.9 51.7 47.4 40.6
DEGREE-E2E 60.9 60.7 36.0 27.0 18.5 14.6 70.0 69.1 57.5 49.3 42.4 36.5
DEGREE-PIPE 57.4 57.1 49.7 48.0 34.8 33.7 69.8 69.1 59.0 50.2 42.8 36.7

Table 10: Reevaluation results for end-to-end event extraction (E2E). All the numbers are the average score of 5
data splits. Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.

Model
ACE05 RichERE MLEE Genia2011 Genia2013 M2E2

TI TC TI TC TI TC TI TC TI TC TI TC

DyGIE++ 74.7 71.3 69.7 59.8 82.6 78.2 74.2 70.3 76.3 72.9 53.1 51.0
OneIE 75.0 71.1 71.0 62.5 82.7 78.5 76.1 72.1 78.0 74.3 52.4 50.6
AMR-IE 74.6 71.1 70.5 62.3 82.4 78.2 76.4 72.4 78.0 74.5 52.4 50.5
EEQA 73.8 70.0 69.3 60.2 82.0 77.4 73.3 69.6 74.7 71.1 53.6 51.0
RCEE 74.0 70.5 68.6 60.0 82.0 77.3 73.1 69.3 74.6 70.8 50.1 48.1
Query&Extract 68.6 65.1 67.5 59.8 78.0 74.9 71.6 68.9 73.0 70.1 51.4 49.4
TagPrime-C 73.2 69.9 69.6 63.5 81.8 79.0 74.9 72.2 75.7 73.0 52.2 50.2
UniST 73.9 69.8 69.6 60.7 80.2 74.9 73.8 70.3 73.7 69.9 51.1 49.0
CEDAR 71.9 62.6 67.3 52.3 71.0 65.5 70.2 66.8 73.6 67.1 50.9 48.0
DEGREE 72.0 68.4 68.3 61.7 74.0 70.4 63.7 60.5 64.9 61.0 50.4 48.3

Model
CASIE PHEE MAVEN FewEvent MEE-en SPEED

TI TC TI TC TI TC TI TC TI TC TI TC

DyGIE++ 44.9 44.7 71.4 70.4 75.9 65.3 67.7 65.2 81.7 79.8 69.6 64.9
OneIE 70.8 70.6 70.9 70.0 76.4 65.5 67.5 65.4 80.7 78.8 69.5 65.1
AMR-IE 71.1 70.8 70.2 69.4 – – 67.4 65.2 – – – –
EEQA 43.4 43.2 70.9 70.3 75.2 64.4 67.0 65.1 81.4 79.5 69.9 65.3
RCEE 43.5 43.3 71.6 70.9 75.2 64.6 67.0 65.0 81.1 79.1 70.1 65.1
Query&Extract 51.6 51.5 66.2 55.5 – – 66.3 63.8 80.2 78.1 70.2 66.2
TagPrime-C 69.5 69.3 71.7 71.1 74.7 66.1 67.2 65.6 81.5 79.8 70.3 66.4
UniST 68.4 68.1 70.7 69.6 76.7 63.4 67.5 63.1 80.5 78.3 – –
CEDAR 68.7 67.6 71.2 70.3 76.5 54.5 66.9 52.1 81.5 78.6 67.6 61.7
DEGREE 61.5 61.3 69.8 69.1 76.2 65.5 67.9 65.5 80.2 78.2 66.5 62.2

Table 11: Reevaluation results for event detection (ED). All the numbers are the average score of 5 data splits.
Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.
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Model
ACE05 RichERE MLEE Genia2011

AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+

DyGIE++ 66.9 61.5 65.2 60.0 58.5 49.4 56.2 47.3 67.9 64.8 65.2 62.4 66.1 63.7 63.0 61.0
OneIE 75.4 71.5 74.0 70.2 71.6 65.8 69.3 63.7 31.0 28.9 16.4 15.7 62.9 60.3 40.1 38.9
AMR-IE 76.2 72.6 74.5 70.9 72.8 65.8 69.6 63.0 23.2 16.6 8.0 6.1 49.1 47.6 36.1 35.3
EEQA 73.8 71.4 71.9 69.6 73.3 67.3 70.8 64.9 64.8 62.1 51.4 49.5 63.2 60.8 51.2 49.4
RCEE 73.7 71.2 71.8 69.4 72.8 67.0 70.2 64.5 61.1 58.2 47.3 45.1 62.3 59.9 51.4 49.6
Query&Extract 77.3 73.6 75.7 72.0 76.4 70.9 74.7 69.2 – – – – – – – –
TagPrime-C 80.0 76.0 78.5 74.5 78.8 73.3 76.7 71.4 78.9 76.6 76.5 74.5 79.6 77.4 77.7 75.8
TagPrime-CR 80.1 77.8 78.5 76.2 78.7 74.3 76.6 72.5 79.2 77.3 76.4 74.6 78.0 76.2 76.2 74.5
DEGREE 76.4 73.3 74.9 71.8 75.1 70.2 73.6 68.8 67.6 65.3 63.4 61.5 68.2 65.7 64.5 62.4
BART-Gen 76.0 72.6 74.8 71.2 74.4 68.8 73.1 67.7 73.1 69.8 71.8 68.7 73.4 70.9 71.8 69.5
X-Gear 76.1 72.4 74.4 70.8 75.0 68.7 73.4 67.2 64.8 63.3 60.7 59.4 68.4 66.2 65.0 63.1
PAIE 77.2 74.0 76.0 72.9 76.6 71.1 75.3 70.0 76.0 73.5 74.7 72.4 76.8 74.6 75.5 73.4
Ampere 75.5 72.0 73.9 70.6 73.8 69.2 72.2 67.7 69.2 67.1 64.4 62.6 69.5 67.1 66.0 63.8

Model
Genia2013 M2E2 CASIE PHEE

AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+

DyGIE++ 71.7 69.3 68.7 66.9 41.7 38.9 41.0 38.5 58.0 56.0 53.4 51.5 63.4 54.6 63.0 54.2
OneIE 57.2 55.7 39.4 38.7 59.0 55.2 57.2 53.3 58.3 55.3 29.0 27.7 55.9 40.6 55.5 40.4
AMR-IE 38.9 38.1 26.7 26.4 56.0 51.3 55.3 50.4 35.5 11.0 12.8 4.0 60.4 45.3 59.9 44.9
EEQA 64.7 61.1 50.3 47.5 57.6 55.9 57.0 55.3 56.1 54.0 50.9 49.0 53.7 45.6 53.4 45.4
RCEE 60.7 57.4 45.1 42.7 57.9 56.4 57.3 55.8 47.6 45.3 41.5 39.5 54.1 45.8 53.8 45.6
Query&Extract – – – – 59.9 56.2 58.0 54.2 – – – – 64.6 54.8 64.2 54.4
TagPrime-C 79.8 77.4 77.1 74.9 63.4 60.1 62.3 59.0 71.9 69.1 68.8 66.1 66.0 55.6 65.6 55.3
TagPrime-CR 76.6 74.5 74.3 72.3 63.2 60.8 62.3 59.9 71.1 69.2 67.9 66.1 65.8 56.0 65.5 55.7
DEGREE 68.4 66.0 64.6 62.5 62.3 59.8 61.7 59.2 61.0 59.0 56.5 54.7 61.7 52.5 61.4 52.3
BART-Gen 76.4 73.6 74.8 72.2 62.5 60.0 62.1 59.6 63.7 60.0 61.8 58.3 57.1 47.7 56.9 47.5
X-Gear 64.1 61.9 60.5 58.6 62.7 59.8 61.9 59.0 65.7 63.4 61.4 59.3 67.6 58.3 67.4 58.2
PAIE 77.8 75.2 76.6 74.2 62.9 60.6 62.7 60.4 68.1 65.7 66.4 64.0 74.9 73.3 74.7 73.1
Ampere 73.2 71.0 69.6 67.7 62.1 59.1 61.4 58.4 61.1 58.4 56.4 53.9 61.4 51.7 61.1 51.6

Model
WikiEvnts RAMS GENEVA MUC-4

AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+ AI AC AI+ AC+

DyGIE++ 39.8 35.3 39.0 34.7 44.3 35.3 44.3 35.3 66.0 62.5 65.8 62.3 56.5 55.6 56.5 55.6
OneIE 17.5 15.0 9.2 7.9 48.0 40.7 48.0 40.7 38.9 37.1 38.6 36.9 55.1 53.9 55.1 53.9
AMR-IE 17.8 16.0 11.7 10.4 49.6 42.3 49.6 42.3 23.7 16.6 23.4 16.4 – – – –
EEQA 54.3 51.7 48.4 46.1 48.9 44.7 48.9 44.7 69.7 67.3 69.4 67.0 32.7 27.4 32.7 27.4
RCEE 53.7 50.9 46.4 44.0 45.4 41.5 45.4 41.5 66.2 63.8 65.8 63.4 33.0 28.1 33.0 28.1
Query&Extract – – – – – – – – 52.2 50.3 51.8 50.0 – – – –
TagPrime-C 70.4 65.7 68.6 64.0 54.4 48.3 54.4 48.3 83.0 79.2 82.7 79.0 55.3 54.4 55.3 54.4
TagPrime-CR 70.3 67.2 68.4 65.5 54.1 49.7 54.1 49.7 82.8 80.4 82.5 80.1 55.5 54.7 55.5 54.7
DEGREE 60.4 57.3 56.8 53.9 50.5 45.5 50.5 45.5 67.2 64.1 67.0 63.9 52.5 51.5 52.5 51.5
BART-Gen 68.5 64.2 68.1 63.9 50.4 45.4 50.4 45.4 67.3 64.4 67.2 64.3 51.3 49.8 51.3 49.8
X-Gear 58.7 55.6 55.4 52.4 52.1 46.2 52.1 46.2 78.9 75.1 78.7 74.9 51.5 50.4 51.5 50.4
PAIE 69.8 65.5 69.5 65.2 55.2 50.5 55.2 50.5 73.5 70.4 73.4 70.3 48.8 47.9 48.8 47.9
Ampere 59.9 56.7 56.2 53.3 52.0 46.8 52.0 46.8 67.8 65.0 67.6 64.8 – – – –

Table 12: Reevaluation results for event argument extraction (EAE). All the numbers are the average score of 5 data
splits. Darker cells imply higher scores. We use “–” to denote the cases that models are not runnable.
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Prompt Used for Event Detection

Instruction

You are an event extractor designed to check for the presence of a specific event in a sentence and to
locate the corresponding event trigger.
Task Description: Identify all triggers related to the event of interest in the sentence. A trigger is
the key word in the sentence that most explicitly conveys the occurrence of the event. If yes, please
answer ‘Yes, the event trigger is [trigger] in the text.’; otherwise, answer ‘No.’
The event of interest is Business.Collaboration. This event is related to business collaboration.

Example 1

Examples 1
Text: It is a way of coordinating different ideas from numerous people to generate a wide variety of
knowledge.
Answer: Yes, the event trigger is coordinating in the text.

Example 2

Examples 2
Text: What’s going on is that union members became outraged after learning about the airline’s
executive compensation plan where we would have paid huge bonuses even in bankruptcy
Answer: No.

... ...

Query

Question
Text: Social networks permeate business culture where collaborative uses include file sharing and
knowledge transfer.
Answer:

Output Yes, the event trigger is sharing in the text.

Prompt Used for Event Argument Extraction

Instruction

You are an argument extractor designed to check for the presence of arguments regarding specific
roles for an event in a sentence.
Task Description: Identify all arguments related to the role Agent, Person, Place in the sentence.
These arguments should have the semantic role corresponding to the given event trigger by the word
span between [t] and [/t]. Follow the the format of below examples. Your answer should only
contain the answer string and nothing else.
The event of interest is Justice:Arrest-Jail. The event is related to a person getting arrested or a
person being sent to jail. Roles of interest: Agent, Person, Place

Example 1

Examples 1
Text: Currently in California , 7000 people [t] serving [/t] 25 to year life sentences under the three
strikes law.
Agent:
Person: people
Place: California

Example 2

Examples 2
Text: We’ve been playing warnings to people to stay in their houses , and we’ve only [t] lifted [/t]
those people we’ve got very good intelligence on.
Agent: we
Person: people
Place:

... ...

Query
Question
Text: A pizza delivery helped police [t] nab [/t] the suspect in the kidnapping of a 9-year-old
California girl.

Output
Agent: police
Person: suspect
Place:

Table 13: Prompts use for testing the ability of LLMs in event extraction.
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