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Abstract

Making inferences in text comprehension to un-
derstand the meaning is essential in language
processing. This work studies the entailment
verification (EV) problem of multi-sentence
premises that requires a system to make mul-
tiple inferences implicitly. Studying EV for
such complex premises is important because
modern NLP problems, such as detecting in-
consistent model-generated rationales, require
complex multi-hop reasoning. However, cur-
rent textual inference datasets mostly contain
short premises that only partially focus on these
challenges. To address this, we compile an EV
benchmark that includes datasets from three
NLP domains (NLI, contextual QA, and ra-
tionales) containing multi-sentence premises.
On benchmarking humans and LLMs, we find
that LLMs are better than humans in multi-hop
reasoning across extended contexts, while hu-
mans perform better in simple deductive reason-
ing tasks. We also finetune a Flan-T5 model1

for EV using two training objectives to ob-
tain a strong open-source model that outper-
forms GPT-3.5 and rivals GPT-4. Finally, we
use this model to filter out inconsistent model-
generated rationales in self-consistency decod-
ing, resulting in a 6% accuracy improvement
on average across three MCQ datasets.

1 Introduction

A prevailing notion in cognitive psychology exists
that humans make numerous inferences to under-
stand discourse and text (Garnham, 1989). These
inferences play a crucial role in linking informa-
tion from disparate sections of a text to establish its
literal meaning and are closely associated with rea-
soning. With the recent applications of Large Lan-
guage Models (LLMs) (Devlin et al., 2019; Raffel
et al., 2020; Brown et al., 2020; Chung et al., 2022)

1https://huggingface.co/soumyasanyal/
entailment-verifier-xxl

Premise: Exposure to sea air can cause scurvy. 

Scurvy is a kind of disease.

Hypothesis: This suggests that scurvy is a 

disease caused by exposure to sea air.

Task: Given the premise, is the hypothesis correct?

Simple Deductive Inference

Complex Deductive Inference

Premise: Joe is a 2013 independent drama film 

directed and co-produced by David Gordon 

Green, co-produced by Lisa Muskat, Derrick 

Tseng and Christopher Woodrow and written by 

Gary Hawkins, adaptation from Larry Brown's 

1991 novel of the same name.

Hypothesis: Joe was a book before it was a film.

Missing Knowledge

Premise: Brian Russell De Palma ( born 

September 11 , 1940 ) is an American film 

director and screenwriter .

Hypothesis: Brian De Palma is an award-winning 

screenwriter.

support

support

support support

not support

not support

Figure 1: Distinctions between human and LLM Infer-
ences. Examples of each reasoning type, along with the human
and GPT-4 prediction, are shown. A green box means the pre-
diction matches the true label, and red otherwise. Humans are
more consistent in simple deductive reasoning, whereas LLMs
excel in complex, multi-step inferences over long contexts.
Both humans and LLMs are comparable in instances with
missing knowledge. Please refer to Section 2 for more details.

in NLP tasks that require inference skills (Minaee
et al., 2021), it is thus essential to understand and
improve upon the limitations of LLMs concerning
different aspects of language inferences.

In this work, we focus on the task of entailment
verification (EV) that classifies whether a given
context supports a hypothesis. To assert the valid-
ity of a hypothesis, a system has to make multiple
inferences from the given context and its internal
knowledge, which requires complex multi-hop rea-
soning.2 Verifying the entailment of such complex

2In a multi-hop reasoning instance, a system has to in-
fer implicit inferences by combining information from the
premise, to predict the support of a hypothesis.
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Desirable
Properties

NLI Contextual QA Rationale

WaNLI FEVER ANLI CosQA SIQA DREAM BoolQ RACE Entailer ECQA

Multi-sentence premise
Explanatory premise

Entity-grounded knowledge
Commonsense knowledge
Localized knowledge

Table 1: Comparisons between different datasets used for evaluation. We compare on two broad categories: type
of premise (multi-sentence and explanatory) and type of knowledge tested (entity-grounded, commonsense, and
localized). Please refer to Section 2.1 for more details.

premises has important applications in rationale-
generating LLMs, such as chain-of-thoughts (CoT)
(Wei et al., 2022), that typically generate multi-
sentence rationales with incomplete information
and suffer from inconsistent reasoning (Ye and
Durrett, 2022). While EV is similar to Natural
Language Inference (NLI) (Dagan et al., 2006;
Manning and MacCartney, 2009), some interesting
challenges distinguish it from NLI. Many exist-
ing textual inference datasets, such as SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018),
etc., mostly contain short sentence premises that
only partially encapsulate the challenges of multi-
sentence premises requiring complex reasoning.
Predicting the entailment of such complex premise-
hypothesis pairs often requires multi-hop reason-
ing, inferring missing information, etc., which is
lacking from standard NLI datasets (Gururangan
et al., 2018; McCoy et al., 2019). Thus, studying
EV in the context of modern LLMs is essential and
is currently missing.

To this end, we first compile an evaluation bench-
mark to study the EV problem by selecting multi-
ple datasets across three categories: NLI, contex-
tual QA, and rationales. As shown in Table 1, the
datasets typically contain multi-sentence premises
that require inferring different types of knowledge
to predict the entailment. Thus, this benchmark is
more complex than standard NLI datasets and can
be used as a new evaluation benchmark.

Next, we evaluate LLMs and humans on this
benchmark and make some interesting observa-
tions. Cognitive studies (Buschman et al., 2011;
Cowan, 2001) have shown that an average human
brain has a limited capacity to retain only four
chunks in short-term memory, indicating a limita-
tion of human inference abilities over long contexts.
Our analysis shows that LLMs are indeed stronger
than humans at tasks that involve multi-hop reason-
ing across long contexts, reinforcing this human

limitation. In contrast, humans are better in cases
that require simple deductive reasoning using sub-
stitutions, negations, etc., indicating that current
LLMs lack consistency along these reasoning as-
pects. Further, humans and LLMs perform com-
parably in instances requiring inferring missing
knowledge. These findings are depicted in Figure
1 with motivating examples.

Additionally, on comparison between LLMs, we
find that models finetuned on a specific dataset
category are usually strong within the category
but don’t generalize well on unseen categories.
In contrast, instruction-finetuned models are bet-
ter on average, with the best performing model,
GPT-4, achieving 0.79 macro-F1 and outperform-
ing the best-open-sourced model Flan-T5-xxl by
0.08 macro-F1 on average. In order to bridge this
gap, we finetune a Flan-T5 (Chung et al., 2022)
model on a training subset containing datasets from
each category of the above data collection. To this
end, we explore two different training approaches:
a classification-based finetuning that learns to di-
rectly predict the label and a ranking-based fine-
tuning that learns to rank the most supported hy-
pothesis from a given pair of hypotheses for a
given premise. Ranking-based finetuning is better
than classification, specifically in contextual QA
datasets, as it can learn a softer decision boundary.
Overall, our fine-tuned Flan-T5 outperforms GPT-
3.5, baseline Flan-T5, and performs comparably to
GPT-4 on the benchmark, thus providing a strong
open-sourced model for entailment verification.

Finally, we demonstrate the utility of our fine-
tuned models on a downstream application of filter-
ing unfaithful model-generated explanations. Self-
consistency (SC) (Wang et al., 2023) decoding
samples multiple model-generated reasoning paths
from the LLM decoder and aggregates them to
predict the most consistent answer. We use our
finetuned Flan-T5 to filter out non-entailed reason-
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ing chains before aggregating the final prediction,
which leads to 6% performance improvement on
average across three MCQ datasets.

Overall, our contributions can be summarized as
follows:
1. Using existing resources, we develop a bench-

mark for Entailment Verification (EV) of multi-
sentence premises for both training and evalua-
tion purposes.

2. We compare and contrast humans and GPT-4
on this benchmark and conclude that humans
are more robust on simple deductive reasoning
while LLMs excel at complex inferences.

3. We use a ranking-based objective to finetune
Flan-T5-xxl model for the EV task, achieving
comparable performance to GPT-4 and demon-
strate the utility of our model in filtering non-
entailed CoT rationales.

2 Entailment Verification using LLMs

In this section, we formally define the task of entail-
ment verification (EV), the datasets used to create
the evaluation benchmark, and the evaluation pro-
cedure for evaluating different LLM baselines.

For a given premise p and a hypothesis (or claim)
h, the task of entailment verification is to determine
whether the context has information that directly
confirms the hypothesis or not, i.e., whether the
hypothesis follows from the information present in
the context. This is a binary classification task de-
fined as f(p, h) = {support, not support}, where
f is a classifier (human/LLM).

2.1 Evaluation Benchmark

In this section, we list some desirable properties
we want to include in the EV benchmark, followed
by details of the dataset categories we select.
• Type of Premise: Typically, NLI datasets, such

as SNLI, MNLI, etc., do not contain more than
one sentence in the premise, potentially leading
to shortcut learning. In contrast, we focus more
on multi-sentence premises that require complex
reasoning. We also consider datasets where the
premise is a rationale, i.e., the premise is not just
a logical precursor to the hypothesis but rather
an explanation. This tests the ability to evaluate
model-generated rationales (Wei et al., 2022).

• Type of Knowledge: Often, one or more in-
formation in the premise needs to be used to
predict support. We categorize this information

Knowledge Examples

Entity-grounded
Barack Obama is born in USA.;
Electrical energy is used by plants
for making food.

Commonsense
If you are hurting, you might cry.; If
you steal something, you can get in
trouble.

Localized
The policeman helps her find her
daughter.; Dan is 72 years old cur-
rently.

Table 2: Examples of different categories of knowledge.
Please refer to Section 2.1 for more details.

as entity-grounded, commonsense, or localized.
Entity-grounded knowledge consists of informa-
tion about entities and other general knowledge
verifiable on the internet. These can be facts
about general science, history, etc., or details of
some known person, event, etc. It is possible
to infer this information even if not mentioned
in the premise. The commonsense knowledge
is typically all information about everyday life
that humans use implicitly but cannot always be
verified online. This information is often missing
from the premise and has to be inferred implicitly.
Lastly, localized information is all other knowl-
edge provided for understanding the events, peo-
ple, or items mentioned in the premise that are
not grounded to any known entity. This informa-
tion depends on the premise’s specific context
and, thus, is impossible to infer unless stated ex-
plicitly. Please refer to Table 2 for examples of
each knowledge type.

We consider three data sources for creating the en-
tailment verification benchmark, amounting to 10
datasets in total. In Table 1, we compare these
datasets across the desirable characteristics men-
tioned earlier. Please refer to Appendix A for more
details on the datasets used.

Natural Language Inference Given the close
connection between NLI and EV, it is an obvious
choice to consider appropriate NLI datasets for the
benchmark. To convert an NLI dataset for EV, we
merge the neutral and contradict labels to the not
support label. We use the following NLI datasets in
our benchmark: WaNLI (Liu et al., 2022), FEVER
(Nie et al., 2019), and ANLI (Nie et al., 2020).

Contextual QA Next, we consider multiple-
choice question-answering datasets where the task
is to answer a question based on a given context and
some options. We use a QA-to-statement converter
model (Chen et al., 2021) to generate a hypothesis
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Model NLI Contextual QA Rationale Avg
WaNLI FEVER ANLI CosQA SIQA DREAM BoolQ RACE Entailer ECQA

RoBERTa 0.81 0.92 0.67 0.46 0.45 0.63 0.71 0.41 0.87 0.37 0.63
Entailer-11B 0.68 0.75 0.59 0.71 0.56 0.67 0.81 0.49 0.91 0.49 0.67

Flan-T5-xxl 0.71 0.79 0.68 0.66 0.55 0.79 0.86 0.60 0.88 0.49 0.70
GPT-3.5 0.76 0.81 0.62 0.67 0.59 0.79 0.76 0.52 0.76 0.48 0.68
GPT-4 0.79 0.86 0.79 0.76 0.61 0.90 0.84 0.68 0.80 0.48 0.75

Human
0.74 0.88 0.67 0.63 0.74 0.87 0.77 0.61 0.91 0.48 0.73

(0.78) (0.75) (0.62) (0.51) (0.54) (0.68) (0.67) (0.57) (0.82) (0.85) (0.68)

Human − GPT-4 -0.05 0.02 -0.12 -0.13 0.13 -0.03 -0.07 -0.07 0.11 0.00 -0.02

Table 3: Comparisons between human and baseline LLMs on 100 sampled instances from each dataset. We
report the macro-F1 score and highlight the best results in bold. For the human baseline, we report the annotation
agreements in parenthesis. Takeaways: Task-finetuned models perform well on specific dataset categories seen
during finetuning, but instruction-finetuned models generalize better on average. GPT-4 is the best-performing LLM.
It outperforms humans on ANLI and CosQA that require complex, multi-step reasoning. In contrast, humans are
better on SIQA and Entailer that require simple deductive reasoning. Please refer to Section 3 for more analysis.

statement for each question option pair. Then, the
hypothesis corresponding to the correct choice is
marked as “support”, while the rest are marked as
“not support”. This process is depicted in Figure 5
in Appendix A. We include the following datasets
from this category: Cosmos QA (CosQA) (Huang
et al., 2019), SocialIQA (SIQA) (Sap et al., 2019),
DREAM (Sun et al., 2019), BoolQ (Clark et al.,
2019), and RACE (Lai et al., 2017).

Rationale Lastly, we consider data sources
where human-annotated explanations are available
that justify the original hypothesis. In this case,
we use the rationales as the premise. We use the
following datasets: Entailer (Tafjord et al., 2022),
and ECQA (Aggarwal et al., 2021).

2.2 Evaluation Metric

We use the macro-F1 score as the primary eval-
uation metric for comparing LLMs on the entail-
ment verification task because there are label im-
balances in our evaluation datasets. The macro-F1
score computes the unweighted mean of F1 scores
for each class, ensuring equal importance for each
class irrespective of the label statistics. Please refer
to Appendix C for more discussions on the label
imbalance of each dataset.

2.3 LLM Evaluation Setup

We evaluate two types of LLMs on the task of EV,
as categorized below:

Task-finetuned LLMs In this, the models con-
sidered are already finetuned on some subset of the
benchmark. We evaluate two models: RoBERTa

(Liu et al., 2019) (finetuned on NLI datasets) and
Entailer-11B (Tafjord et al., 2022) (finetuned on
Entailer dataset). Refer to Appendix B.1 for more
details on the evaluation setup for these models.

Premise: {premise}
Hypothesis: {hypothesis}
Question: Given the premise, is the hypothesis
correct?
Answer:

Box 1: Prompt used to evaluate instruction-finetuned
LLMs for entailment verification.

Instruction-finetuned LLMs These are lan-
guage models trained on a collection of NLP tasks
described using instructions, leading to general-
ization abilities to solve unseen tasks described
using new instructions. Here, we evaluate Flan-T5-
xxl (Chung et al., 2022), GPT-3.5 (Brown et al.,
2020), and GPT-4 (OpenAI, 2023) models. To
compute the label, we first modify a given premise-
hypothesis pair (p, h) into a prompted input P us-
ing the prompt template as shown in Box 1. Next,
we compute a score s as defined below:

s(p, h) =
pLLM (“Yes”|P)

pLLM (“Yes”|P) + pLLM (“No”|P)
,

(1)
where pLLM (·|P) is the model’s probability distri-
bution over the vocabulary. If the score s is higher
than a threshold (typically set to 0.5 in all our ex-
periments), we assign the label support, else we
assign the label not support. For GPT-4 evaluation,
we directly check for the “Yes” / “No” label pre-
diction as the token probabilities are not accessible
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via the API. Please refer to Appendix B.2 for more
details about the models and ablations on prompts.

3 Evaluation of Humans and LLMs

First, we randomly sample 100 instances from each
dataset (i.e., 1000 instances in total) and conduct a
human evaluation on this subset to estimate aver-
age human performance. Please refer to Appendix
E.1 for more details on the annotation procedure.
Additionally, we evaluate the above LLMs on this
sampled subset and report those numbers for fair
comparisons with humans. Table 3 shows the over-
all evaluation results.

3.1 Comparison among LLMs

We observe that the task-finetuned models (rows
1-2 in Table 3) are weaker on average compared
to the instruction-finetuned models (rows 3-5 in
Table 3). However, there are some interesting ex-
ceptions. RoBERTa, which is finetuned on NLI
datasets, performs at par with GPT-4 on FEVER
and outperforms it on WaNLI but falls behind on
contextual QA and rationale datasets. On the other
hand, Entailer-11B, which is finetuned on the En-
tailer dataset, outperforms GPT-4 on Entailer but
lags on most of the other datasets. This demon-
strates that finetuning an LLM using datasets from
one of these categories is ineffective in outperform-
ing models trained on more general data. Overall,
we observe that GPT-4 is the best-performing en-
tailment verification model on average and Flan-
T5-xxl is the best open-source LLM for this task.

3.2 Comparison between Humans and LLMs

In Table 3, we report the human performance and
the corresponding annotation agreement3 (in paren-
thesis) for each dataset. We note that the agree-
ment ratios are lowest for Contextual QA datasets,
especially CosQA and SIQA. Questions in these
datasets are often based on commonsense scenarios,
and sometimes, the support for the wrong hypoth-
esis can be debatable. Please refer to Appendix
D for examples. Between humans and LLMs, we
find that humans beat all the baseline LLMs, ex-
cept GPT-4. This shows that existing open-sourced
LLMs are subpar with humans on this task. Ad-
ditionally, although humans and GPT-4 perform
comparably on average, we note that large mis-
alignments exist in different individual datasets.

3We use a pairwise agreement ratio that computes the
fraction of matched annotations over all pairs of annotations.
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Figure 2: Analysis of the different reasoning types involved
in entailment verification. [Top] Distribution of the reasoning
types aggregated across four datasets: ANLI, CosQA, SIQA,
and Entailer. [Bottom] Performance comparisons between
humans and GPT-4. Takeaway: GPT-4 is better than humans
at instances requiring complex reasoning, while humans are
more consistent in simpler deductive reasoning tasks. Refer
to Section 3.3 for more details.

Specifically, we observe that ANLI, CosQA, SIQA,
and Entailer are the four datasets with > 0.1 abso-
lute macro-F1 difference. We analyze these four
datasets in Section 3.3.

3.3 Effect of Reasoning Type
We design an analysis to understand further the mis-
alignments between GPT-4 and humans. First, we
categorize the type of reasoning required to predict
an entailment into the following four categories:
• Simple Deductive (R1): The premise contains

sentences that can be minimally combined in one
step to predict the support for the hypothesis.
This typically tests skills such as substitution,
understanding negations, word meanings, etc.

• Complex Deductive (R2): More than one step
of reasoning is required to solve the task. Typi-
cally, this tests skills like mathematical reasoning,
combining multiple information in context, etc.

• Missing Entity-grounded/Commonsense
Knowledge (R3): In this, some essential
commonsense or entity-grounded knowledge is
missing in the premise. Both humans and LLMs
can implicitly invoke such information from the
memory or the parametric knowledge obtained
from pertaining, respectively.

• Missing Localized Knowledge (R4): In this, in-
formation very specific to the premise is missing.
Typically, this is information about the subjects
in the context and is not grounded in any known
entities. It is practically impossible for humans
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Model NLI Contextual QA Rationale Avg Seen
Avg

Unseen
Avg

WaNLI FEVER ANLI† CosQA SIQA DREAM BoolQ RACE† Entailer ECQA†

GPT-4 0.73 0.88 0.86 0.79 0.69 0.92 0.86 0.85 0.86 0.48 0.79 - -
GPT-3.5 0.70 0.83 0.69 0.70 0.67 0.81 0.78 0.69 0.82 0.48 0.72 - -
Flan-T5-xxl 0.63 0.81 0.73 0.59 0.67 0.80 0.85 0.70 0.83 0.50 0.71 - -

Flan-T5-xxl + Class 0.71 0.86 0.79 0.66 0.72 0.88 0.85 0.85 0.85 0.49 0.77 0.71 0.79
Flan-T5-xxl + Rank 0.69 0.85 0.77 0.83 0.74 0.89 0.85 0.85 0.86 0.48 0.78 0.70 0.82

Table 4: Comparison of classification and ranking-based Flan-T5-xxl finetuning with baseline LLMs on the complete
evaluation benchmark. We report the macro-F1 for all datasets. †: Dataset is used in fine-tuning, and the average
is reported in the “Seen Avg” column. Other datasets are zero-shot evaluated, and the average is reported in the
“Unseen Avg” column. Takeaways: Ranking objective is better than classification on contextual QA datasets.
Flan-T5-xxl + Rank outperforms Flan-T5-xxl and GPT-3.5, and performs comparably to GPT-4. Please refer to
Section 4.2 for more details.

or LLMs to infer such information.
We note that these categories are mutually exclu-
sive.4 Figure 2 depicts the aggregated results.
The top plot shows the percentage of each reason-
ing type among 400 samples from ANLI, CosQA,
SIQA, and Entailer, and the bottom plot compares
the human and GPT-4 macro-F1 scores. Please re-
fer to Appendices E.2, E.3, and E.4 for details on
the annotation setup, examples of each reasoning
type, and detailed analysis, respectively.

The first type in Figure 2 is simple deductive
reasoning (∼ 25% data). Here, humans perform
better than GPT-4 by a small margin. Instances that
require simple deductive reasoning usually use sub-
stitutions, negations, paraphrasing, etc., to prove
entailment. We find that humans are more robust
than GPT-4 in performing such simple deductive
reasoning tasks, which is also observed in prior
works (Sanyal et al., 2022; Nguyen et al., 2023).

Next, we find that GPT-4 significantly outper-
forms the humans on complex reasoning that con-
stitutes ∼ 20% data. This usually requires two
skills: understanding multiple relevant information
in the premise and combining them for reasoning.
GPT-4 is likely a stronger context processor, espe-
cially for long premises, since it has been trained
on long-context data sources (OpenAI, 2023). In
contrast, cognitive studies (Buschman et al., 2011;
Cowan, 2001) have shown that an average human
brain can retain only four chunks in short-term
memory, thus limiting the long-context processing
abilities of humans.

Lastly, we observe that approximately 30% of
the data has some missing entity-grounded or com-
monsense information while ∼ 25% of the data has
missing localized information. To correctly predict

4Deductive reasoning implies that the premise has all the
necessary information. Thus, any missing knowledge instance
falls under inductive reasoning.

entailment in such cases, a system needs to infer
some missing grounded knowledge while not hal-
lucinating specific localized information not men-
tioned in the premise. We find that both humans
and models are comparable across the reasoning
types R3 and R4, with R4 being more challenging.
This shows that both models and humans tend to
hallucinate missing localized information.

4 Training LLMs for Entailment
Verification

In Section 3.2, we observed that open-sourced
LLMs lack performance compared to humans and
close-sourced models such as GPT-4. From Section
3.1, we know that task-finetuned models perform
well on a category when finetuned on data from the
same category. Using this insight, we finetune the
Flan-T5-xxl model on the train splits of datasets
from each category, resulting in using ANLI (Nie
et al., 2020), RACE (Lai et al., 2017), and ECQA
(Aggarwal et al., 2021) for finetuning. Please refer
to Appendix F.1 for more details on our training
dataset selection criteria. Next, we describe the
finetuning approaches and our key findings.

4.1 Finetuning Formulations
This section describes the two finetuning formula-
tions explored in this work.

Classification This is the standard training
paradigm where we finetune a Flan-T5-xxl model
using the training data. We follow the same steps
as the evaluation setup to create a prompted input
using the prompt format in Box 1 and then define
the cross-entropy loss over the “Yes” and “No” to-
ken logits. We refer to this finetuned model as
“Flan-T5-xxl + Class”.

Ranking In this approach, for a given premise
and hypothesis pair (p, h), we define a weaker hy-
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Language 
Model

Chain-of-Thought prompting Sample diverse reasoning paths
Filtering using 

entailment verifier
Majority 
voting

(A)
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NQ: Bob wants to warm his hands 

by rubbing them. Which skin 
surface will produce most heat? 
(A) dry palms. (B) wet palms
A: Dry surfaces will more 
likely cause more friction via 
rubbing. So the answer is (A).
Q: Cells need nutrients for 
energy. Which system breaks 
down food to cellular energy?
(A) digestive (B) excretory (C) 
circulatory (D) respiratory
A:

The digestive system is responsible for breaking down food 
to provide energy to cells. So, the answer is digestive.

The cells need nutrients for energy. Respiration is the 
system responsible for breaking down food to provide 
cellular energy. So, the answer is respiratory.

The cells are responsible for breaking down food to provide 
cellular energy. So, the answer is respiratory.

In the mouth, food is broken down and absorbed into the 
circulatory system. So, the answer is respiratory.

Food is broken down by digestive system to provide cellular 
energy. So, the answer is digestive.

Figure 3: Example of filtering CoT Rationales. It consists of four steps: (1) CoT prompting, (2) Sampling multiple reasoning
paths from the LLMs decoder, (3) Filtering out reasoning paths that don’t support the model’s prediction, (4) Aggregating the
filtered reasoning paths to select the most consistent answer. The figure is inspired by self-consistency (Wang et al., 2023). Note
that we only filter inconsistent rationales and not non-factual ones. Please refer to Section 5 for more details.

pothesis h′ as a statement such that the premise p
supports h more strongly than h′. Then, for a given
triplet (p, h, h′), we formulate the ranking task as
predicting the hypothesis that is more supported by
the premise. Given the triplet (p, h, h′), we define
the margin ranking loss as follows:

Lranking = max{0, s(p, h)− s(p, h′) +m}, (2)

where s(p, h) is the entailment score as defined in
Equation 1. The key advantage of this formulation
over the classification is that ranking, by design,
learns a softer decision boundary between the two
labels. This can lead to better generalization, es-
pecially for contextual QA datasets. Sometimes,
the wrong choice can be relatively less favorable
compared to the best option in QA instead of being
incorrect. As discussed in Section 3.2, this is indi-
cated by the low agreement between human raters.
Training to hard-classify the hypothesis for such
options can be avoided by ranking them with the
best hypothesis (corresponding to the right choice),
thus learning a softer classification boundary. We
refer to the finetuned model using the ranking ob-
jective as “Flan-T5-xxl + Rank”. Please refer to
Appendix F.2 for more details on the training data
collection process for ranking.

4.2 Findings
Table 4 shows the evaluation results on the com-
plete evaluation set (i.e., we use all the data points
instead of 100 samples per dataset, which was used
in Table 3). For our models, we separately average
the results for the datasets already seen in training
(namely, ANLI, RACE, and ECQA) and unseen
during training into two columns, seen and unseen,
respectively. First, we observe that all our fine-
tuned models are consistently better across nine of
ten datasets than the baseline Flan-T5-xxl. Fine-
tuning improves 0.07 macro-F1 on average over
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Figure 4: Comparisons between self-consistency (SC) and
Filtering + SC. We report the accuracy metric averaged across
three MCQ datasets for four different LLMs. Takeaway:
Filtering consistently improves performance over SC baseline,
with more gains for weaker base models such as UL2. Please
refer to Section 5 for more details.

Flan-T5-xxl. This shows that finetuning is over-
all beneficial in training the model on the task of
entailment verification.

Next, we observe that compared to classification,
the ranking formulation is beneficial for the contex-
tual QA datasets CosQA, SIQA, and DREAM. This
demonstrates that the ranking objective improves
contextual QA datasets’ generalization, which is
expected. Additionally, our ranking model outper-
forms GPT-3.5 and performs comparably to GPT-
4, with stronger performance on contextual QA
datasets and weaker performance on NLI datasets.
Thus, Flan-T5-xxl + Rank is a strong open-sourced
model for entailment verification and can be used
as an alternative to GPT-4.

5 Application: Filtering CoT Rationales

Recently, Wang et al. (2023) proposed self-
consistency (SC), a decoding technique to improve
over chain-of-though (CoT) reasoning (Wei et al.,
2022) in LLMs, whereby multiple CoT rationales
are sampled for a given input instance and a ma-
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jority voting overall predicted labels is considered
as the final prediction. However, generative LLMs
can potentially output rationales that are inconsis-
tent (Ye and Durrett, 2022), i.e., the rationale does
not support the corresponding model prediction.
Such inconsistency can, in turn, degrade the overall
self-consistency results. Evaluating the consistency
between an explanation and the corresponding pre-
diction can be framed as an entailment verifica-
tion (EV) task, as described below. Please refer
to Appendix G.2 for examples of consistent and
inconsistent CoTs.

Approach As shown in Figure 3, we can use a
verifier as an intermediate filtering step to filter out
the inconsistent rationales before computing the
majority vote. For this, we define the generated
CoT rationale as the premise and use the QA-to-
statement model (Chen et al., 2021) as defined in
Section 2.1 to convert the question and model’s
prediction into a hypothesis. Next, we calculate the
entailment score of all the premise-hypothesis pairs
using a verifier (Equation 1). Finally, we select the
top-k rationales for majority voting, discarding the
rest. We set k = 5 for all our experiments.

Findings In figure 4, we compare the vanilla SC
with the filtering+SC approach described above.
Following (Wang et al., 2023), we compute the av-
erage performance of these methods across three
MCQ datasets for four different base CoT models
(UL2 (Tay et al., 2023), Codex-001 (Brown et al.,
2020), LaMDA-137B (Thoppilan et al., 2022), and
ChatGPT5 (OpenAI, 2022)). Please refer to Ap-
pendix G for details on the datasets and more com-
parisons with Flan-T5-xxl. We observe that filter-
ing leads to a consistent performance gain over SC
across all CoT base models. This demonstrates
the advantage of the filtering approach. Next, we
find that the improvements are more prominent
for weaker base models such as UL2 than the
stronger ones (ChatGPT). For instance, filtering
UL2 generated-rationales can even achieve compa-
rable performance with vanilla SC over LaMDA-
137B. In comparison, the gains for filtering Chat-
GPT CoTs are ∼ 1.7 %. This shows that weaker
models are prone to generating inconsistent CoTs
and thus benefit more from this approach. But
at the same time, even stronger models such as
ChatGPT can still benefit from consistency checks.
Please refer to Appendix G.2 for examples of fil-

5ChatGPT refers to the gpt-3.5-turbo-0613 model.

tered CoT rationales.

6 Related Works

Natural Language Inference NLI (Dagan et al.,
2006; Manning and MacCartney, 2009) is one of
the core NLP problems in which the relationship
between a premise and hypothesis is classified as
either entailment, contradiction, or neutral. Prior
works have mainly trained LLMs and evaluated
them on standard NLI datasets (Bowman et al.,
2015; Williams et al., 2018; Wang et al., 2019;
Nie et al., 2020, 2019; Liu et al., 2022). Another
line of work (Mishra et al., 2020; Chen et al., 2021)
has used question-answer-to-NLI conversion (Dem-
szky et al., 2018) to transform QA datasets into NLI
format and solve them. In fact verification litera-
ture (Bekoulis et al., 2021; Thorne et al., 2018),
retrieved pieces of evidence have been used to ver-
ify the claim using an entailment verifier (Nie et al.,
2019; Guan et al., 2023). Recently, NLI models
have been used to verify the entailment of model-
generated explanations (Tafjord et al., 2022; Jung
et al., 2022; Mitchell et al., 2022). In this work,
we curate a diverse NLI benchmark for evaluating
LLMs and humans by using datasets from all the
above NLI applications.

Reasoning in LLMs With the advent of general-
purpose LLMs (Brown et al., 2020; Chung et al.,
2022; OpenAI, 2023), many prompting strategies
have been proposed to generate a natural language
reasoning along with the model’s prediction (Wei
et al., 2022; Zhou et al., 2023; Yao et al., 2023;
Huang and Chang, 2023). Recently, Ye and Dur-
rett (2022) have found that such generations can
sometimes be unreliable due to non-factual and
inconsistent reasoning, while Huang et al. (2023)
have argued that LLMs struggle to self-correct such
issues without external feedback.

Prior works have addressed this limitation by
oversampling reasoning chains and marginaliz-
ing (Wang et al., 2023), using the LLMs itself
to recheck their reasoning (Madaan et al., 2023;
Miao et al., 2023), leveraging external knowledge
source to verify factuality (Zhao et al., 2023), us-
ing deterministic solvers to improve faithfulness
(Lyu et al., 2023), decomposing the reasoning steps
into smaller steps (Ling et al., 2023), etc. While
the progress is impressive, some of these are either
specialized approaches for math-specific datasets
or heavily rely on close-sourced LLMs (GPT-3.5,
GPT-4, etc.) for verification. In contrast, here we

10368



focus on natural language datasets and develop an
open-sourced model for the verification task.

Ranking Objective Prior works have explored
the benefits of ranking objective both from a the-
oretical perspective (Narasimhan and Agarwal,
2013) and specifically for NLP classification tasks
(Li et al., 2019; Briakou and Carpuat, 2020). Our
ranking-based objective is inspired by these works
that find that margin-based loss can be beneficial
in training plausibility estimation models.

7 Conclusion

We studied the EV problem in the context of LLMs.
Specifically, we sourced datasets across three dif-
ferent categories (NLI, contextual QA, and ratio-
nales) and analyzed human and LLM performance
on the benchmark. We found that LLMs are bet-
ter than humans in complex reasoning, while hu-
mans are more consistent on simpler reasoning
tasks. We also explored different training objec-
tives to finetune open-sourced LLMs for EV. Our
finetuned model outperforms GPT-3.5, baseline
Flan-T5-xxl, and is comparable to GPT-4. Finally,
we applied the EV model to filter out inconsistent
model-generated CoTs in self-consistency decod-
ing, achieving improvements over the baseline self-
consistency approach.

Limitations

Even though our work demonstrates exciting re-
sults on entailment verification tasks by finetuning
LLMs, several limitations can be potentially im-
proved.

Data Processing Our strategy to convert a QA
pair into a statement using the QA-to-statement
converter model can have errors that can cascade
both in the evaluation dataset and our fine-tuned
models. Better strategies for this pipeline would
help with data quality.

Finetuning We only tried encoder-decoder-
based models for finetuning. However, other mod-
els with different architectures (like decoder-only)
can also be considered in the future. For computing
the entailment score in Equation 1, we only con-
sidered the probability of “Yes” and “No” tokens
in the entire vocabulary. Other alternative expres-
sions like “YES”/“NO”, “True”/“False”, etc., can
also be considered to make the score more robust.
Finally, our training objective outputs entailment

scores instead of directly generating answers. An-
swer generation as a training objective can be more
robust since it is a stricter objective than our scoring
technique.

Potential Risks We using existing datasets, with
some post-processing, to train our models. Thus,
any issues in the existing dataset in terms of bias,
toxicity, etc., can potentially affect our model. Also,
since we use a pretrained checkpoint, we also in-
herit any existing biases in the baseline model. The
model is trained to always output scores, even if the
data is well outside the training distribution. This
is an existing issue with most NLP models and can
be mitigated by additional checks for domain shift.
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A Evaluation Datasets

In this section, we describe the datasets used in our
evaluation. We mention some important challenges
that make these datasets useful for benchmarking
the entailment verification task. Please refer to
Table 5 for these datasets’ train/dev/test statistics.

Natural Language Inference datasets NLI is
an obvious choice of data source as it is a more
general case of the entailment verification problem.
While converting an NLI dataset for our task, we
merge the neutral and contradict labels to the not
support label.6 We use the following NLI datasets
in our benchmark:

• WaNLI (Liu et al., 2022): This is a new NLI
dataset built using worker and AI collabora-
tion. This challenging dataset improves over
the existing NLI dataset MultiNLI (Williams
et al., 2018). The test split is used when doing
the evaluation.

• FEVER (Nie et al., 2019): This is a modifi-
cation of the original FEVER dataset (Thorne
et al., 2018) in which the claim is paired with
textual evidence from Wikipedia to convert
it into an NLI format dataset. This pairing
uses existing state-of-the-art evidence extrac-
tion systems to find relevant evidence for each
claim. Premises in this dataset typically con-
tain multiple sentences, which is one of our
focus areas. As the test split is unavailable, we
report results on the dev split for evaluation.

• ANLI (Nie et al., 2020): This is a large-scale
NLI dataset that was collected using an ad-
versarial human-and-model-in-the-loop proce-
dure. Like FEVER, this dataset tests factual
knowledge, and the premises typically contain
multiple sentences. During evaluation, the test
split is considered.

Contextual QA datasets Next, we consider QA
datasets where the task is to answer a question
based on a given context and some options. We use
an off-the-shelf QA-to-statement converter model
(Chen et al., 2021) to generate a hypothesis state-
ment for each question option pair. Then, the
hypothesis corresponding to the correct choice is
marked as “support”, while the rest are marked

6We note that merging the labels for the NLI datasets in
this benchmark is valid, since the underlying meaning of the
‘neutral’ label is ‘no sufficient evidence to support’ in all three
datasets. NLI datasets that don’t follow this label definitions
cannot be modified in this manner.

as “not support” to create the entailment verifica-
tion dataset. We depict this process in Figure 5.
The green box is the valid hypothesis and the red
ones are the invalid hypothesis corresponding to the
given context. Overall, we include the following
datasets from this category:

• Cosmos QA (CosQA) (Huang et al., 2019):
This dataset contains multiple-choice ques-
tions (MCQs) that require an understanding
of commonsense-based reading comprehen-
sion to answer a question. The key challenge
in this dataset is understanding people’s ev-
eryday narratives described in the context that
can have some missing commonsense knowl-
edge that needs to be inferred implicitly. Since
the test split is missing, we evaluate models
on the dev split instead.

• SocialIQA (SIQA) (Sap et al., 2019): Similar
to CosQA, this is another MCQ benchmark
for commonsense reasoning about social sit-
uations that probes emotional and social in-
telligence in a variety of everyday situations.
This dataset has more nuanced commonsense
knowledge requirements, which makes it a
challenging dataset for our task. Similarly, re-
sults on the dev split are reported, given that
the test is missing.

• DREAM (Sun et al., 2019): This is a dialogue-
based reading comprehension MCQ dataset
that focuses on multi-turn dialogue under-
standing. Here, the unique challenge is infer-
ring the events discussed across long, multi-
turn dialogues. During evaluation, we use the
test split as it is available.

• BoolQ (Clark et al., 2019): This is a
True/False QA dataset consisting of aggre-
gated queries to the Google search engine.
Questions in this dataset require complex and
difficult entailment-like inference to solve,
making it a good set for evaluation. The test
split is lacking for this dataset, and we can
only report results on the dev split.

• RACE (Lai et al., 2017): The reading compre-
hension dataset from examinations (RACE) is
one of the most popular machine reading com-
prehension datasets containing questions from
English exams for middle and high school stu-
dents. These questions are designed by do-
main experts for testing specific human read-
ing skills, thus making it a good evaluation set
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Dataset
Statistics

NLI Contextual QA Rationale

WaNLI FEVER ANLI CosQA SIQA DREAM BoolQ RACE Entailer ECQA

Train 102,885 208,346 162,865 77,468 100,212 18,348 18,854 341,412 - 7,598
Dev - 19,998 3,200 8,970 5,859 6,120 6,540 18,944 7,849 1,090
Test 5,000 - 3,200 - - 6,123 - 19,172 - 2,194

Table 5: The number of examples in train/dev/test splits for different datasets. Some datasets do not have certain
splits, and those statistics are left blank. For each dataset in our benchmark, we use the test split if available;
otherwise, we use the dev split. Please refer to Appendix A for more details about each dataset.

Robin had been working on bringing two of every meal out 
the kitchen door ever since Barney had arrived. She was 
definitely starting to feel taxed because moral support 
was one thing. Bringing alcohol, conversation, 
entertainment and food? That was something else entirely 
but it wasn't like she was going to abandon him or make 
Marshall do it all.

QA-to-
statement 
converter 

model

Context/Premise

(A) Because Robin knew it was her duty, but not the 
responsibility.

(B) Because Robin felt no duty to do it herself except 
for the show.

(C) Because Robin felt the responsibility but not duty 
to do it herself.

(D) Because Robin felt the responsibility and duty to do 
it herself.

Robin would take on so many things to do when it 's so 
taxing because Robin knew it was her duty, but not the 
responsibility.

Robin would take on so many things to do when it 's so 
taxing because Robin felt no duty to do it herself 
except for the show.

Robin would take on so many things to do when it 's so 
taxing because Robin felt the responsibility but not 
duty to do it herself.

Robin would take on so many things to do when it 's so 
taxing because Robin felt the responsibility and duty to 
do it herself.

Options

Converted Hypotheses

Why would Robin take on so many things to do when it's 
so taxing?

Question

Figure 5: Example of Contextual QA data conversion. For a given question and corresponding option, the QA-to-statement
converter model generates a sentence combining the two. We use this as the hypothesis corresponding to that option. Please refer
to Appendix A for more details.

for our task. We report evaluating results on
test split for this dataset.

Rationale datasets Lastly, we consider data
sources where human-annotated explanations are
available that justify the original hypothesis (or the
correct option, in the case of QA datasets). In this
case, we use the rationales as the premise. We use
the following datasets:

• Entailer (Tafjord et al., 2022): This dataset
contains entailment-style statements and cor-
responding rationales obtained from Entail-
mentBank dataset (Dalvi et al., 2021) and
crowdsourcing. The dataset mainly contains
science domain statements and tests simple
deductive reasoning skills whereby sentences
from the premise must be combined to either
support or refute the hypothesis. The test split
is also missing for this dataset, and we can
only evaluate it on the dev split.

• ECQA (Aggarwal et al., 2021): This is
a human-annotated explanation dataset for
CommonsenseQA (Talmor et al., 2019). We
only use the explanations for the correct
choice as the explanations for the incorrect
choices are often trivial. It is a complete

dataset and by convention, we use the test
split for evaluation.

B Details on LLM Evaluation

We evaluate two types of LLMs on the task of
entailment verification, as categorized below:

B.1 Task-Finetuned models

In this category, the models considered are already
finetuned for either NLI or the exact entailment
verification task itself. We evaluate two models in
this category.

RoBERTa (Nie et al., 2020; Liu et al., 2019)
This is a strong pre-trained RoBERTa-Large model
with the corresponding model card on Hugging-
Face7 (Wolf et al., 2020b) called “ynie/roberta-
large-snli_mnli_fever_anli_R1_R2_R3-nli”. It is
a specifically pre-trained RoBERTa-Large for NLI
task and includes the combination of SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018),
FEVER (Nie et al., 2019) and ANLI (Nie et al.,
2020) datasets as the training data. Hence, this in-
curs a potential data leakage problem, as we also
test it on FEVER and ANLI. To some extent, it

7https://huggingface.co/models
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explains the strong performance of RoBERTa on
NLI datasets in Table 3.

The model is used as a classifier in evaluation,
and three classes are available. Class 0 corresponds
to “entail”, class 1 corresponds to “neutral” and
class 2 means “not entail”. In our experiment set-
ting, we only regard class 0 as the “Yes” label and
combine the remaining two classes to be the “No”
label.

Entailer (Tafjord et al., 2022) Entailer is a T5-
based model (Raffel et al., 2020) trained to an-
swer hypotheses by building proof trees containing
chains of reasoning. It can either generate valid
premises for a given hypothesis or predict a score
for a given premise and hypothesis. We evaluate
Entailer-11B (model name “allenai/entailer-11b”
on HuggingFace) in our experiments. Similarly,
Entailer dataset (Dalvi et al., 2021) is in the train-
ing set, making this model very competitive when
evaluating the same dataset.

We strictly follow the official implementation
of the model to acquire class labels.8 The “entail-
ment_verifier” is called to decide if the hypothesis
can be implied from the premise. If the answer is
“True”, then the class label will be “Yes” and vice
versa.

B.2 Instruction-Finetuned models

These are the more recent “general-purpose” lan-
guage models trained on a collection of NLP tasks
described using instructions, leading to generaliza-
tion abilities to solve unseen tasks described using
new instructions. The models included in our eval-
uation from this category are described below.

Flan-T5-xxl (Chung et al., 2022) It is instruction-
tuned from T5 (Raffel et al., 2020) on 1.8K+ tasks.
We adopt a publicly available version on Hugging-
Face (Wolf et al., 2020a) with model card name
“google/flan-t5-xxl”. Flan-T5-xxl is also exposed
to data leakage issues. BoolQ (Clark et al., 2019),
ECQA (Aggarwal et al., 2021), and ANLI (Nie
et al., 2020) have appeared in its training data.
However, this is not a serious problem in the fine-
tuning stage because we transform original datasets
into entailment verification format before using
them for model finetuning.

We extract labels from the model by focusing
on the output probabilities of two words, “Yes” and

8https://github.com/allenai/entailment_bank/
blob/main/entailer.md

“No”. After applying the softmax function to those
two probabilities, we finalize the label as the word
with a probability larger than a given threshold, as
described in Equation 1.

GPT-3.5 (Brown et al., 2020) It is a general-
purpose autoregressive decoder-only LLM accessi-
ble via the OpenAI Completions API.9 We utilize
“text-davinci-003” in OpenAI’s API for evaluation,
and the label determination procedure is similar to
the one in Flan-T5-xxl.

GPT-4 (OpenAI, 2023) It is the latest generative
model published by OpenAI, which is optimized
for creativity and long context inputs. It is acces-
sible via the OpenAI Chat API.10 We adopt plain
“gpt-4” in OpenAI’s API for our experiments. Un-
like other models, the output probabilities are not
accessible. Thus, we constrain the model to predict
a single token as its generated prediction. In the
ideal case, we can directly use the output text as the
label if “Yes” or “No” is produced. If some other
token is generated, we choose one of the labels at
random. We note that this occurrence is rare in our
GPT-4 evaluation runs.

B.2.1 Prompt Robustness Evaluation
To assess the robustness of the model in section
2.3, we design different prompt formats but hold
the order of premise and hypothesis in the prompt
unchanged. Table 6 presents all prompts we tested
with Flan-T5-xxl and their corresponding averaged
results across datasets. The results suggest that
the Flan-T5-xxl model is robust to the variation in
the prompt and yields relatively consistent results.
This characteristic is maintained in Flan-T5-xxl +
Class and Flan-T5-xxl + Rank as well since they
are developed over based on Flan-T5-xxl.

B.2.2 Few-Shot Evaluation
Few-shot is an effective and promising strategy
when testing the performance of a model (Brown
et al., 2020). We also include this analysis by
randomly picking two examples from Entailer as
demonstrations and incorporating them into the
prompt. We test Flan-T5-xxl, Flan-T5-xxl + Rank,
and GPT-4 in this setting and represent results in
Table 7. The few-shot setting yields promising im-
provement for Flan-T5-xxl, substantiating that the

9https://platform.openai.com/docs/
api-reference/completions

10https://platform.openai.com/docs/
api-reference/chat
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Prompt Avg

Premise: {premise}\n Hypothesis: {hypothesis}\n Given the premise, is the hypothesis correct?\n Answer: 0.71
Premise: {premise}\n Hypothesis: {hypothesis}\n Given the premise, is the hypothesis supported?\n Answer: 0.70
Premise: {premise}\n Hypothesis: {hypothesis}\n Based on the premise, is the hypothesis correct?\n Answer: 0.71
Premise: {premise}\n Hypothesis: {hypothesis}\n Does the premise support the hypothesis?\n Answer: 0.69
Given the premise {premise}, is the hypothesis {hypothesis} supported?\n Answer: 0.70
We are given the premise: {premise}. Can we conclude the hypothesis: {hypothesis}?\n Answer: 0.72

Table 6: Comparison of averaged results between different prompt formats used for Flan-T5-xxl evaluation.
Takeaway: The model is robust to variations in the prompt and generates consistent results. Please refer to
Appendix B.2 for more details.

Model NLI Contextual QA Rationale Avg
WaNLI FEVER ANLI CosQA SIQA DREAM BoolQ RACE Entailer ECQA

GPT-4 0.73 0.88 0.86 0.79 0.69 0.92 0.86 0.85 0.86 0.48 0.79
GPT-4 + few-shot 0.75 0.87 0.84 0.75 0.62 0.91 0.86 0.81 0.83 0.48 0.77

Flan-T5-xxl 0.63 0.81 0.73 0.59 0.67 0.80 0.85 0.70 0.83 0.50 0.71
Flan-T5-xxl + few-shot 0.67 0.84 0.77 0.66 0.71 0.84 0.84 0.74 0.85 0.49 0.74

Flan-T5-xxl + Rank 0.69 0.85 0.77 0.83 0.74 0.89 0.85 0.85 0.86 0.48 0.78
Flan-T5-xxl + Rank + few-shot 0.69 0.86 0.79 0.77 0.74 0.89 0.84 0.85 0.86 0.48 0.78

Table 7: Comparison of performance between base models and models with few-shot setting. Takeaway: For
Flan-T5-xxl, few-shot prompting boosts the performance, while it is not beneficial for the other two models. Please
refer to Appendix B.2 for more analysis.

Dataset Majority Prediction

WaNLI 0.39
FEVER 0.40
ANLI 0.40

CosQA 0.41
SIQA 0.40
DREAM 0.40
BoolQ 0.35
RACE 0.43

Entailer 0.43
ECQA 1.00

Table 8: The macro-F1 score of majority label (most
frequent label) prediction for different datasets. For
reference, the score of a well-balanced dataset is 0.67.
Those figures indicate that the label imbalance issue
exists in the datasets we evaluate. More details are
presented in Appendix C.

few-shot is a beneficial approach to teaching the
prompt to the model. However, it is not as helpful
as our finetuning strategies, which give even better
performance. On the other hand, few-shot does
not bring significant gains for Flan-T5-xxl + Rank,
suggesting that finetuning has already helped the
model have a comprehensive understanding of the
prompt, and extra demonstrations are unnecessary.
As for the GPT-4, simply using examples from En-
tailer and applying the same prompt for all datasets
seem detrimental.

C Majority Prediction and Label
Imbalance

In Table 8, we show the performance of an oracle
model that predicts the most frequent label in a
dataset. For a label-balanced dataset, the macro-F1
score of such a majority prediction model would
be 0.67 (precision 0.5 and recall 1.0). The datasets
in the evaluation set have some label imbalance,
as evidenced by the lower majority label predic-
tion scores. Since we convert existing 3-class NLI
and multi-choice QA datasets into our binary clas-
sification task format, it inherently has more not
support labels. We have more support instances
for the rationale datasets since the dataset creators
usually only annotate the rationale for the right
choice. Specifically, the ECQA dataset only has
positive instances, leading to a 1.0 macro-F1 score
for majority prediction (support label). Since it
has all support labels, any model predicting even
a single non support label gets penalized severely,
as is seen in ECQA results. Because of this label
imbalance in the datasets, we report the macro-F1
scores instead of accuracy or micro-F1 metrics.

D Debatable Cases in Contextual QA

We include two examples of SIQA dataset in Table
9 to illustrate the debatable hypotheses in Contex-
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tual QA datasets. These examples demonstrate that
some less probable hypotheses can also be con-
sidered plausible in certain situations. In the first
example, option “run screaming” best describes the
audience’s reactions after listening to a scary ghost
story. However, there are also situations where
people are so terrified and start to cry, making the
option “cry” somehow debatable. Similarly, in the
second example, it is common sense that people
will express gratefulness after someone else builds
a house for them. But it is reasonable to say that
Quinn is intrigued by the house after seeing the
amazing architecture. In both cases, apart from
the most adequate one, there are still options lead-
ing to some partially supported hypotheses, which
explains the low human annotation agreement in
these cases.

E Human Evaluation and Analysis

We adopted Amazon Mechanical Turk (MTurk)
(Crowston, 2012) for data collection. Two anno-
tation formats (Figure 7 and Figure 8) were de-
vised for the human evaluation task and reasoning
type analysis task, respectively. During the annota-
tions, each annotator was compensated according
to $15/hour per the U.S. minimum wage.

E.1 Human Evaluation Details

In each HIT, the annotator was presented with a
format exactly like Figure 7, including detailed
task descriptions and label explanations. Annota-
tors were expected to read the premise and claim
first, then determine the supportiveness of the claim
based on the premise and choose the correspond-
ing label. Initially, we only provided three labels
— “support”, “irrelevant” and “contradict”. But
later, we realized that annotators could not explic-
itly identify labels for some ambiguous instances
where the premise only partially supported or con-
tradicted the claim. Hence, we introduced two
weak labels (“partially support” and “partially con-
tradict”) to remedy this issue. When collating re-
sults for analysis, we internally combined “support”
and “partially support” to be “support”, and the
rest to be “not support”, aligning to the standard en-
tailment verification (EV) setup. Each instance was
annotated by 3 MTurk annotators, and a majority
verdict determined the label. To ensure annota-
tion quality, we conducted two rounds of qualifi-
cation for annotators using the finalized template.
In the first round, we used ten questions from the

datasets and evaluated 400 mTurk annotators. We
retained 100 annotators from this batch with an
accuracy greater than 70%. Among remained ones,
we repeated this process for another ten questions
and selected annotators with an accuracy greater
than 80%. Finally, we retained 35 annotators who
had annotated the human evaluation set. And the
Fleiss’s kappa score (Fleiss, 1971) we got was 0.6,
indicating a moderate level of agreement among
annotators.

E.2 Reasoning Type Annotation Details

We annotate the reasoning type of the 100 sampled
instances for each dataset with absolute macro-
F1 difference > 0.1 in Table 3. We make this
choice intending to attribute the largely misaligned
datasets (namely, ANLI, CosQA, SIQA, and En-
tailer) since some random noise in the annotation
and sampling process can potentially also cause
some misalignment.

In every HIT, we used Figure 8 as the reasoning
type annotation format. The instructions and label
explanations were explicitly stated at the beginning
of the HIT. For task 1, after reading the premise
and the claim, annotators had to decide whether the
supportiveness of the claim could be decided by
only referring to the information in the premise. If
yes, annotators needed to choose the corresponding
difficulty level of reasoning about the supportive-
ness of the claim in task 2. Otherwise, the type of
missing information had to be decided in task 1,
and task 2 did not apply to these cases. We aggre-
gated answers from the two tasks and categorized
them into four types. Both R1 and R2 were types
where the premise contained all necessary informa-
tion. The difference was that the difficulty level
of reasoning for R1 was Easy while for R2 was
Moderate. We combined Missing Entity-grounded
Information and Missing Commonsense Informa-
tion to be R3. Finally, the Missing Localized Infor-
mation label corresponded to R4.

Given that some strong NLP background knowl-
edge was required to understand task descriptions
and label explanations, we recruited Computer Sci-
ence graduate students instead of the general mTurk
workers to finish this annotation. Every instance
was assigned to 2 students, and the majority vote de-
termined the label. The Fleiss’s kappa score for this
job was 0.62, showing a substantial inter-annotator
agreement.
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Question & Options Corresponding Hypothesis of Option

Alex told a very scary ghost store to the campers
around the campfire. What will Skylar want to do
next?

(A) run screaming
(B) laugh it all
(C) cry

Skylar will want to run screaming next.
Skylar will want to laugh it all next.
Skylar will want to cry next.

After finalizing the plans with the architect and the
contractors, Austin built Quinn’s house last week.
How would Quinn feel as a result?

(A) intrigued by the building of the house

(B) grateful for the hard work that was done

(C) curious about why the house was built

Quinn would feel intrigued by the building of the
house as a result.
Quinn would feel grateful for the hard work that
was done as a result.
Quinn would feel curious about why the house was
built as a result.

Table 9: Examples from Contextual QA datasets with a debatable hypothesis. The correct answers are marked.
More analysis can be found in Appendix D.

E.3 Reasoning Type Examples

Table 11 incorporates three examples from each
reasoning type, providing more insight into those
types.

In the third example of R1, the first sentence in
the premise states that “iron oxide” comes from
“oxygen” and “rust”. The second sentence shows
those two substances are “gases” at room tempera-
ture. Therefore, combining them will be sufficient
to entail the hypothesis.

However, unlike R1, the third example of R2
requires three steps of reasoning that “De Baandert
was a multi-use stadium.”, “It was mostly used
for football matches.”, and “The stadium was able
to hold 22,000 people.”. The hypothesis can be
disproved with those steps because “22,000 people”
is just the maximum capacity.

As for the first example of R3, some missing
commonsense information like “it is not wise to
give more money to a person who keeps playing in
a detrimental situation.” should be combined with
the premise to disprove the hypothesis.

In the first example of R4, the next movement of
“Addison” is the missing information specific to the
context depicted by the premise. The hypothesis
can not be directly disproved without that piece of
information.

E.4 Reasoning Type Analysis

We depict the aggregated results of the reasoning
type annotation for each dataset in Figure 6. Here,
the first row shows the frequency of each reasoning
type in that dataset, and the corresponding plot in
the second row compares the human and GPT-4
macro-F1 scores. We fade out the columns with
data percentages less than 5% because such low fre-
quency might not lead to conclusive observations.

We note that type R1 is most prominent in En-
tailer dataset. Here, we observe that humans are
significantly better than models. This shows that
humans are usually more consistent with simple
deductive reasoning. Similar findings about con-
sistency in human deductive reasoning skills have
been reported in prior works (Sanyal et al., 2022;
Nguyen et al., 2023).

Reasoning type R2, which requires more com-
plex reasoning, is dominant in ANLI and CosQA.
For this type, we find that models are superior to
humans. Complex reasoning requires two skills:
understanding multiple relevant information in the
premise and then using them for reasoning. We hy-
pothesize that models are stronger context proces-
sors than humans because they have been trained
on long-context data (OpenAI, 2023).

The reasoning type R3 is present in ANLI,
CosQA, and SIQA. From Table 1, we know that
ANLI mostly require entity-grounded knowledge,
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Figure 6: Analysis of different reasoning types involved in entailment verification for each dataset. [Top] Distribution of
the reasoning types for each dataset studied. [Bottom] Macro-F1 performance comparison between humans and GPT-4. We
fade out all bars with distribution percentage ≤ 10% since they are insignificant to draw meaningful conclusions. Takeaways:
Humans are better at simple reasoning (R1) and commonsense reasoning (R3). GPT-4 is superior at complex reasoning (R2) and
entity-grounded reasoning (R3 ANLI). Trends for R4 are mixed. Please refer to Appendix E.4 for details.

whereas CosQA and SIQA specifically test com-
monsense knowledge. Here, we find that humans
are stronger than models in commonsense knowl-
edge (CosQA and SIQA), whereas models are bet-
ter in ANLI that requires entity-grounded knowl-
edge. This shows that humans can infer missing
social/commonsense knowledge more easily since
these are inherently known to humans. In contrast,
models can retrieve the entity-grounded knowledge
stored in their parameters more efficiently.

Lastly, we find that the reasoning type R4, indi-
cating missing localized knowledge, is also promi-
nent in ANLI, CosQA, and SIQA. Here, we find
that the trends are a bit mixed. We find that for
SIQA, humans are better at recognizing missing
localized knowledge, but in CosQA, models out-
perform humans. This is likely because SIQA typ-
ically contains short contexts based on everyday
social situations that are easier for humans to un-
derstand. In contrast, CosQA has longer contexts
with rarer situations requiring more complex under-
standing.

Overall, we conclude that GPT-4 outperforms

humans in complex deductive reasoning and
situations involving entity-grounded knowledge,
whereas humans are more consistent at simple
reasoning and situations requiring commonsense
knowledge.

F Finetuning LLMs

In this section, we describe more details about the
training dataset used for finetuning, our negative
data collection strategy that was used in the ranking
formulation, and other finetuning details.

F.1 Training Dataset Selection

To train the Flan-T5-xxl model, we create a train-
ing dataset using representative datasets from each
category. We pick the ANLI, RACE, and ECQA
datasets to represent NLI, contextual QA, and ratio-
nale categories, respectively. We select the datasets
with diverse entailment challenges and aim to max-
imize the total training data. We note that the
amount of training data is quite low for the rationale
category. Thus, we also include the StrategyQA
(Geva et al., 2021) dataset in the training set to al-
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leviate this. Similar to BoolQ, StrategyQA has a
Yes/No type of questions and their corresponding
explanations. We convert the question-answer pair
into a hypothesis using the QA-to-statement con-
verter (Chen et al., 2021) as described in Section
2.1.

For a given premise and a valid hypothesis, gen-
erate five alternate hypotheses contradicted by
the premise. Try to avoid using the negation
words such as “not”, “never”, etc. The output
should be numbered from 1 to 5.
Premise: {premise}
Hypothesis: {hypothesis}

Box 2: Prompt format for generating alternate negative
hypothesis for a given premise-hypothesis pair. Please
refer to Section F.2 for details.

F.2 Negative Data Collection for Ranking

In the ranking formulation, for a given premise
and hypothesis pair (p, h), we need to find some
weaker hypothesis h′ to use the ranking loss defined
by Equation 2. We collect such weaker hypotheses
in two ways and then combine them to form the
training data. The two techniques are described
below:

• Using incorrect options: The contextual QA
category has naturally occurring negative data.
For a given question and choices, we pair the
hypothesis corresponding to the correct option
with all other hypotheses corresponding to the
wrong options to create the ranked data.

• GPT-3.5 prompting: The other way we gen-
erate negative data is by prompting GPT-3.5.
Specifically, we use the prompt format shown
in Box 2 to generate alternate hypotheses con-
tradicted by the original premise. We only
select premise and hypothesis pairs that origi-
nally have support label. GPT-3.5 generated
hypotheses are then considered negative sam-
ples and paired with the original hypothesis.
We repeat this for all the training datasets
(ANLI, RACE, ECQA, and StrategyQA).

F.3 Hyperparameters and other details

During training, we select the learning rate from
the set {7e−5, 1e−4, 2e−4}, per GPU batch size
from the set {6, 8}, margin m in Equation 2 from
the set {0.2, 0.3, 0.5}, and warmup ratio 0.1. The
model is trained for 1400 steps on a cluster of 8

A6000 GPUs. We evaluate the model every 200
steps and save the checkpoint if the model shows
improvements on a held-out development set.

G Chain-of-Thought Filtering

We study three variants of CoT Filtering as men-
tioned below:

• B + SC: This is the self-consistency base-
line. Here, B is the base model used to sample
CoTs. We sample 40 CoTs for each instance
before computing the majority predicted label.

• B + Flan-T5-xxl + SC: In this, we use a pre-
trained Flan-T5-xxl for filtering out the in-
consistent rationales before the majority vot-
ing. We keep the top-5 rationales after scoring
them using Flan-T5-xxl.

• B + Flan-T5-xxl + Rank + SC: This is the
same as above, but instead, we use our
ranking-finetuned Flan-T5-xxl model for fil-
tering.

Following (Wang et al., 2023), we use four dif-
ferent base CoT model: UL2 (Tay et al., 2023),
Codex-001 (Brown et al., 2020), LaMDA-137B
(Thoppilan et al., 2022), and ChatGPT (OpenAI,
2022). Further, we compute the CoTs and ana-
lyze the performance of the above methods for
three multi-choice QA datasets, namely, Common-
senseQA (Talmor et al., 2019) and AI2 Reasoning
Challenge (Clark et al., 2018) (easy (ARC-e) and
challenge (ARC-c) variants). Please refer to (Wang
et al., 2023; Wei et al., 2022) and the associated
code11 for details on the CoT prompt formats. The
results are shown in Table 10. We note a consistent
improvement between the three variants, with Flan-
T5-xxl + Rank model performing the best. This
demonstrates the advantage of our entailment fine-
tuning approach. Please refer to Section 5 for more
findings.

11https://openreview.net/attachment?id=
1PL1NIMMrw&name=supplementary_material
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Method CSQA ARC-e ARC-c Average

UL2 + SC 55.77 70.33 49.57 58.56
UL2 + Filter (Flan-T5-xxl) + SC 62.49 74.50 55.72 64.24
UL2 + Filter (Flan-T5-xxl + Rank) + SC 63.80 77.24 60.08 67.04

Codex-001 + SC 54.80 71.70 52.20 59.57
Codex-001 + Filter (Flan-T5-xxl) + SC 65.44 73.57 54.27 64.43
Codex-001 + Filter (Flan-T5-xxl + Rank) + SC 68.39 78.16 59.51 68.69

LaMDA-137B + SC 62.90 78.90 59.90 67.23
LaMDA-137B + Filter (Flan-T5-xxl) + SC 71.17 80.89 63.65 71.90
LaMDA-137B + Filter (Flan-T5-xxl + Rank) + SC 72.15 82.95 67.32 74.14

ChatGPT + SC 78.40 96.30 87.20 87.30
ChatGPT + Filter (Flan-T5-xxl) + SC 81.86 96.52 88.32 88.90
ChatGPT + Filter (Flan-T5-xxl + Rank) + SC 81.88 96.57 88.63 89.03

Table 10: Comparison of Chain-of-Thought filtering performance. We consider four self-consistency baselines. For
each baseline, we experiment with both Flan-T5-xxl and Flan-T5-xxl + Rank to filter out inconsistent rationals.
Takeaway: Our fintuning strategy brings notable improvements when compared to both baseline and Flan-T5-xxl
filtering model. For more details and analysis, please check Appendix G.
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Figure 9: Results comparison among different k values in
CoT filtering application. k = 5 is the best choice on average.
For detailed analysis, please refer to Appendix G.1.

G.1 Ablation of Top-k Filtering

We examine our top-k selecting strategy by choos-
ing different values of k and compare their results.
We pick up k from {3, 5, 10, 20, 30} and present
the corresponding aggregated results in Figure 9.
The general trend is that, as k increases, the model
performance increases first and then starts to de-
crease, reaching the peak at k = 5. When k is
small, there are only a limited number of CoT ratio-
nals, and the majority voting process is vulnerable
to potential outliers. On the other hand, if k is too
large, then many noisy results are included, leading
to poorer performance.

G.2 Examples of Filtered CoTs

Table 12 presents three CoT reasoning examples,
each including two outputs that are kept and three
that are filtered out by ranking. According to the
table, outputs supported by strong rationales are
ranked highly and kept. On the other hand, if the ra-

tionale is irrelevant to the prediction (like rationale
3 in example 1), the rationale itself is incomplete
(like rationale 5 in example 1), or the rationale sup-
ports another option rather than the prediction (like
rationale 4 in the example 1), then such output has
a low entailment score leading to a lower ranking
and getting filtered out.
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Instructions

Thanks for participating in this HIT!

You will read a claim and an premise which may or may not support the claim.

The task asks you to determine the relationship between theClaim and the Premise. Below are some important
definitions. Please read the label descriptions and choose accordingly.

A couple of notes:

You may disagree with the correctness/factuality of the Claim or the Premise. Please assume they are

correct and focus only on the relation between them.

The premise usually contains multiple sentences some of which might be redundant. Please ignore the

redundant sentences when judging the relation between the Premise and the Claim, i.e., it's okay to have

reduntant sentences in the premise as long as the claim is supported by the premise.

Premise A few sentences describing some knowledge behind the topic of the claim.
Claim A simple sentence describing an event, situation, fact, etc., that essentially makes a

claim.

Support Premise supports the claim basically means the premise provides all necessary
information to explain why the claim is valid.

Partial Support Premise partially supports the claim if the premise provides some information to
explain why the claim is valid, but its missing some more information that may be
required to confidently say its a valid claim.

Irrelevant/Out-of-topic These are cases where the premise is not related/relevant to the claim or contains
redundant information that is totally not helpful. Note that if the premise supports the
claim but still contains redundant sentences, this label should not be selected.

Partial Contradict Premise partially contradicts the claim if the premise indicates why a part of the
claim might be wrong, but more information is needed to be confident about it. This
might occur very rarely.

Contradict Premise contradicts the claim if the information provided in the premise proves the
opposite of what is claimed in the claim.

Example

Example #1:

Premise: A fried egg is a cooked dish made from one or more eggs which are removed from their
shells and placed into a pan, usually without breaking the yolk, and fried with minimal
accompaniment. Fried eggs are traditionally eaten for breakfast in many countries but may also
be served at other times of the day.

Claim: A fried egg has a runny yolk.

Task: Does the Premise support the Claim?

Justification: The premise just mentions that the yolk is not broken, but mentions nothing about it being runny or

not.

[Examples 2 and 3 ommited here for brevity] 

Yes, the Premise fully supports the Claim.

 Yes, but the Premise only partially supports  the Claim.

No, the Premise only contains irrelevant information/out-of-topic sentences or is not well-formed.

 No, the Premise partially contradicts  the Claim.

No, the Premise fully contradicts the Claim.

Figure 7: Human Evaluation Format. We use this format to evaluate human performance on the Entailment Verification (EV)
task. Please refer to Appendix E.1 for more details about the annotation procedure.
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Instructions

Thanks for participating in this HIT!

You will read a claim and an premise. The claim will either be supported or not supported by the premise. Your task is to
determine if any information is missing in the premise when determining the supportiveness of the claim and how easy it is to
conclude the supportiveness of the claim from the given premise.

Task1 asks you to determine if thePremise presents all necessary information to reason about the
supportiveness of the Claim. If some information is missing, below are three possible types of missing
information considered. Please understand the distinction between each and label accordingly.

Task2 asks you to determine how easy it is to reason about the supportiveness of the Claim using just the
information present in the Premise if all necessary information is presented in the Premise. Please read the label
descriptions and choose accordingly.

A couple of notes:

You may disagree with the correctness/factuality of the Claim or the Premise. Please assume they are
correct and focus only on the relationship and reasoning between them.

The premise usually contains multiple sentences some of which might be redundant. Please ignore the
redundant sentences when judging the relation between the Premise and the Claim, i.e., it's okay to have
reduntant sentences in the premise as long as the claim is supported by the premise.

Premise A few sentences describing some knowledge behind the topic of the claim.
Claim A simple sentence describing an event, situation, fact, etc., that essentially makes a

claim.

Missing Entity-
grounded Information

Some information is missing in the premise. Those information is likely to be found
on WikiPedia and general internet.

Missing
Commonsense
Information

Some information is missing in the premise. Those information is implicitly
understood amongst humans, unlikely to be documented on the web.

Missing Localized
Information

Some information is missing in the premise. Those information is about specific
person/event/item in the context.

Easy The reasoning is easy if minimally combining/substituting sentence in premise or
combining sentences in premise along with some english word knowledge of
negations, synonyms, antonyms, etc. will prove/disprove the claim.

Moderate The reasoning is moderate if the premise contains all information needed to
prove/disprove the claim but multiple reasoning steps are needed.

N/A There is some information missing in the premise and this question is not
applicable to that instance.

Example

Example #1:

Premise: Inheriting is when an inherited characteristic is passed from parent to offspring by genetics /
DNA. Inherited characteristics are the opposite of learned characteristics.
Claim: Learned characteristics are not inherited from parents.

Task 1: Does the Premise contain all information needed to convincingly support/refute Claim?

Justification: The premise clearly states that the inherited characteristics are from parents and clarifies the
relationship between inherited characteristic and learned characteristic. Those information is enough to
determine the supportiveness of the claim.

Task 2: If all needed information is contained, then how easy would it be to reason about the
supportiveness of the Claim based on just the Premise?

Easy

(combine/substitute sentences or use word knowledge)

Moderate

(multiple reasoning steps required)

N/A

(not applicable)

Justification: Simply understanding "opposite" in the premise has the similar meaning to "not" will be enough to
prove the claim.

[Examples 2 and 3 ommited here for brevity] 

 Yes

No, missing some entity-grounded information

 No, missing some commonsense information

No, missing some localized information

Figure 8: Reasoning Type Annotation Format. This format collects the reasoning type of sampled instances from each dataset.
The detailed annotation procedure can be found in Append E.2.
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Type Example Entails Human GPT4

[R1]
Premise: Seoul Train is a 2004 documentary film that deals with the dangerous
journeys of North Korean defectors fleeing through or to China. These journeys are
both dangerous and daring, since if caught, they face forced repatriation, torture, and
possible execution.
Hypothesis: Seoul Train was filmed in 2002 to depict the dangerous journey of North
Korea.

No

Premise: My family history goes back a long way. My ancestors on my mothers side
were a mix of English and Scandinavian Mormon converts that came to Utah in the
19th century. My father side is an unknown.
Hypothesis: It might be true that your family history has a short history.

No

Premise: An iron oxide can be made from oxygen and rust. Oxygen and rust are gases
at room temperature.
Hypothesis: An iron oxide can be made from two elements that are gases at room
temperature.

Yes

[R2]
Premise: How to make deep fried watermelon. Cut the watermelon in half, down
its length. Then cut each half in half, again cutting down the length. Place the four
wedges on a board for cutting.
Hypothesis: To deep fry a watermelon, it should be cut into 6 pieces.

No

Premise: The freshwater mussels used to live in the place where the mountain range
is located. A freshwater mussel is a kind of water animal that lives in freshwater.
Hypothesis: The mountain range used to be covered by freshwater.

Yes

Premise: De Baandert was a multi-use stadium in Sittard-Geleen, Netherlands. It was
used mostly for football matches and hosted the home matches of Fortuna Sittard. The
stadium was able to hold 22,000 people. It was closed in 1999 when Fortuna Sittard
Stadion opened.
Hypothesis: 22,000 people go to football matches at De Baandert.

No

[R3]
Premise: Sasha spent Austin’s money trying to win a prize even when the odds were
stacked against her.
Hypothesis: Austin will want to pull out more money next.

No

Premise: George Dayton (born 1827, died 1938) lived in Union Township in what
is now Rutherford, New Jersey, and represented Bergen County in the New Jersey
Senate from 1875 to 1877. Dayton moved to Closter, New Jersey, in 1890 and became
the clerk of Harrington Township, New Jersey.
Hypothesis: George Dayton lived in New Jersey his entire life.

No

Premise: We fought aliens on Mars for Mars Bars, which gave us superspeed. We
didn’t stop at Jupiter, coz that would have made us "stupider". Pluto was very chilly,
so we ate it. Ahem, chille that is.
Hypothesis: This person will attempt to make a fun rhyme with the names of the
other six planets.

Yes

[R4]
Premise: Robin put their hand on Addison’s wrist to keep Addison from shaking
uncontrollably.
Hypothesis: Addison will want to do good next.

No

Premise: Terry Pratchett’s Going Postal is a two-part television film adaptation of
"Going Postal" by Terry Pratchett, adapted by Richard Kurti and Bev Doyle and
produced by The Mob, which was first broadcast on Sky1, and in high definition on
Sky1 HD, at the end of May 2010.
Hypothesis: Terry Pratchett’s Going Postal adaptation for television is faithful to the
original novel.

No

Premise: Co-producing the film is Happy Madison, the company owned by Sandler,
who has been a compatriot of Schneider’s since they met early in their careers, as
mutually struggling stand-up comedians in Los Angeles.
Hypothesis: Comedians in Los Angeles struggle.

No

Table 11: Comparison between the performance of humans and GPT-4 on examples from four reasoning types.
Each example includes the golden label from the dataset and shows if human/GPT-4 makes the correct decision.
The definition of those reasoning types and detailed analysis can be found in Section 3.3 and Appendix E.3.
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Question & Options (Rationale, Prediction) Kept

[ARC_easy]
Cells need nutrients for energy. Which
system is responsible for breaking
down food to provide cellular energy?
(A) digestive
(B) excretory
(C) circulatory
(D) respiratory

(Digestive system takes in food, breaks down food, and takes away
the unusable parts of the food using the excretory system., B)

(Circulatory system is responsible for eliminating waste from the
body. Circulatory system is also responsible for breaking down
food into nutrients that the cells can use., C)

(Cellular energy is provided by the chemical breakdown of food.,
C)

(In the mouth, food is broken down and absorbed into the circula-
tory system., D)

(Since the digestive system breaks down food to provide cellular
energy., B)

[CSQA]
A human wants to submerge himself in
water, what should he use?
(A) whirlpool bath
(B) coffee cup
(C) cup
(D) soft drink
(E) puddle

(The answer should be the thing that will help the human submerge
himself in water. Of the above choices, only whirlpool baths can
help the human submerge himself in water., A)

(The answer should be an item that allows the human to fully
submerge himself. Of the above choices, only a whirlpool bath
allows the human to fully submerge himself., A)

(The answer should be something that can perform the submerging
function. Of the above choices, only the soft drink can float., D)

(The answer must be something that a human would use. Of the
above choices, the only thing a human would use is a soft drink.,
D)

(The answer must be something that is liquid. Of the above
choices, only a cup of water is liquid., C)

[ARC_challenge]
In pea plants, the trait for round seeds
is dominant over the trait for wrinkled
seeds. If a pure dominant plant with
round seeds is crossed with a plant with
wrinkled seeds, what can be predicted
about the offspring plants?
(A) They will always produce round
seeds.
(B) They will only produce wrinkled
seeds.
(C) Each offspring plant will have
some round and some wrinkled seeds.
(D) Unless the plant with wrinkled
seeds was pure recessive, no prediction
can be made.

(The offspring plants will only produce round seeds as the round
seed trait is dominant over the wrinkled seed trait., A)

(If plant with round seeds is crossed with plant with wrinkle seeds,
the dominant trait will be passed down to the offspring; so each
offspring plant will have round seeds., A)

(If a pure dominant plant with round seeds is crossed with a plant
with wrinkled seeds, the offspring plant will produce round seeds.,
C)

(Just like the traits in humans, there is no dominant trait for a
particular characteristic., C)

(The recessive trait is the one that causes the plant to produce
round seeds. So option Unless the plant with wrinkled seeds was
pure recessive, no prediction can be made., D)

Table 12: CoT filtering examples from three MCQ datasets. Each example contains two outputs that are kept and
three outputs that are filtered out in the entailment verification pipeline. Please refer to Appendix G.2 for more
details.
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