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Abstract

Since commonsense information has been
recorded significantly less frequently than its
existence, language models pre-trained by text
generation have difficulty to learn sufficient
commonsense knowledge. Several studies have
leveraged text retrieval to augment the mod-
els’ commonsense ability. Unlike text, images
capture commonsense information inherently
but little effort has been paid to effectively uti-
lize them. In this work, we propose a novel
Multi-mOdal REtrieval (MORE) augmentation
framework, to leverage both text and images
to enhance the commonsense ability of lan-
guage models. Extensive experiments on the
Common-Gen task have demonstrated the effi-
cacy of MORE based on the pre-trained models
of both single and multiple modalities.

1 Introduction

Language Models (LMs) have gained increas-
ing prominence in artificial intelligence, espe-
cially Large Language Models (LLMs) such as
LLaMA (Touvron et al., 2023), GPT-3.5 (OpenAI,
2022), and GPT-4 (Achiam et al., 2023) that have
achieved compelling performance across various
tasks. However, even LLMs still lack robust com-
monsense capabilities and can sometimes generate
sentences that violate commonsense knowledge.
Figure 1 illustrates an instance of composing a sen-
tence given several words, where both GPT-3.5 and
GPT-4 consider that music can decorate the tree,
which makes nonsense.

Due to the well-recognized reporting bias (Gor-
don and Durme, 2013), i.e., the recording of com-
monsense information is significantly less than its
existence in reality (Grice, 1975; Havasi et al.,
2007), it is inherently difficult for LMs to learn
enough commonsense knowledge from modeling
text generation. To enhance their commonsense
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Use the given words to create a short sentence that is consistent with 
commonsense: decorate, music,  background, and tree. 

GPT-3.5:

GPT-4:     

MORE (image):   

MORE (text): 

Retrieved Images:

Retrieved Text:

The background music helps to decorate the tree.

I put on some music to decorate the tree, with the snowy 
landscape as the perfect background.

A Christmas tree decorated and music in the 
background

music playing in the background of a Christmas 
tree decorated with ornaments

Figure 1: Sentences made by GPT3.5, GPT-4, and
MORE given some concept words.

ability, there have been a few attempts to retrieve
external commonsense text information (He et al.,
2022; Li et al., 2021; Liu et al., 2022) to augment
the LM generation, which have been shown to be
effective on commonsense reasoning tasks.

In contrast to text, commonsense knowledge is
naturally recorded in the visual data. Additionally,
text is used primarily for communication and may
include subjective statements while images often
record the physical world more objectively. Thus,
images can be supplementary to text for LMs to
enhance commonsense abilities. This can also be
confirmed by the fact that humans acquire knowl-
edge from both textual and visual data (Gambrell
and Bales, 1986; Bloom, 2000; Joffe et al., 2007).
Aware of this, instead of retrieving text snippets to
assist the models in conducting commonsense tasks
(He et al., 2022; Yu et al., 2022; Li et al., 2021; Liu
et al., 2022), we propose a Multi-mOdal REtrieval
(MORE) augmentation framework to incorporate
both text and images. For LLMs pre-trained with
multi-modal data (e.g., BLIP2 (Li et al., 2023)),
multi-modal retrieval augmentation can also be ben-
eficial since it explicitly provides the text snippets
and images carrying related commonsense infor-
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mation to the current sample. To effectively incor-
porate the multi-modal information into LMs, there
are two major challenges:

1) How can we enable LMs to effectively ex-
tract useful knowledge from multi-modal re-
trieved results? This is even more challenging for
text-based LMs because of the modality differences.
To address this challenge, we propose a plug-and-
play integrator that adopts a cross-attention mech-
anism to weigh each of the multi-modal results
based on the query input and extract beneficial
information. For text-based LMs, we employ a
multi-modal encoder (e.g., the Qformer of BLIP2)
to ingest results of images and text. In this case,
the integrator also acts as a bridge that transforms
the encoded semantic space of the retrieved results
into the representation space used by the LMs.

2) Since the retrieval quality could vary con-
siderably, how can we ensure the LMs do not
ignore the retrieved results and also not trust
them blindly? On the one hand, to prevent LMs
from disregarding the entire retrieved results due
to the noise they may contain, we introduce a train-
ing mechanism in MORE, i.e., query dropout, that
masks the query input to the LMs at a certain ratio
to urge the LMs to leverage the retrieved results for
generation. On the other hand, to avoid too much
dependence on the results that could be noisy, when
queries are dropped out, we randomly replace the
results with irrelevant ones and guide the LMs to
output empty in such cases, so that the LMs can
learn that it is not necessary to use retrieval all the
time.

We evaluate our approach on a generative com-
monsense reasoning task, i.e., CommonGen (Lin
et al., 2020). This task requires models to gen-
erate reasonable sentences using given concepts.
Experimental results show that MORE can signifi-
cantly boost the performance on CommonGen by
incorporating multi-modal retrieved results for the
LMs pre-trained with data of single or multiple
modalities. MORE also significantly outperforms
representative retrieval augmentation baselines and
LLMs like GPT-3.5 and GPT-4, demonstrating the
effectiveness of its architecture and training mech-
anism.

We summarize our contributions as follows: (1)
We propose a novel multi-modal retrieval aug-
mented language modeling framework for enhanc-
ing text generation of LMs. (2) Evaluations on the
generative commonsense reasoning task, i.e., Com-
monGen, demonstrate the effectiveness of MORE

on single/multi-modal LMs. (3) We conduct com-
prehensive analyses to verify the effectiveness of
MORE under various settings and illustrate its ad-
vantages compared to LLMs like GPT-3.5 and GPT-
4 through case studies.

2 Related Work

2.1 Retrieval Augmented Generation

The effectiveness of introducing additional con-
texts in the generation task has been demonstrated.
Specifically, utilizing the input as a query, a re-
triever initially retrieves a set of documents from a
corpus. Then a LM integrates these retrieved docu-
ments as supplementary information to generate a
final prediction. For instance, Atlas (Izacard et al.,
2022) finetunes a LM jointly with the retriever with
very few training examples. RETRO (Borgeaud
et al., 2022) modifies the decoder-only architec-
ture to incorporate retrieved texts and pretrains the
LM from scratch. Both methods necessitate updat-
ing model parameters through gradient descent, a
process not applicable to Large Language Models
(LLMs).

Given that the cost of fine-tuning LMs may not
always be acceptable, recent research has explored
retrieval augmentation for frozen LMs. Mallen
et al. (2023); Si et al. (2023); Ram et al. (2023)
demonstrate that directly prepending the docu-
ments returned by a frozen retriever to the input can
improve LMs performance on open-domain QA.
To support a large number of documents, FiD (Izac-
ard and Grave, 2021) processes each input passage
in parallel in the encoder. RePlug (Shi et al., 2023)
further finetunes the retriever based on feedback
from the frozen LM to get more helpful retrieved
results. On these bases, compressing the retrieved
results at the sentence level (Xu et al., 2023) or to-
ken level (Liu et al., 2023; Berchansky et al., 2023)
can boost performance by filtering irrelevant infor-
mation retrieved and improve computing efficiency.

2.2 Image Enhanced Text Generation

VisCTG (Feng et al., 2022) enhances the common-
sense ability of LMs by retrieving images and using
image captions as input augmentation. In addition
to explicitly retrieving images, VAWI (Guo et al.,
2022) leverages information from vision-language
models, i.e. CLIP (Radford et al., 2021), to aid
natural language understanding. I&V (Wang et al.,
2022) train an imagination model to generate a
scene graph given an input under the supervision
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of images and then train LMs to generate sentences
based on both input and scene graph. The above
methods either do not directly use images as non-
verbal data or require fine-tuning the whole pre-
trained LMs to adapt to visual input. Drawing
on the importance of imagination to human writ-
ing, iNLG (Zhu et al., 2022) and LIVE (Tang et al.,
2023) use images generated by an image-generative
model based on text inputs as supplementary infor-
mation and train the LM to generate under visual
guidance. However, the generated images may not
necessarily carry commonsense information, such
as cartoon images.

3 Generative Commonsense Reasoning

We focus on the task of CommonGen (Lin et al.,
2020) to investigate and enhance the common sense
reasoning capabilities of LMs.

3.1 Preliminaries

Problem Statement: The generative common-
sense reasoning task in CommonGen asks the LM
to make a sentence y that contains all the concept
words in the given set C = {c1, ..., cK}, where ci
denotes the i-th concept and y should describe a
common scenario in our daily life.

Training Objectives: It is usually modeled as
a sequence generation task and is optimized by
minimizing the cross-entropy loss between the pre-
dicted token distribution and the reference distribu-
tion: L = −∑|y|

t=1 logP (yt|C, y<t). In this work,
to ensure parameter efficiency and applicability to
LLMs, we use prompt tuning (Lester et al., 2021;
Liu et al., 2021) instead of fine-tuning LMs. We
only tune a task prompt, which is prepended to the
input word embeddings in the first layer. When
retrieval augmentation is enabled, a set of retrieved
items D, which is retrieved with the concepts as
query words, is also used as input and the new loss
function becomes:

L = −
|y|∑

t=1

logP (yt|C,D, y<t). (1)

3.2 Multi-Modal Retrieval Augmention

As shown in Figure 2, the Multi-mOdal REtrieval
(MORE) augmented framework for text genera-
tion has four core components: retrieving rele-
vant images and texts based on the concept words
(§ 3.2.1), encoding the retrieved results with an
encoder (§ 3.2.2), extracting useful information to

yield a retrieval augmented prompt with an inte-
grator (§ 3.2.3), and generating sentences based on
the retrieval augmented prompt, task prompt, and
concept embeddings with the frozen LM backbone
(§ 3.2.4).

3.2.1 Retrieval Results for Augmentation
Previous work (He et al., 2022; Li et al., 2021;
Liu et al., 2022) that incorporates retrieval augmen-
tation on this task consider the image/video cap-
tions (Krishna et al., 2017; Williams et al., 2017;
Wang et al., 2019; Bowman et al., 2015; Lin et al.,
2014) that CommonGen is built on as the retrieval
candidates, which is obviously impractical. In such
a setting, we find that the captions retrieved by
BM25 (Robertson et al., 2009) can achieve compa-
rable performance with the state-of-the-art (SOTA)
methods that train retrievers for augmenting LLMs
(shown in Appendix A), making the investigation
less meaningful.

To accommodate the task in real-world scenar-
ios, in this paper, we retrieve the image and text re-
sults from a general Web search engine, i.e., Bing,
for retrieval augmentation. We employ Bing as
a reasonable off-the-shelf retriever since our fo-
cus is on how to incorporate the supporting items
rather than training a powerful retriever. Formally
speaking, given a concept set C, we retrieved M
images and N text snippets by Bing using words
in C as the query, comprising the set of items
D = {dv1, ...dvM , dt1, ..., d

t
N}.

Specifically, after we preprocessed the retrieved
results by removing duplicate images and noisy
text, we collected a total of 500,100 images and
787,970 text snippets. On average, each concept
set has 14 images and 23 passages, which means
that M and N can be at most 14 and 23 respec-
tively. We retain the order returned by the browser
without any re-ranking. See the Appendix B for
more details.

3.2.2 Multi-Modal Encoder
Then we use an encoder to get the initial repre-
sentation erai for each retrieved image or passage
di:

erai = Encode(di). (2)

This results in a sequence of representations with
denc dimension. To align the encodings of text
and images in the same semantic space, we adopt
a multi-modal encoder - the frozen Q-Former of
the pre-trained BLIP2 (Li et al., 2023). Unlike
the other commonly used multi-modal encoder -
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③ extract retrieved information

...
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... ...

Language Model

A skier is skiing down a mountain.

Multi-modal
Encoder

...

concat concept set
ski, mountain, skier

Take in breathtaking views 
of Vail's beautiful mountain 
ranges. ... Cross-Country 
Skiing, and Backcountry ski 
tours ...

retrieved text

retrieved images

...

ski, mountain, skier
concept set

① retrieve relevant content ② encode retrieved results ④ retrieval augmented generation

retrieval augmented
 prompt    

Selector Module

Former Module

...

learnable embeddings
Integrator

............

... ...

task specific
 prompt    

Figure 2: The process of our framework generating the sentence given input concepts based on multi-modal retrieval
augmentation.

CLIP (Radford et al., 2021), that encodes the input
to a single final embedding, the Q-Former of BLIP2
outputs a sequence of embeddings and thus can
retain more information.

3.2.3 Retrieved Information Integrator

The integrator extracts useful information from the
representations of multiple retrieved results and
condenses it into a retrieval augmented prompt.
The Integrator has a Selector module and a Former
module.

Selector: This module extracts useful informa-
tion from the retrieval representations based on
the input concept and outputs a variable-length re-
trieval augmentation representation. It receives the
concatenation of multiple initial representations
era = [era1 ; ...; eraM+N ] ∈ R(M+N)×denc and the
embeddings of the concept words ec ∈ Rlc×denc

as input, in which lc is the number of tokens in
the concept set. The Selector is composed of two
stacks of identical layers. Each layer consists of
a self-attention network, which is used for inter-
action between retrieved content, a cross-attention
network, which is used for interaction between re-
trieved content and concepts, and a fully connected
feed-forward network:

hselfi = Attn(hi−1W
Q
i ;hi−1W

K
i ;hi−1W

V
i )

hcrossi = Attn(hselfi MQ
i ;EraMK

i ;EraMV
i )

hi = hcrossi Fi.
(3)

Attn(Q,K, V ) is the multi-head attention layer
as in Transformer (Vaswani et al., 2017). W ∈
Rdenc×dint , M ∈ Rdenc×dint ,and F ∈ Rdint×denc

are projection matrices, in which dint is the dimen-
sion of the hidden states of Integrator, and h0 is
set to ec. The output of the Selector module is a
variable-length retrieval augmentation representa-
tion h2 ∈ Rlc×dint .

Former: This module converts the represen-
tation produced by the Selector into fixed-length
and projects it into the input embedding space
of the LM. This results in the final retrieval aug-
mentation prompt pra. The Former comprises a
cross-attention network and a fully connected feed-
forward network:

pra
′
= Attn(qMQ′

;h2M
K′
;h2M

V ′
)

pra = pra
′
O,

(4)

in which q ∈ Rlq×dint is a learnable embeddings
with fixed-length lq. O ∈ Rdint×dlm is the projec-
tion matrix used for spatial mapping and dlm is the
dimension of the input embedding of the LM.

3.2.4 Soft Prompt Based Text Generation
To ensure training efficiency especially based on
LMs, we freeze the parameters of the LMs and
adopt the Prompt-tuning (Lester et al., 2021) tech-
nique, which incorporates the fixed-length embed-
dings produced by the Integrator as a plug-and-play
soft prompt.

During text generation, the LM receives the con-
catenation of the task-specific prompt ptask and the
concept set C as input, and generates sentence y as
output, denoted as y = LM([ptask;C]). When us-
ing retrieval augmentation, besides the task-specific
prompt, we also prepend the retrieval-augmented
(RA) prompt to the input. Consequently, the input
to the model becomes [pra; ptask;C].
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3.2.5 Training Strategy
Query Concept Dropout: The retrieval quality
can vary considerably, so the model may simply
ignore the retrieval input instead of learning to
extract useful information. To enhance the uti-
lization of retrieval augmented inputs, we pro-
pose a query dropout training strategy. Specif-
ically, we randomly mask the query concept C
input to the LMs with probability p in the initial
T training steps, and let the model generate sen-
tences only based on retrieved results. Please note
that query dropout is only applied to the input of
LMs, and C is always input to the Integrator to
guide the model in extracting beneficial informa-
tion from the retrieved results. The probability p
decreases as the number of training steps increases:
p = 0.5× (1− sin(π(min( t

T , 1)− 0.5))).
Noisy RA Input: It is also important to ensure

that the model can learn to ignore noise rather than
blindly trust the retrieved results. Therefore, we
artificially introduce noise during query dropout by
replacing the retrieval input with irrelevant results
from other samples and correspondingly changing
the target output with an ‘EOS’ token with proba-
bility p̂.

4 Experiments Settings

4.1 Dataset
We validate our method on the CommonGen
dataset (Lin et al., 2020). It is designed for gener-
ative commonsense reasoning tasks involving the
composition of discrete concepts into sentences
depicting everyday scenarios. The dataset com-
prises 32,651, 993, and 1,497 unique concept sets
for training, development, and testing, respectively.
Each concept set has multiple associated gold tar-
get sentences, yielding 67,389, 4,018, and 6,042
sentences for reference in total. When retrieval aug-
mentation is enabled, we used the retrieved results
from Bing as introduced in Section 3.2.1. We will
release the crawled images and text to encourage
future research in multi-modal retrieval augmenta-
tion under a practical setting for CommonGen.

4.2 Methods for Comparisons
Text-based/Multi-modal LMs: For text-based
LMs, we employ T5BASE as well as T5LARGE (Raf-
fel et al., 2019) to represent small pre-trained LMs,
and OPT2.7b (Zhang et al., 2022) to represent the
LLMs. We also query the close source model

https://inklab.usc.edu/CommonGen/. Under MIT license.

gpt-3.5-turbo-1106 (OpenAI, 2023a) through API
with the prompt "Use the given words to make a
short sentence that is consistent with commonsense.
Words: {...}". For Multi-modal LMs (MLMs) we
compare with BLIP2-OPT2.7b (Li et al., 2023),
an open source model, and gpt-4-1106-vision-
preview (OpenAI, 2023b), a close source model.
Since MLMs can accept images and text as input,
we directly input the retrieved items into MLMs.
All the above open source models are based on
huggingface and are under Apache License 2.0.

Retrieval Augmented Generation Baselines:
We consider two types of textual retrieval aug-
mented models. One is Prepend (Mallen et al.,
2023; Si et al., 2023; Ram et al., 2023), which
prepends the top-k text results to the concepts as
input. The other one is FiD (Izacard and Grave,
2021), which concatenates each retrieved passage
with the concept words separately to encode in
parallel for better handling of long text. For the vi-
sual retrieval augmented model, we compare with
VisCTG (Feng et al., 2022), which generates a
caption for each image with an image captioning
model (Luo et al., 2018) and prepends the captions
to the input for augmentation. All the above mod-
els use T5BASE as the backbone and are tuned with
prompt-tuning.

MORE with Various Backbones: We test
MORE with various backbones to explore whether
it can be effectively used in different model ar-
chitectures. Specifically, T5BASE and T5LARGE
represent small LMs and are encoder-decoder ar-
chitecture. BLIP2-OPT2.7b represent MLMs. It
should be noted that BLIP2-OPT2.7b is equivalent
to OPT2.7b when not receiving image input. There-
fore it can also be regarded as a variant based on
OPT2.7b, which represents LLMs and is decoder-
only architecture.

4.3 Evaluation Metrics

To assess the generation performance, we use stan-
dard metrics: BLEU (Papineni et al., 2002) quan-
tifying the overlap between predictions and refer-
ences based on n-gram precision and ROUGE (Lin,
2004) measuring the n-gram recall. ME-
TEOR (Banerjee and Lavie, 2005) is an improved
version of BLEU and considers both exact word
matches and semantic similarities. CIDEr (Vedan-
tam et al., 2014) focuses on capturing sentence
semantic similarity. SPICE (Anderson et al., 2016)

https://github.com/huggingface
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Table 1: Test results on CommonGen(V1.0). The best results are bolded, and ‘*’ indicates that the results are
significantly improved (p < 0.05) compared to the best baseline model (be underlined) under the significance test.
In the last block, we also mark results with † that are significantly improved compared with the sub-optimal baseline.

Model Bleu4 METEOR ROUGEL CIDEr SPICE

GPT-3.5 (0-shot) 21.44 28.93 48.80 13.03 26.69
GPT-3.5 (3-shot) 28.91 31.14 53.25 15.92 28.89

T5BASE 28.93 29.48 54.25 15.36 30.95
PrependBASE 26.68 28.43 53.29 14.39 29.95
FiDBASE 28.32 28.72 54.07 14.78 30.25
VisCTGBASE 27.67 28.82 53.71 14.77 30.24
MORET5BASE (text) 29.87* 30.15* 55.20* 15.79* 31.57*
MORET5BASE (image) 29.98* 30.21* 55.07* 15.92* 31.63*
MORET5BASE (multi-modal) 30.27* 30.28* 55.18* 16.02* 31.94*

T5LARGE 31.16 30.48 55.68 16.14 31.62
MORET5LARGE (text) 32.03* 31.05* 56.14 16.37 32.00
MORET5LARGE (image) 32.37* 31.31* 56.60* 16.67* 32.31*
MORET5LARGE (multi-modal) 32.29* 30.90* 56.62* 16.63* 32.34*

OPT2.7b 31.53 31.43 55.95 16.76 32.24
BLIP2opt-2.7b (multi-modal) 31.92 31.70 56.22 16.73 32.44
MOREOPT2.7b (multi-modal) 32.78*† 32.15† 57.07*† 17.03*† 32.94*†

quantifies the semantic propositional content of
generations by leveraging scene graphs. Please
notice that SPICE aligns closely with human eval-
uation and should be treated as the primary met-
ric. We also incorporate sentence similarity metrics
(Sent-Sim) with SimCSE (Gao et al., 2021) to mea-
sure semantic similarity. We use the entire test
dataset to obtain the main results and randomly
sample 500 data in the test set to compare with
GPT-4 for the sake of a limited budget.

4.4 Implementation Details

The same set of hyper-parameters is used for all the
models. We use the AdamW (Loshchilov and Hut-
ter, 2017) optimizer with β1 = 0.9, β2 = 0.999
and the weight decay is 0.05. The batch size is se-
lected from {64, 128}. Models were trained with at
most 20,000 steps with a 1% warm-up period. For
retrieval augmentation, we train the model with an
additional T = 2000 steps with query dropout, and
the noisy RA input ratio p̂ is set to 0.3. The learning
rates of the task prompt and the retrieval augmented
prompt are selected from {1e− 4, 5e− 4, 1e− 3}
and {1e− 5, 3e− 5} respectively. During decod-
ing, we use beam search with size 5. We train the

Code and data are publicly available at https://github.
com/VickiCui/MORE

models under each setting with 3 random seeds and
choose the best ones according to the performance
on the development set for testing. The prompt
length of task and retrieval augmentation are both
set to 32.

5 Results and Analysis

5.1 Overall Results
As shown in Table 1 and Table 2, after incorporat-
ing text and images to LMs, our method can boost
the generation performance significantly based on
various backbones. Comparing images and text,
we find that images are better in improving com-
monsense ability, and incorporating both of them
yields even better performance.

As shown in Table 3, Although based on a
smaller model, MORE can achieve better results
than GPT-3.5 and GPT-4. This fully illustrates the
effectiveness of our method. Considering that GPT-
4 is a multi-modal language model, we also test its
performance when retrieval augmented items are
provided. However, GPT-4 cannot effectively uti-
lize the retrieved inputs, leading to deteriorated per-
formance. Retrieval augmentation methods for the
GPT-4 model are worth exploring in the future. We
also tested the model with a specified length limit
to avoid the tendency of LLMs to generate longer
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Table 2: Sentence similarity results on the test data. As there are multiple references for one input, ’Avg’ represents
the average similarity between the model output and all references, while ’Max’ represents the similarity between
the model output and the closest reference. The best results are bolded.

T5BASE MORET5BASE T5LARGE MORET5LARGE OPT2.7b BLIP2opt-2.7b MOREOPT2.7b GPT-3.5 (3-shot)

Avg 71.51 71.59 72.12 72.23 71.66 71.83 72.53 70.00
Max 82.32 83.31 83.9 84.05 83.15 83.8 84.15 80.08

Table 3: Test results compared with closed source LLMs
on 500 randomly sampled data. ‘*’ and ‘†’ indicate the
results are significantly improved compared to GPT-4
(3 shot) and GPT-3.5 (3 shot), respectively. The ‘nint’
means use n images and n text as augmentation. The
‘lc’ means the generation length is explicitly constrained
to the average length of the references.

Model Bleu4 CIDEr SPICE

GPT-4 (0-shot) 28.53 16.52 30.53
GPT-4 (0-shot & lc) 27.87 16.89 29.11
GPT-4 (3-shot) 30.00 16.41 29.05
GPT-4 (0-shot & 1i1t) 19.86 12.43 26.20
GPT-3.5 (0-shot) 22.97 13.93 27.25
GPT-3.5 (0-shot & lc) 25.54 15.62 26.75
GPT-3.5 (3-shot) 28.35 16.14 29.13
MOREOPT-2.7b (1i1t) 31.81*† 17.08*† 31.81*†

MOREOPT-2.7b (3i3t) 32.53*† 17.30*† 32.81*†

sentences. The length of each sentence is the aver-
age length of the golden references, so the results
can be regarded as an upper bound. According to
the most critical SPICE metric, length constraints
do not lead to better results. Further analysis re-
vealed that length constraints result in the concept
coverage decrease, indicating that LLMs face chal-
lenges in organizing concepts with simple short
sentences.

In terms of incorporating retrieved results,
MORE is better than Prepend and FiD, which
are textual augmented models. Although previ-
ous work found that using captions can have better
results, this also risks leaking the answer. The
method of directly inputting retrieved results be-
comes invalid after the retrieval content changes.
MORE is also better than VisCTG, which is a vi-
sual augmented model. As shown in Appendix C,
the generated captions are not always accurate
and may lack the required information, so pre-
converting images to captions is not a proper ap-
proach to leverage images.

Table 4: Ablation study results based on MOREBASE.

Model Bleu4 CIDEr SPICE

T5 28.93 15.36 30.95
MORE 30.27 16.02 31.94

w/o concept-input 29.45 15.33 31.18
w/o query-dropout 29.81 15.52 31.14
w/o noisy-RA 29.54 15.42 30.88

5.2 Ablation Study

We examine the effectiveness of various compo-
nents within MORE by creating several variants,
selectively removing or substituting each compo-
nent, with results detailed in Table 4.

First, we replace the concepts that are input into
the integrator with a randomly initialized learn-
able token sequence (w/o concept-input). The drop
in performance highlights the importance of us-
ing concept words for references when extract-
ing beneficial information from the retrieved re-
sults. Second, we remove the query dropout strat-
egy (w/o query-dropout). The performance drop
demonstrates its importance in effectively lever-
aging the retrieved results. Finally, we further
exclude the noisy retrieval augmented input (w/o
noisy-RA). Performance degradation indicates that
blindly trust in retrieved input can harm model per-
formance. It is necessary to explicitly instruct the
model to learn to ignore the irrelevant augmenta-
tion results.

Please note that when the query dropout strategy
is removed, it means that noisy retrieval augmented
input is also not contained. However, the results
of ‘w/o query-dropout’ is better than the results of
‘w/o noisy-RA’. This emphasizes the disadvantages
of blindly trusting retrieval items, and it is neces-
sary for the model to learn to distinguish irrelevant
retrieval input.
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Table 5: Analyze the influence of additional parameters
on the results. All models are based on T5BASE. ‘n pl’
means using a prompt with n length. ‘rand-RA’ means
training models with irrelevant random search results.

Model Bleu4 CIDEr SPICE

T5 (32 pl) 28.93 15.36 30.95
T5 (64 pl) 28.74 14.84 30.9
MORE (rand-RA) 29.33 15.54 30.73
MORE 30.27 16.02 31.94

0 1 2 3 4 5 6 7
Number of Retrieved Items

31.0

31.2

31.4

31.6

31.8

SP
IC
E

image
text
image&text

Figure 3: The SPICE values with respect to the number
of retrieved items.

5.3 Analysis

Are the improvements of MORE attributed to
additional parameters? Considering that our
framework introduces more parameters, we inves-
tigate whether the performance improvements are
attributed to these additional parameters, which
arise from two aspects: 1) The retrieval augmented
prompt results in an extended input length. To in-
vestigate, we adjust the task prompt length from
32 to 64, aligning with the total input length of
MORE. 2) The integrator introduces more learn-
able parameters. To assess whether this would af-
fect performance, we replace the retrieval inputs of
each sample with irrelevant retrieved results during
training, denoted as rand-RA. This maintains con-
sistency in the learnable parameters with MORE.
The experimental results are recorded in Table 5.
Neither of them shows significant improvements
over the backbone T5-base, showing that the bene-
fit of MORE does not come from the extra parame-
ters.

Will utilizing more retrieved results enhance
the model performance? In retrieval-augmented
methodologies, a crucial factor influencing the final
results is the number of retrieval items. We inte-

Bleu-4 CIDEr SPICE
15

20

25

30

Sc
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e
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31.9
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28.9
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15.3
6

30.9
5

29.3
1

15.3
3

30.8
5

MORE
T5
Noisy-MORE

Figure 4: Test result of the baseline model, MORE aug-
mented with relevant content, and MORE augmented
with irrelevant content.

grate varying numbers of retrieval content for both
single-modal and multi-modal settings. The SPICE
results are illustrated in Figure 3, with additional
metric results available in Appendix D. No matter
which modality is used, the model performance
first increases and then decreases as the number of
retrieval inputs increases. This is because too few
retrieval inputs may lead to insufficient coverage
of required information, while an excess of inputs
may introduce redundancy and noise.

Is MORE robust to noise in retrieval augmen-
tation? The retrieved results may not always be
of high quality and occasionally may be even irrel-
evant to the query. Therefore it is also important
for retrieval augmented models to be robust to the
noisy retrieval outcome. We test the model’s robust-
ness in the face of poorly retrieved results by feed-
ing it with only irrelevant retrieval content during
testing (denoted as Noisy-MORE). As illustrated
in Figure 4, Noisy-MORE performs similarly to
its backbone T5 when using irrelevant results for
augmentation. This indicates that MORE is robust
to the noise in the retrieved items by not blindly
trusting the augmentation input.

5.4 Case Study

We conduct case studies to qualitatively analyze
how MORE enhances text generation through re-
trieval augmentation. As shown in Figure 5, small
LMs like T5LARGE make a nonsensical sentence
that ‘only one blower can not drive side by side’.
The retrieved images show a ’blower located on
the side of the road’ scene, and the retrieved text
describes ‘throw the snow to the side of the road’,
thereby helping the model clarify the usage of ‘side’
and correct generation errors. More cases can be
found in Appendix E.

As for LLMs, we find that they sometimes make
nonsensical sentences, as shown in Figure 1. This
shows that even if a huge amount of parameters
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Retrieved Images:

Retrieved Text:
Title: ATV & UTV SNOW BLOWER REVIEW, Description: ... 
Sides can move amazing amounts of snow when equipped..., 
Title: Clear the Snow Pile at the..., Description: ...snow blower to 
clear a space to the left of your driveway that’s 10 feet long...
Title: What Does A Snow Blower Do..., Description: ...pick up 
the snow from the ground and throw it to the side. ...

Concepts: drive, blower, side, blow, snow

GPT3.5:

GPT4:
T5large:
MORE(V):
MORE(T): 
MORE(V&T):

I had to drive slowly on the side of the road to avoid the blower's 
powerful gusts, which could blow the snow everywhere.
The snow blower will blow the snow to the side of the drive.
A snow blower is driving side by side on a snowy road.
A man drives a snow blower on the side of the road blowing snow.
A snow blower is driving on the side of the road.
A snow blower is driving on the side of the road blowing snow.

Figure 5: Generated sentences that benefit from retrieval augmentation

and training data are used, the LLMs are still not
able to grasp commonsense knowledge completely.
Therefore, it is also necessary for LLMs to use
retrieval augmentation to provide reference. The
other characteristic is that the sentences made by
GPT-3.5 and GPT-4 are usually long. To connect
the given concepts and output reasonable sentences,
they may need more words or information. This
also reflects the lack of commonsense knowledge
that humans are well aware of.

6 Conclusion and Future Work

To sum up, we introduce MORE, a multi-modal
retrieval augmentation framework. Our approach
is capable of extracting useful information and dis-
regarding irrelevant noise from visual and textual
results of variable quality, thereby assisting lan-
guage models in generating reasonable sentences.
Extensive experiments on the CommonGen task
demonstrated the effectiveness of our method. This
novel approach may offer a new perspective for
retrieval-augmented language models.

We focus on the generation task in this work
and the application of multi-modal retrieval aug-
mentation on more tasks is worth exploring in the
future. Besides, the current method concentrates
on ‘how to incorporate multimodal retrieved items’
and does not involve optimization of the retrieving
step, which is left for future work.

7 Limitations

Our method uses soft-prompt, making it unsuitable
for LMs accessible solely through the API as it
cannot convey input in natural language form. In
addition, to avoid changing the internal structure
of the LMs, we adopted the p-tuning in this work.
Using more advanced methods such as LoRA (Hu
et al., 2021) to achieve better results can be consid-
ered in future work.

The retrieved results are from public data on the

Internet and we did not collect any privately identi-
fiable information in our study. However, it may be
inevitable to crawl some public photos and other
data, which may, which may still include some
personal information, such as faces. We followed
Bing’s authorization requirements for the use of
data and did not modify or use it commercially. We
call on anyone using our framework to follow the
licensing requirements and not misuse the technol-
ogy.
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Table 6: Test results on CommonGen(V1.1) by directly
using the captions retrieved through BM25 as output
and other existing methods.

Model Bleu4 CIDEr SPICE

BM25 44.07 18.64 33.47
DKMR2 44.33 19.54 34.59
KFCNet 43.62 18.85 33.91
KGR4 42.82 18.42 33.56

A Test Result Using Captions

Since the Commongen dataset itself relies on cap-
tion data during the construction process, and most
existing methods use the retrieved caption as a ref-
erence for generation, such as DKMR2 (He et al.,
2022), KFCNet (Li et al., 2021), and KGR4 (Liu
et al., 2022). We suspect and test whether the re-
trieved caption itself reveals the correct answer to
some extent. Specifically, we use concepts as query,
and then simply use BM25 as the retrieval method
to retrieve captions from image captions and video
captions. The retrieved caption will be directly
used as the prediction result without modification
and the results compared with other methods are
shown in Table 6. It can be seen that even with-
out a tunable retriever and any modification to the
caption, good results can be achieved.

B Retrieved Inputs Crawling and
Preprocessing

We concatenate all concepts in a concept set to
form a query. For the image, we use the template
‘a photo of {...}’ (e.g. a photo of decorate, music,
background, and tree) and crawl the first 20 image
results returned by the search engine. We further
removed duplicate images based on the dHash algo-
rithm. For text, we directly use the concatenation
of the concept set as the query. We crawl the text
results from the first two pages. Considering that
the full document associated with each result may
be very long, the search engine has provided a con-
cise text summary of the webpage aligning with
the search keywords, we only keep the title and
description in the snapshot. We also removed the
URL and non-English parts.

back, grass, dog, roll
 
a dog rolls on the back of the grass

 

A dog rolling on the back of the grass

 a dog rolls back and forth in the grass
 

a dog rolls back on the grass

a dog is standing in the 
grass with a frisbee

a dog is laying in the 
grass with a frisbee

a dog laying on the 
grass with a ball

concepts
generation of 

T5 

corresponding 
images

 
generated 
captions

generation of 
VisCTG

Top3 retrieved 
images

generation of 
MORE (visual) 

 

one retrieved 
text

generation of 
MORE (text)

Figure 6: An example of the generation of VisCTG,
the generated captions as well as corresponding images.
We also show the generation of MORE and the retrieval
content ii use. Since the captions used by VisCTG
are ranked by their coverage of the concept words in
descending order, the order of images of VisCTG and
MORE may be different.

C Examples of Generated Captions from
VisCTG

We use an example to illustrate why it is better to
directly use the raw image than to convert the im-
age into a caption. There are two main reasons: 1)
the generated caption may be inaccurate. As shown
in Figure 6, due to the error of the model and the
bias in training data, when ‘dog’ appears, the cap-
tion model always generates sentences containing
‘frisbee’ or ‘ball’, even though these objects do
not appear in the image. Inaccurate captions will
further mislead follow-up text generation. 2) the
pre-generated captions may lack the required infor-
mation. In the example, the T5 model incorrectly
generates ‘the back of the grass’, and the informa-
tion needed is ‘dog rolls on their back‘. Although
the images contain relevant information, it is not
included in the captions, so that the original gener-
ation cannot be corrected.

D Results of Other Metrics

Combining various metrics shown in Figure 7, it
can be seen that using three retrieval contents is a
better choice. The conclusion that using too many
or too few retrieved results will not lead to optimal
results has not changed.
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Figure 7: Scores with different retrieval content numbers.

E Cases of Generation

We show two additional examples in Figure 8 to
help intuitively understand how multi-modal re-
trieval augmentation helps the model generate more
reasonable sentences.
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Retrieved Images:

Retrieved Text:
Title: Fist Pump Dance GIFs, Description: ... add popular Fist 
Pump Dance animated GIFs to your conversations..., 
Title: The Jersey Floor Workout, Description: ... extend your 
dominant arm into the air, form a tight fist, and pump it from a...
Title: Donald Trump's Fist Pump Body Language Is Pretty, 
Description: Trump's Fist Pump At A 9/11 Memorial Revealed...

Concepts: pump, air, dance, room, fist
GPT3.5:

GPT4:

T5large:
MORE(V):
MORE(T): 
MORE(V&T):

As the music filled the room, she used her fist to pump the air 
with excitement, breaking into a spontaneous dance.
I watched as people filled the room, dancing with fists pumping 
in the air.
A man pumps air into a room and dances with his fists.
A man pumps the air with his fist as he dances in a room.
A man pumps the air with his fist as he dances in the room.
A woman dances in a room with her fists pumping the air.

Retrieved Images:

Retrieved Text:
Tit le1:  Amazon.com: Bagpiper  Uni form |  Scott ish Ki l t , 
Description1: Choose from our extensive collection of over..., 
Title2: Bagpiper Outfit | Custom Bagpiper Outfit, Description2: ...a 
kilt outfit that will make you look like a true Scottish gentleman?...
Title3: Bagpipe Band Uniforms..., Description3: ... genuine 
Scottish kilt and accessories from Claymore Imports...

Concepts: bagpipe, dress, front, kilt, stand
GPT3.5:

GPT4: 

T5large:
MORE(V):
MORE(T): 
MORE(V&T):

The man in a kilt stood in front, playing the bagpipe while the 
others in dresses watched.
The bagpipe player stood in front of the crowd in his kilt and 
dress uniform.
A woman in a kilt stands in front of a bagpipe
A man in a kilt stands in front of a bagpipe.
A man in a kilt stands in front of a bagpipe.
A man in a kilt stands in front of a bagpipe.

Figure 8: Generated sentences with/without retrieval augmentation
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