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Abstract

Question answering over temporal knowledge
graphs (TKGQA) is an emerging topic, which
has attracted increasing interest since it con-
siders the dynamic knowledge in the world.
Several datasets along with model develop-
ments are proposed in the TKGQA research
field. However, existing studies generally fo-
cus on fact-centered reasoning, with limited
attention to temporal reasoning. To tackle
the intricate and comprehensive nature of tem-
poral reasoning, we propose a new TKGQA
dataset, MusTQ, which contains 666K multi-
step temporal reasoning questions as well as
a TKG. The multi-step temporal reasoning is
established based on six basic temporal rea-
soning types derived from a well-established
measure theory. Using MusTQ, we evaluate
previous TKGQA methods and find that they
typically fall short in multi-step temporal rea-
soning. Furthermore, we propose a TKGQA
model, MusTKGQA, which enhances multi-
step reasoning ability with entity-time attention
mechanism and optimized temporal knowledge
graph representation. Extensive experiments
on MusTQ show that our model achieves state-
of-the-art multi-step temporal reasoning perfor-
mance.1

1 Introduction

Given natural questions, question answering over
temporal knowledge graphs (TKGQA) aims to pro-
vide the corresponding answers using a temporal
knowledge graph (TKG) as the knowledge base.
Since many real-world facts will change over time
and formulating questions with temporal constraint
is a straightforward method to ensure factual va-
lidity, TKGQA has gradually attracted increasing
research attention (Saxena et al., 2021; Ding et al.,
2023; Chen et al., 2022; Long et al., 2022; Xiao

* Corresponding authors.
1https://github.com/theTyZ/MusTQ

et al., 2022; Shang et al., 2022; Mavromatis et al.,
2022; Jiao et al., 2023; Ding et al., 2022) .

Compared with the traditional knowledge graph
question answering (KGQA) that adopts static
knowledge graphs as the knowledge base, TKGQA
should not only consider the knowledge formed
in triples but also emphasize its temporal informa-
tion. Therefore, reasoning on temporal information
could naturally become a vital perspective for ques-
tions that involve temporal constraints. Existing
TKGQA datasets either query the information in
TKG (Saxena et al., 2021; Chen et al., 2023) or
make prediction in the future timestamps (Ding
et al., 2023). In this paper, we mainly focus on the
former type of TKGQA datasets. Though great suc-
cess has been achieved in previous work, existing
TKGQA datasets typically focus on fact-centered
reasoning questions, with less attention on tempo-
ral reasoning. Specifically, they only involve single-
step temporal reasoning, ignoring the systematical
exploration of temporal reasoning. Among them,
CronQuestions (Saxena et al., 2021) constructs
its questions with single-step temporal reasoning
related to explicit time or entity. Although Mul-
tiTQ (Chen et al., 2023) contains two-step tempo-
ral reasoning questions, its questions only involve
fact-centered reasoning and lack systematic explo-
rations on temporal reasoning.

In this paper, we propose MusTQ (Muti-Step
Temporal Reasoning Questions), a new TKGQA
dataset, which aims to enhance the temporal reason-
ing ability in TKGQA. In order to systematically
study temporal reasoning, we start with the mea-
sure of time. According to the well-established the-
ory for the scale of measurement (Stevens, 1946),
the measure of time determines the basic opera-
tions that can be applied to the temporal data. The
timestamp information in TKG involves the follow-
ing three operations: determination of i) equality;
ii) greater or less; iii) equality of intervals or dif-
ferences. The first operation maps the facts to their
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Dataset KG Temporal Temporal reasoning # Questionsfacts Comparison Numeric Multi-step

TempQuestions FreeBase 1271
TimeQuestions WikiData 16k
CronQuestions WikiData 410k

MultiTQ ICEWS 500k

MusTQ WikiData 666k

Table 1: The comparison of different temporal questions datasets over KG in information query scenario.

corresponding timestamps, while the second op-
eration sorts facts according to their chronology.
The final operation enables timestamp reasoning
with the addition and subtraction operations. Under
the guidance of this theory, we classify temporal
reasoning into temporal comparison reasoning and
temporal numeric reasoning. The former uses oper-
ations i) and ii) to reason timestamps based on the
comparison, while the latter uses operation iii) to
reason timestamps based on the interval. Further,
we divide these two categories into six detailed rea-
soning types and construct the diverse multi-step
temporal reasoning by their combination. Finally,
MusTQ contains ~666K temporal questions and
an underlying TKG (with 125k entities and 326k
facts) as its knowledge base.

Based on our MusTQ, we build and evaluate
various baseline systems, including the pre-trained
language models and the representative KGQA and
TKGQA models. The experimental results demon-
strate that all existing methods show their lim-
ited capabilities in multi-step temporal reasoning.
Furthermore, we propose a new TKGQA model,
MusTKGQA, which improves the multi-step tem-
poral reasoning ability via carefully designed TKG
representation learning and entity-time attention
mechanism. In detail, to enhance the temporal
reasoning, we optimize the TKG representation
in time and fact perspectives with sequence align-
ment and fact alignment respectively. The sequence
alignment enhances the reasoning between times-
tamps, while the fact alignment improves the aware-
ness for time boundary of interval facts. Then, we
propose an entity-time attention mechanism to infer
the temporal information of the question steply and
finally reason the answer. Extensive experiments
on MusTQ show that our model achieves state-of-
the-art multi-step temporal reasoning performance.
The results on the previous CronQuestions dataset
also show the strong ability of our model. Our main
contributions are concluded as follows:
• We construct the first TKGQA dataset (i.e.,

MusTQ) for multi-step temporal reasoning. The
involved single-step temporal reasoning types are
founded systematically upon the operations for
the measure of time. Our dataset contains about
666K questions and includes temporal compar-
ison reasoning and temporal numeric reasoning
as its basic stepwise reasoning categories.

• We propose a model MusTKGQA that conducts
multi-step temporal reasoning through the entity-
time attention mechanism based on TKG repre-
sentation. To enhance temporal reasoning ability,
the TKG representation is optimized by sequence
alignment and fact alignment.

• Experiments on MusTQ show that our model
achieves state-of-the-art performance on multi-
step temporal reasoning.

2 Related Work

Temporal Questions over KG. Several datasets
are proposed for temporal question answering.
TempQuestions (Jia et al., 2018) and TimeQues-
tions (Jia et al., 2021) are two datasets that collect
temporal questions from KGQA datasets. However,
they adopt traditional static knowledge graphs as
their knowledge base (Bollacker et al., 2008; Vran-
dečić and Krötzsch, 2014). CronQuestions (Saxena
et al., 2021) is the first temporal question dataset
over TKG (Lacroix et al., 2020), whose questions
are classified into simple and complex questions
based on the number of facts leveraged to answer
the questions. Additionally, MultiTQ (Chen et al.,
2023) focuses on questions in multiple temporal
granularities and contains two-step comparison
temporal reasoning questions with ICEWS (García-
Durán et al., 2018). However, its questions are fact-
centered and lack temporal reasoning variety. The
questions in the above datasets require models to
query information within the provided KGs. Fore-
castTKGQuestions (Ding et al., 2023) is another
TKGQA dataset that aims to predict facts in the fu-
ture timestamps beyond the given TKG. We mainly
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focus on datasets that query information within
TKG. Different from existing datasets that gener-
ally focus on fact-centered reasoning, our MusTQ
contains multi-step temporal reasoning questions
constructed based on the systematical exploration
of temporal reasoning. Table 1 shows the compari-
son between our MusTQ and previous datasets.

TKGQA Models. Question answering on TKG
generally leverages the Temporal Knowledge
Graph Embedding (TKGE) for answer reasoning,
which aims to learn the low-dimensional repre-
sentation of entities, relations, and timestamps.
CronKGQA (Saxena et al., 2021) leverages TKGE
to make answer reasoning with the semantics of the
questions. Based on CronKGQA, various TKGQA
models are proposed to emphasize the time in-
formation of the question. Among them, Tem-
poQR (Mavromatis et al., 2022) introduces time
scope information to make time-aware question rep-
resentation for answer reasoning. TSQA (Shang
et al., 2022) infers the timestamps through the time
estimation module. SubGTR (Chen et al., 2022)
adopts logical reasoning on the subgraph of the
question. Besides, LGQA (Liu et al., 2023) em-
phasizes the graph structural information in QA.
Moreover, MultiQA (Chen et al., 2023) considers
the multi-granularity temporal questions and Fore-
castTKGQA (Ding et al., 2023) is for TKGQA in
the forecast scenario. However, none of these meth-
ods consider multi-step temporal reasoning in vari-
ous temporal reasoning categories. To tackle this
real-world challenge, we propose MusTKGQA.

3 MusTQ Construction

MusTQ consists of multi-step temporal questions
and a TKG as its knowledge base. We first intro-
duce the TKG in MusTQ (§ 3.1). Then we describe
the systematic temporal reasoning categories, and
the single-step reasoning types in each category
(§ 3.2). Next, we present the process of developing
multi-step temporal reasoning questions (§ 3.3). Fi-
nally, we show the data statistics of MusTQ (§ 3.4).

3.1 Temporal Knowledge Graph

A TKG G consists of temporal facts in the form of
(s, r, o, τ), where s, o ∈ E and r ∈ R. E ,R denote
the set of entities and relations in G, respectively.
τ ∈ T represents the valid time of the fact (s, r, o)
in the set of timestamps T . We adopt the Wiki-
data subset (Lacroix et al., 2020) as the base of our
TKG because its time annotations are in the form

of timestamps τp: (s, r, o, τp, τp) and time inter-
vals (τs, τe): (s, r, o, τs, τe), which are denoted as
timestamp facts and interval facts, respectively. Fol-
lowing Saxena et al. (2021), we balance the number
of facts in different relations and supplement nec-
essary temporal information for the occurrence of
its entities via the following heuristic rules: (1)
The dataset adopts the time granularity down to the
year; (2) We eliminate duplicate facts and maintain
a refined TKG by narrowing the time span to the
period the majority of facts occurrences are con-
centrated. Finally, the TKG includes 125K entities,
202 relations, and 326K facts with the time span
from 1 AD to 2027 AD (i.e., 2027 timestamps).

3.2 Temporal Reasoning Category

To propose multi-step temporal questions, we first
systematically construct multiple basic temporal
reasoning types based on all basic operations for
time. According to a well-established measure the-
ory (Stevens, 1946), the timestamp information
contains three fundamental empirical operations,
i.e., determination of i) equality; ii) greater or less;
iii) equality of intervals or differences. These oper-
ations are used to perform the following two tem-
poral reasoning categories:

Temporal Comparison Reasoning. Based on the
operations i) and ii), this category compares the
temporal information of different facts. In detail,
the operation i) enables the measuring of equiva-
lence for categorized variables (e.g., timestamp).
Each fact in TKG could be mapped to a specific
timestamp based on the operation i). Consequently,
we establish the fine-grained reasoning types (1)
Explicit Time and (2) Fact which need equivalence
reasoning by considering the timestamp or occur-
rence of fact, separately. The operation ii) corre-
sponds to ‘>/<’ in mathematics. Under its guid-
ance, variables could compare with each other to
establish their rank-ordering. Thus, we introduce
the fine-grained types: (3) Before/After reasons the
time span based on the occurrence of the fact. (4)
Ordinal infers the target timestamp based on facts
occurring at the ordinal positions.

Temporal Numeric Reasoning. This category pro-
cesses the numeric reasoning between timestamps
with the operation iii). The operation makes it
possible to measure the differences between times-
tamps, and it corresponds ‘+/−’ in mathematics.
We develop the following reasoning types to make
inferences based on time intervals: (5) Time Dif-
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Category Operation Type Example Templates

Temporal
Comparison
Reasoning

Equality
Explicit Time in {time}

Fact when {time}
Greater
or less

Before/After before {time}
Ordinal When did {head} receive the {ordinal} award?

Temporal
Numeric

Reasoning

Equality of
intervals or
differences

Time
Difference

Did {headA} win {tail} {diff} years before
{headB}?

Count How many awards has {head} won overall?

Table 2: The reasoning categories and fundamental operations of timestamp. Each reasoning type corresponds
to an example time constraint template or basic template . “{head}” and “{tail}” denote head and tail entities,
respectively. “{diff}” is a digit that denotes the explicit time difference and “{ordinal}” indicates the ordinal number.

Process Template

Base
Did {head} secure {tailA} {diff} years earlier
than winning {tailB}?

+ Time Cons.
Following {timeA}, did {head} secure {tailA}
{diff} years earlier than winning {tailB}?

+ Time Fill.
Following {tailA} was given to {headA} , did
{head} secure {tailA} {diff} years earlier than
winning {tailB}?

+ Entity

Following Order of Georgi Dimitrov was given
to Gherman Titov, did Valentina Stepanovna
Grizodubova secure Order of Lenin five years
earlier than winning Order of the October
Revolution?

Table 3: The construction process from the base tem-
plate to the final multi-step temporal reasoning question.
Cons.: Constraints; Fill.: Filling.

ference and (6) Count, where the temporal interval
is denoted by explicit time gaps and the cardinal
number of factual occurrences, respectively.

Among the above six reasoning types, types (1-
3) only form time constraints, while types (4-6)
lead to the questions themselves.

3.3 Temporal Question Construction
We leverage the manual templates w.r.t six reason-
ing types to construct multi-step temporal reason-
ing questions in four steps (c.f., Table 3): First,
based on reasoning types (4-6), we employ human
experts to construct base templates using four high-
frequency relations in TKG. The human experts
construct 63 unique base templates (for the con-
struction details, please refer to Appendix A). The
base template examples are shown in Table 2.

Second, we extend the base templates with es-
sential time constraints to incorporate multi-step
temporal reasoning. We adopt the reasoning types
(1-3) to introduce time constraints into base tem-
plates. This process collects 691 templates with
time constraints. To enhance the semantics diver-
sity, human experts are further employed to cre-
ate several paraphrasing templates to rewrite these

Type Example Templates

2 steps
Following {timeA}, did {head}
secure {tailA} {diff} years earlier
than winning {tailB}?

3 steps
How many award nominations has
{head} received in total in the time
span from {timeA} to {timeB}?

4 steps
Who took on the {ordinal} job as
{tail} in {time} during the phase
between {timeA} and {timeB}?

Table 4: Example templates with time constraints.

templates. As a result, we obtain 12,754 templates
with time constraints. Table 4 gives several exam-
ple templates with different numbers of reasoning
steps. Third, we fill time slots (e.g., {time}) in each
template with the time information described as the
timestamp or fact time.

Finally, multi-step questions are completed by
completing the time-filled templates with entity
aliases from the TKG (entity filling). To ensure
reality and validity, we only use the entities within
a 3-hop distance of the entity in the basic template
during entity filling. Appendix B lists several ex-
amples of question construction. Ultimately, we
construct 666K unique question-answer pairs. The
boundaries of entities and timestamps within ques-
tions are also provided in MusTQ.

3.4 Data Statistics

To ensure temporal reasoning without guessing
from seen questions, we make sure there is no over-
lap of the multi-step reasoning (i.e., the combina-
tion of entities, timestamps and reasoning types)
between the training set and the test set. The data
statistics of the dataset splitting are shown in Ta-
ble 5. MusTQ includes questions with a range of
two to four temporal reasoning steps. Most ques-
tions require temporal reasoning within three steps.
There are four types of answers in MusTQ. In ad-
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Train Valid Test

Entity Answer 119,451 10,246 10,259
Time Answer 124,501 10,638 10,651

Boolean Answer 212,474 11,266 11,296
Numeric Answer 124,345 10,600 10,638

Two steps 297,126 20,771 20,798
Three steps 261,766 20,100 20,168
Four steps 21,879 1,879 1,878

Total 580,771 42,750 42,844

Table 5: The number of questions of MusTQ w.r.t differ-
ent types of answers and different numbers of temporal
reasoning steps.

dition to the entity and time answers, which are
commonly involved in existing datasets (Saxena
et al., 2021; Chen et al., 2023), MusTQ contains
boolean answers to verify the mentioned time dif-
ferences in question. The questions with numeric
answers are also included to evaluate the ability to
understand the time interval by reasoning the fact
times within the interval.

4 MusTKGQA

To answer the temporal reasoning questions, we
propose MusTKGQA which first enhances the tem-
poral knowledge graph embedding (TKGE) with se-
quence alignment and fact alignment (§ 4.1). Then,
our model leverages the enhanced TKGE to per-
form the multi-step temporal reasoning through an
entity-time attention mechanism (§ 4.2).

4.1 Enhanced TKGE

TKGE represents the TKG by learning the em-
beddings of entities, relations and timestamps,
which is widely adopted in TKGQA. TNTCom-
plEx (Lacroix et al., 2020) is a state-of-the-art
TKGE model that learns representation in the
complex vector space through entity prediction
(s, r, ?, t) and time prediction (s, r, o, ?) tasks
which correspond to the information query sce-
nario of our MusTQ. Besides, it considers nontime-
sensitive information together with dynamic facts,
which could help to query related entities when
there is no explicit time information (please refer to
Appendix C for more details). However, TNTCom-
plEx is weak for multi-step temporal reasoning due
to the following two drawbacks: (1) It neglects the
explicit modeling of chronological order between
timestamps, resulting in limited ability in numeric
reasoning. (2) It is weak in recognizing the validity
period of the fact. In the time prediction task, given

an interval fact that happens at ts and ends at te,
each timestamp within its valid period (ts, te) is
sampled equally as the golden labels. Therefore,
the time boundaries (ts and te) of the interval fact
are not fully modeled. Given these, we introduce
sequence alignment and fact alignment in TKGE to
enhance the modeling of chronological order and
time boundary, respectively.
Sequence Alignment. We perform sequence align-
ment to sort timestamps in chronological order with
fixed-length intervals. Specifically, we introduce
three relations in TKG to enhance the representa-
tion of timestamps: next year (nexty), prior year
(priory), and this year (thisy). For example, facts
(2005, nexty, 2006) and (2006, priory, 2005) de-
scribe the chronological order between the years
2005 and 2006. Besides, with fact (2006, thisy,
2006), the awareness of the same year is enhanced.
Fact Alignment. To model the time boundary
information of interval facts, we introduce addi-
tional time prediction samples. For each interval
fact (s, r, o, ts, te), two timestamp facts can be con-
structed: (s, rs, o, ts), (s, re, o, te), where rs and
re are two relations denote the start time and end
time. In this way, the boundary information of facts
could be explicitly considered in TKGE.

Equipped with these optimizations, the trained
TKGE model (Θ(·)) is further used to generate the
low-dimensional representation of elements in G.

4.2 Temporal Question Reasoning
After enhancing the TKGE, for a given TKGQA
question q, we reason its answer based on both q
and the enhanced TKGE. In detail, we first fuse
the TKGE information with q to obtain the TKGE-
enhanced question representation. Second, based
on the fused information, we leverage an entity-
time attention mechanism to get attention distribu-
tions over the mentioned entities in question. Third,
we perform temporal reasoning for each entity. Fi-
nally, we reason the answer for the question q.
TKGE-enhanced Question Representation. At
the start, we integrate question q with the entity and
timestamp information in G. q is first tokenized into
a token sequence q = {w1, w2, ..., w|q|}, where
wi indicates the i-th token. Then, we obtain the
contextual embeddings for each question token via
a frozen BERT (Devlin et al., 2019):

hq
cls, hw1 , ..., hw|q| ←Wc BERT({w1, ..., w|q|}) (1)

where Wc is trainable parameters, hqcls ∈ Rd

denotes the hidden state of special token [CLS],

11692



which gathers the whole information of q. hwi ∈
Rd denotes the hidden state of wi. Next, the TKGE-
enhanced question representation is calculated as:

hq
cls, hw1 , ..., hw|q| ← g(hq

cls, h
′
w1

, ..., h
′
w|q|) (2)

h
′
wi

=

{
Θ(wi) wi ∈ T ∪ E
hwi otherwise

(3)

where g denotes the transformer encoder (Vaswani
et al., 2017). In this manner, hqcls and hqcls denote
the overall representation of question q before and
after TKG information fusion, respectively.
Entity-Time Attention Mechanism. The pro-
posed attention mechanism is used to obtain the
attention distributions over entities in question dur-
ing different reasoning steps. To introduce the
time scope information for multiple entities men-
tioned in q, we leverage two-step temporal reason-
ing (which provides the related time scope infor-
mation) before the answer reasoning step.

For the initial step of temporal and answer rea-
soning, we construct queries qt and qa guided by
the question representation:

qt, qa ←Wt[h
q
cls; hqcls],Wa[h

q
cls; hqcls] (4)

Subsequently, since the temporal constraints rea-
soning steps depend on each other, qt serves as
guidance for the next step query q′t = W ′

t [qt; hqcls],
where Wt, Wa and W ′

t ∈ Rd×2d are trainable pa-
rameters. Assuming there are k entities mentioned
in q, denotes as Eq = {e1, ..., e|Eq |} (ei ∈ E), we
next use these three queries to calculate the atten-
tion distributions over them:

Attna =

|Eq|∑

i=1

βa
i Θ(ei) | βa

i = softmax(qaΘ(ei)), (5)

where Attna denotes the attention distribution cal-
culated by query qa. Similarily, Attnt, Attn′t, β

t
i

and βt′
i are obtained based on queries qt and q′t.

Temporal Reasoning. For each entity ei ∈ Eq,
we calculate its contextual representation based on
other entities and the mentioned time τ in q:

et
i =

|Eq|∑

j=1,j ̸=i

βt
jΘ(ej) + γt

iΘ(ei) (6)

et′
i =

|Eq|∑

j=1,j ̸=i

βt′
j Θ(ej) + γt′

i Θ(ei) (7)

where eti and et
′
i denote the contextual representa-

tion of ei based on queries qt and q′t, respectively.

γti and γt
′
i are attention weights of ei, which gather

the time information τ :

γt
i = βt

i Sigmoid(Waqa)Wtqt +Θ(τ) (8)

γt′
i = βt′

i Sigmoid(Waqa)Wt′q
′
t +Θ(τ) (9)

where Wa, Wt and Wt′ are trainable parameters.
Following Mavromatis et al. (2022), we next con-
duct temporal reasoning by inferring the time infor-
mation νi for entity ei:

R(νt
i ) = R(Θ(ei))⊙R(ωt

i)− I(Θ(ei))⊙ I(ωt
i) (10)

I(νt
i ) = R(Θ(ei))⊙ I(ωt

i) + I(Θ(ei))⊙R(ωt
i) (11)

where νti denotes the time information after reason-
ing based on query qt and ωt

i = (W t
qqt) ⊙ eti. ⊙

denotes the element-wise product. eti is the con-
jugate vector of eti. R and I represent the real
part and imaginary part of the complex embedding.
Similarly, based on query q′t, ν

t′
i is calculated with

ωt′
i , where ωt′

i = (W t′
q q

′
t) ⊙ et

′
i . W t

q and W t′
q are

trainable parameters.
Answer Reasoning. We combine the reasoned
temporal information νt

′
i /νti when token wj in q is

the entity ei through a transformer gq:

mq
cls,mw1 , ...,mw|q| ← gq(hq

cls, h
′
w1

, ..., h
′
w|q|) (12)

h
′
wj

=

{
hwj + νt′

i + νt
i wj = ei ∈ Eq

hwj otherwise
(13)

where mq
cls is utilized for final question representa-

tion that incorporates information from both TKG
G and the reasoned temporal information.

In the answer reasoning step, we use the queried
attention information Attna for reasoning. Specif-
ically, various answer types are considered based
on mq

cls. We make the answer reasoning into four
classification tasks:
(1) Entity Prediction: we score each entity ϵ ∈ E
with time τ mentioned in q:

se = R(< Attna,Wem
q
cls,Θ(ϵ),Θ(τ) >) (14)

where < ... > denotes inner product. We is the
trainable parameters. Θ(ϵ) is the conjugate vector
of Θ(ϵ). se ∈ R|E| represents the prediction score
over all entities in G.
(2) Time Prediction: we leverage max function to
score each timestamp τ ∈ T with time reasoning
queried attention information Attnt, Attn′t:

st = max(R(< Attna,Wτm
q
cls,Attnt,Θ(τ) >),

R(< Attna,Wτm
q
cls,Attn′

t,Θ(τ) >))
(15)
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where st ∈ R|T | denotes the prediction score over
all timestamps. Wτ is the trainable parameters.
(3) Boolean Prediction: we get the maximum score
with time reasoning queried attention information
and the time τ mentioned in q. Then, the boolean
answer is obtained through projection fb:

sb = fb(max(R(< Attna,Wbm
q
cls,Attnt,Θ(τ) >),

R(< Attna,Wbm
q
cls,Attn′

t,Θ(τ) >)))
(16)

where sb ∈ R2 is the boolean prediction score. Wb

is the trainable parameters.
(4) Numeric Prediction: we use the entity and
time score distribution to predict numeric answer
through projection fc: sc = fc([se; st]).

The model employs the softmax function to cal-
culate the prediction probability and adopts cross-
entropy loss during training.

5 Experiments

5.1 Experimental Setups
We evaluate the performance of previous baselines
and our MusTKGQA on MusTQ.
Baselines. We select pre-trained language models
(PLMs), traditional KGQA, and strong TKGQA
models as baselines.

(1) Pre-trained language models: We include
two representative PLMs BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) as base-
lines. To adopt these PLMs in TKGQA, follow-
ing Saxena et al. (2021), we use PLMs to encode
the questions, and then add the prediction head on
the top of the question representation followed by
a softmax function to make the answer prediction.
We also combine the TKG information and intro-
duce two variants for each PLM. a) RoBERTaTC

and BERTTC : We obtain the TKG-enhanced ques-
tion representation by concatenating question rep-
resentation obtained by PLMs with the mentioned
entity and timestamp embeddings in TKG. Then
we acquire the fused information with projection.
We calculate the prediction score of all entities and
timestamps through dot-product against their TKG
embeddings. For the boolean answer and numeric
answer prediction, we only use projection to predict
answers. Here, we use TComplEx (Lacroix et al.,
2020) to obtain the TKGE. b) RoBERTaAL and
BERTAL further employ our proposed sequence
alignment and fact alignment.

(2) KGQA model: EmbedKGQA (Saxena et al.,
2020) is a widely used KGQA model that lever-
ages KG embeddings to perform multi-hop KGQA.

However, this model cannot model the temporal
information, thus we leverage the random time em-
beddings when adapting this model in TKGQA.

(3) TKGQA model: CronKGQA (Saxena et al.,
2021) and TempoQR (Mavromatis et al., 2022)
are two strong TKGQA models that specialize in
single-step temporal reasoning. The TempoQR
has two versions, i.e., soft-supervision and hard-
supervision. Here, we use the soft-supervision ver-
sion in our baseline since it can efficient reasoning
with questions including multiple entities.

Metrics. For questions with entity and time an-
swers, we report the Hits@n to show the proportion
that the golden answer is included in the top-n of
the candidate list. Following Saxena et al. (2021),
we report Hits@1 and Hits@10. For questions with
boolean and numeric answers, we use accuracy as
the evaluation metric, which is equal to Hits@1.

Implementation Details. The details of training
hyper-parameters are given in Appendix D.

5.2 Results & Analyses

Table 6 shows the result of baselines and our model
on MusTQ w.r.t different answer types. “Over-
all” indicates the overall performance on all ques-
tions. For EmbedKGQA, CronKGQA and Tem-
poQR, their overall performances are not reported
due to they cannot handle questions with boolean
and numeric answers.

The performance of baselines. For PLM base-
lines, compared to the performance of original
PLMs with their TKG-enhanced variants, the TKG
information greatly benefits the performances of
TKGQA. Additionally, equipped with our opti-
mized TKGE, PLMs significantly improve their
multi-step temporal reasoning ability. For the
KGQA baseline, EmbedKGQA shows its limited
ability in questions with time answers due to its
unawareness of time. When answering the entity-
answer questions, it could leverage the structured
information between entities and achieve better re-
sults than original PLMs.

With temporal information derived from TKG,
TKGQA baselines can infer temporal information
and perform temporal reasoning. Both CronKGQA
and TempoQR outperform EmbedKGQA by a large
margin. TempoQR shows its superiority in dealing
with entity-answer and time-answer questions. For
example, TempoQR achieves 0.371 Hits@1, while
the counterparts of EmbedKGQA and CronKGQA
are 0.155 and 0.278, respectively. However, the per-
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Model Overall Entity Time Boolean Numeric
Hits@1 Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@1

RoBERTa 0.303 0.143 0.465 0.041 0.342 0.714 0.282
BERT 0.303 0.117 0.431 0.045 0.342 0.724 0.294
EmbedKGQA - 0.155 0.532 0.017 0.088 - -
CronKGQA - 0.278 0.623 0.065 0.455 - -
TempoQR - 0.371 0.733 0.083 0.538 - -
RoBERTaTC 0.383 0.416 0.765 0.087 0.533 0.732 0.277
BERTTC 0.386 0.406 0.773 0.079 0.527 0.744 0.294
RoBERTaAL 0.395 0.448 0.799 0.089 0.542 0.737 0.286
BERTAL 0.399 0.443 0.806 0.091 0.546 0.745 0.297
MusTKGQA 0.547 0.591 0.873 0.297 0.799 0.907 0.373

Table 6: Experimental results on MusTQ. The results in bold and underline denote the best and second results,
separately. “-” denotes the corresponding models cannot deal with boolean-answer and numeric-answer questions.

Model Hits@1
2 steps 3 steps 4 steps

RoBERTa 0.332 0.293 0.097
BERT 0.337 0.288 0.090
RoBERTaTC 0.351 0.421 0.333
BERTTC 0.360 0.418 0.322
RoBERTaAL 0.357 0.435 0.375
BERTAL 0.365 0.435 0.384
MusTKGQA 0.579 0.518 0.506

Table 7: Experimental results (Hits@1) on questions
with different temporal reasoning steps on MusTQ.

formance of TempoQR is still worse than the PLM
variants. This is because TempoQR is initially for
single-step temporal reasoning and models limited
entity information, while the PLM variants con-
sider all mentioned entities in question.

MusTKGQA VS. All. MusTKGQA outperforms
all baselines in all answer types. It outperforms
the best baseline models (i.e., BERTAL) by 0.148
Hits@1. Compared with BERTAL, MusTKGQA
increases 0.148, 0.206, 0.162, 0.076 Hits@1 for
entity-, time-, boolean-, and numeric-answer ques-
tions, respectively, demonstrating its effectiveness
in multi-step temporal reasoning.

Fine-grained Multi-Step Reasoning Compari-
son. We further analyze the ability of PLMs and
MusTKGQA to tackle questions with different rea-
soning steps. As shown in Table 7, MusTKGQA
outperforms the baseline models for questions w.r.t
different reasoning steps. For 4-step reasoning
questions, MusTKGQA gets great improvements
of 0.122 Hits@1 over the best baseline BERTAL.

Fine-grained Single-Step Reasoning Compar-
ison. CronQuestions (Saxena et al., 2021) is a
widely-used TKGQA dataset with single-step rea-
soning questions. We also measure the single-step

Model Hits@1
Overall Entity Time

RoBERTa 0.070 0.082 0.048
BERT 0.071 0.077 0.060
EmbedKGQA 0.288 0.411 0.057
CronKGQA 0.647 0.699 0.549
TempoQR 0.799 0.876 0.653
MusTKGQA 0.875 0.871 0.881

Table 8: Experimental results on CronKGQA (Hits@1).

Model Hits@1
Overall 2 steps 3 steps 4 steps

MusTKGQA 0.547 0.579 0.518 0.506
-Seq 0.540 0.571 0.513 0.493
-Fact 0.543 0.574 0.518 0.466
-Seq&Fact 0.540 0.576 0.510 0.468

MusTKGQATC 0.541 0.571 0.514 0.489

Table 9: Hits@1 results of different MusTKGQA vari-
ants on MusTQ w.r.t different reasoning steps.

temporal reasoning performance of MusTKGQA
as well as baselines on CronQuestions. As shown
in Table 8, MusTKGQA outperforms all baselines,
indicating its strong single-step reasoning ability.

5.3 Ablation Study

We introduce the following variants by moving the
modules in MusTKGQA: (1) -Seq and (2) -Fact re-
move the sequence alignment and fact alignment in
the original MusTKGQA. (3) -Seq&Fact removes
both alignments. (4) MusTKGQATC replaces the
TKGE module from TNTComplEx to TComplEx.
Table 9 shows that two alignment tasks greatly
improve the effects of MusTKGQA, and TNTCom-
plEx could enhance the information fusion in opti-
mization, verifying the rationality of our model.
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6 Conclusion

We propose the first multi-step temporal reason-
ing TKGQA dataset, MusTQ, which constructs
multi-step reasoning under the guidance of a well-
established measure theory. MusTQ is centered
on temporal reasoning and is challenging for ex-
isting TKGQA models. Further, we establish
the MusTKGQA model with entity-time attention
mechanism and optimized TKG representation to
tackle temporal reasoning in multi-steps. Exper-
imental results on MusTQ show that our model
achieves state-of-the-art multi-step temporal rea-
soning performance. The results on the previous
CronQuestions dataset also show the strong ability
of our model.

Limitations

While we show the multi-step temporal reasoning
in the MusTQ dataset, there are some limitations
worth considering in future work: (1) Our MusTQ
is constructed through manual templates. Though
paraphrasing is used in the construction process,
the dataset might be limited in linguistic diversity.
(2) Following (Saxena et al., 2021), our dataset
also adopts the time granularity down to the year.
Thus, the dataset cannot capture the fine-grained
time information with year level.

Ethical Considerations

In this section, we consider the potential ethical
issues of our work. In this paper, we propose the
MusTQ dataset with multi-step temporal reasoning
questions and a TKG. The questions are collected
via manually-constructed templates. During tem-
plate collection, the salary for each human annota-
tor is determined by the average time of annotation
and local labor compensation standards. For the
TKG, we use the subset of WikiData (Lacroix et al.,
2020), and the corresponding license is the CC0
License, which is granted to copy, distribute and
modify the contents.
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A Base Template Construction

We invite five graduate students specializing in
Knowledge Graphs to serve as human experts for
dataset construction. Before template construction,
we first provide them with an illustration of all
three single-step temporal reasoning types adopted
in the base template. Then we show them some
example templates in existing datasets. As the ex-
amination, we ask all human experts to write three
base templates for each reasoning type that query
the facts with the ‘win’ relation. Based on the anal-
ysis of templates written in the examination, we put
forward the following requirements for template
construction:

1) The template must be a question and its state-
ment should be fluent.

2) Each template should adopt one given single-
step temporal reasoning type and query one rela-
tion.

3) The entities and the type-specific reasoning
information in the template should be annotated as
corresponding slots. In detail, the head entity and
tail entity should be annotated as {head} and {tail}
separately. The ordinal number is represented as
{ordinal}. The time difference is denoted as {diff}
and the count number is shown as {count}.

Next, we ask the human experts to make tem-
plates for four frequently occurring relations Po-
sition held, Member of sports team, Nominated
for, and Win based on the proposed template con-
struction requirements. To ensure the template is
satisfying, we ask all experts to vote. The template
was considered desirable if more than half of the
votes passed. Finally, we obtain 63 unique base
templates.

B Example Questions In MusTQ

We give some examples to show the multi-step tem-
poral reasoning questions of MusTQ in Table 10.

C TComplex & TNTComplex

Temporal Knowledge Graph Embedding is a
method for TKG representation. For each fact
(s, r, o, τ) in TKG, the entities s, o, relation r and
timestamp τ are embedded as low-dimensional vec-
tors. Lacroix et al. (2020) utilizes tensor decompo-
sition and proposed the TComplEx and TNTCom-
plEx based on ComplEx (Trouillon et al., 2017).
ComplEx is a KG embedding methods. For each
fact (s, r, o) in static KG, all entities and relation

are embeded into Complex vector space C. In de-
tail, ComplEx represents head entity as es ∈ Cd×1,
tail entity as eo ∈ Cd×1 and relation as vr ∈ Cd×1

by applying the score function ϕ(s, r, o).

ϕ(s, r, o) = R(< es,vr, eo >)

= R(

d∑

i=1

esivrieoi)

where e represents the complex conjugate of e,
R denotes to adopt the real part of the complex
number in the score function.

In TComplEx, the timestamp of temporal facts is
also denoted as complex vector tτ ∈ Cd×1 through
the score function ϕ(s, r, o, τ).

ϕ(s, r, o, τ) = R(< es,vr, eo, tτ >)

= R(< es,vr ⊙ tτ , eo >)

⊙ denotes the element-wise product. Since some
facts may not be affected by time, TNTCom-
plEx introduces the non-temporal part together
with TComplEx. The score function for TNT-
ComplEx denotes as R(< es,vr, eo, tτ > + <
es,ur, eo,1 >), where ur represents the temporal
agnostic relation representation.

D Implementation Details

All experiments are implemented with Py-
Torch (Paszke et al., 2019) on a server equipped
with an Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz and a GeForce GTX 1080 Ti GPU. We
adopt the dimension for TKG representation d
as 512. In the experiments, we adopt the origi-
nal BERT-base, RoBERTa-base, and DistillBERT-
base (Sanh et al., 2019) for text semantics encoding.
Same as exiting TKGQA models, we only retrieve
the information embedded by the TKGE model and
the LM models without further updating in MusTQ.
The transformer models for both TKGE fusion and
final question representation have 3 layers and 8
attention heads. We choose the Adam (Kingma
and Ba, 2015) optimizer in the training process and
the learning rate is 2e-5. In all, MusTQ has 120M
trainable parameters and the average training time
is 20 GPU hours.

The training process of the enhanced TKGE is
generally the same as the original TKGE method
(i.e., TNTComplEx) training process. The five-
tuple and the triples would transform into the
quadruples in training. Specifically, the five-tuple
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Type Sampled Template Example Questions

2 steps

Following {timeA}, did
{head} secure {tailA}
{diff} years earlier than
winning {tailB}?

Following Order of Georgi Dimitrov was given to
Gherman Titov, did Valentina Stepanovna Grizodubova
secure Order of Lenin five years earlier than winning
Order of the October Revolution?

3 steps

How many award
nominations has {head}
received in total in the
time span from {timeA}
to {timeB}?

How many award nominations has Arkin Alan received in
total in the time span from Donald Madden was proposed
as Tony Award for Best Actor in a Play to Haing S. Ngor
got Academy Award for Best Supporting Actor?

4 steps

Who took on the {ordinal}
job as {tail} in {time}
during the phase between
{timeA} and {timeB}?

Who took on the third job as Teachta Dala in 1981 during
the phase between Mark Clinton became Minister for
Agriculture, Food and the Marine and Alan James Dukes
became Minister for Finance?

Table 10: Examples of multi-step temporal reasoning questions on MusTQ.

knowledge could be trained by the following strat-
egy: In the original TKGE method, for a five-tuple
knowledge (s, r, o, τs, τe) the model would sample
one timestamp between (τs, τe) to construct the
golden quadruple (s, r, o, τsam). For the triples
we construct in alignment, we leverage the dummy
time embedding to fill the absent timestamp infor-
mation. In answer reasoning, we would leverage
the dummy time embedding to represent the em-
bedding of time τ mentioned in question q if none
is present.

We adopt the training strategy that implements
all four classification tasks simultaneously to fully
leverage data in the training process since there is
an overlap in the types of temporal reasoning in-
volved in the questions for each answer type. We
keep the boolean prediction and numeric prediction
tasks. For entity and time prediction tasks, follow-
ing previous TKGQA models(Saxena et al., 2021;
Mavromatis et al., 2022), we merge them by con-
catenating their prediction scores and calculating
the answer probability over the combined scores.

Additionally, in order to obtain TKG-enhanced
question representation of PLM variants, we con-
catenate each entity mentioned in question with the
question representation obtained by PLMs and the
mentioned timestamp, during which we leverage
the TKG embeddings to represent the mentioned
entity and timestamp. Then we fuse the informa-
tion through projection and add the fusion informa-
tion of each entity mentioned in question to acquire
the final TKG-enhanced question representation.
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