
Findings of the Association for Computational Linguistics: ACL 2024, pages 8341–8356
August 11-16, 2024 ©2024 Association for Computational Linguistics

TOAD: Task-Oriented Automatic Dialogs with Diverse Response Styles

Yinhong Liu♠♡∗ Yimai Fang♡ David Vandyke♡ Nigel Collier♠
♠Language Technology Lab, University of Cambridge

♡Apple
{yl535,nhc30}@cam.ac.uk

{yimai_fang,dvandyke}@apple.com

Abstract

In light of recent advances in large language
models (LLMs), the expectations for the next
generation of virtual assistants include en-
hanced naturalness and adaptability across
diverse usage scenarios. However, the cre-
ation of high-quality annotated data for Task-
Oriented Dialog (TOD) is recognized to be
slow and costly. To address these challenges,
we introduce Task-Oriented Automatic Di-
alogs (TOAD), a novel and scalable TOD
dataset along with its automatic generation
pipeline. The TOAD dataset simulates realistic
app context interaction and provide a variety
of system response style options. Two aspects
of system response styles are considered, ver-
bosity level and users’ expression mirroring.
We benchmark TOAD on two response genera-
tion tasks, and the results show that modeling
more verbose responses or responses without
user expression mirroring is more challenging.1

1 Introduction

Task-Oriented Dialog (TOD) stands as a funda-
mental task of machine intelligence (Young, 2010),
involving goal-driven conversations between a hu-
man and a system to achieve specific tasks. It
has been used in training virtual assistant sys-
tems for various real-world applications, includ-
ing mobile phones (Hoy, 2018), virtual reality
devices (VR) (Kottur et al., 2021), smart home
devices (Duong et al., 2019), online shopping
assistants (Yan et al., 2017), and trip booking
helpers (El Asri et al., 2017b).

Advancements in developing TOD systems face
a challenge posed by conflicting requirements (Hu
et al., 2023): the demand for extensive datasets
clashes with the substantial time and financial in-
vestments (months if not years) required for data
collection (Larson and Leach, 2022). Looking

∗Work done during an internship at Apple.
1The data and code are available at https://github.com/

apple/ml-toad.

"LV + M": Done.
"LV + no M": Removed. (Default)

"HV + M": Are you sure you want to remove all reminders
for tomorrow?
"HV + no M": Confirm deletion of all reminders for
tomorrow? (Default)

User: Can you remove all reminders for tomorrow, please?

System:

User: Yes, please proceed.

System:

"MV + M": You want to delete all tomorrow's reminders?
"MV + no M": Delete all?

"LV + M": Confirm?
"LV + no M": Sure?

"HV + M": All reminders for tomorrow have been removed.
"HV + no M": I've deleted all reminders for tomorrow.

"MV + M": I've removed them.
"MV + no M": All done.

Figure 1: A dialog example from TOAD, with all system
response styles. LV, MV, HV and M stand for Low,
Mid, High Verbosity and Mirroring. The underscored
responses are selected as the default styles.

ahead to the next generation of virtual assistants, an
expectation arises for them to adapt their response
styles to different usage scenarios, e.g. if equipped
with a screen, ensuring a sustained level of natural-
ness and communication efficiency and ultimately
enhancing the user experience. However, existing
datasets lack consideration for adaptive response
styles and neglect to simulate interactions with
app contexts like calendars or alarms.

This paper presents Task-Oriented Automatic Di-
alog, TOAD, a highly automatic generated dataset,
along with its generation pipeline, designed to ad-
dress the challenges mentioned above. In TOAD,
we not only simulate realistic interactions with
app context and diverse conversational phenom-
ena, but also analyze two aspects of response
style—verbosity level and users’ expressions mir-
roring, aiming to enhance naturalness and adap-
tiveness for various usage scenarios. As shown in
the dialog example in Fig. 1, for each turn of system
utterance, we provide a spectrum of six responses
style options. The dataset is constructed using an

8341

https://github.com/apple/ml-toad
https://github.com/apple/ml-toad

MultiWoZ PRSTO ABCD SGD STAR TOAD
Number of dialogs 8,438 95,671 8,034 16,142 5,820 8,087
Number of services 7 34 30 16 13 11
Total number of turns 115,434 - 177,407 329,964 127,833 37,678
Average tokens / turn 13.1 9.0 9.1 11.2 11.2 10.6
Context app interaction × ✓ × × × ✓
Response style control × × × × × ✓
Highly automatic × × × × × ✓

Table 1: Comparison of our TOAD dataset to other existing TOD datasets.

automatic generation pipeline, leveraging the zero-
shot generation capability of the latest Large Lan-
guage Models (LLMs), such as ChatGPT2. Due to
its automatic nature, the TOAD dataset is scalable
in terms of data size and service coverage. To pro-
vide a benchmark for future studies, we establish
reference scores for two TOD Natural Language
Generation (NLG) tasks, evaluating a variety of
baseline models. The results indicate that modeling
more verbose or responses without user expression
mirroring is more challenging.

The contributions of this work are three-fold: 1)
A new TOD dataset with multiple response styles
and realistic app context interaction, such as revis-
ing or deleting calendar events. 2) TOAD is the
first that investigates the naturalness and adaptive-
ness of system response, providing insights into the
dimensions of style that virtual assistants should
consider. 3) An automatic TOD data generation
pipeline for scalable, cost-effective expansion of
data size and domains.

2 Related Works

2.1 Task-Oriented Dialog Dataset
To our best knowledge, TOAD stands out as the
first highly automatically generated TOD dataset.
A concurrent work, LUCID (Stacey et al., 2024),
also adopts a similar LLM-driven approach for di-
alog generation. All previous datasets relied on
human annotations or paraphrasing, which makes
the collection process costly and time-consuming.
Moreover, our dataset also admits all of the unique
properties listed in Section 1.

Previous TOD datasets mainly fall into two cat-
egories based on how dialog utterances are col-
lected: Machine-to-Machine (M2M) and Wizard-
of-Oz (WOz). In the M2M setup, proposed by
Shah et al. (2018), systems or schemas exhaustively
simulate dialog with skeleton plots, represented in
structured formats. The dialog plots are realized

2https://openai.com/blog/chatgpt

into natural language by crowd workers. A repre-
sentative dataset is the SGD (Rastogi et al., 2020),
which consists of dialogs across 16 domains. They
defined a list of meta information as schema, such
as valid slots and supporting intents for each do-
main and utilize the slot-filling strategy to simulate
the dialog plots. Another dataset, STAR (Mosig
et al., 2020), defined explicit ideal dialog flows for
each domain and simulated realistic user behaviors
such as small-talk interruptions.

Another line of TOD data collection setup, the
WOz (Kelley, 1984), employs crowd workers play-
ing roles both of the user and the system, to directly
produce utterances in a more improvised manner.
The user is provided with an overall goal to achieve
throughout the conversation, while the “system”
needs to respond with access to a database based on
the user’s preference. Such WOZ set-up has been
successfully validated by WOz (Wen et al., 2017)
and FRAMES (El Asri et al., 2017a). A popular
dataset MultiWOZ (Budzianowski et al., 2018) de-
signed a user-friendly interface for the Wizards and
easy-to-follow user goals, resulting in diverse and
semantically rich data. The recent Multi3WOZ (Hu
et al., 2023) expands this paradigm, collecting a
large-scale multilingual TOD dataset with parallel
utterances in four languages over the same conver-
sational flows.

2.2 Dialog Distillation

Recent advancements in LLMs have demonstrated
their improved ability to follow human instructions
and generate fluent conversation utterances for a
range of understanding and generation tasks. A list
of recent works embrace this concept, extracting
knowledge and dialog from LLMs to train student
or in-domain models. SODA (Kim et al., 2023) dis-
tilled social interactions dialogue by contextualiz-
ing commonsense knowledge from a social knowl-
edge graph. PLACES (Chen et al., 2023a) gener-
ated a multi-party social dialog by prompting the
OPT (Zhang et al., 2022) model with topic, facts,

8342

User Device Context Plot Generator Dialog Generator
Meta info:
 - Persona: Name, gender, culture background,
occupations...

Meta info:
 - Schema: {service_name: calendar_events,
intent_operations: {name: create,
required_slots: [date, start_time, duration],
optional_slots: [attendees, name, location] ...}
 - Phenomena: Regular

Meta info:
 - Persona: User speech habit.
 - Response style: Verbosity level and mirroring
expression.

Output example:
User: calendar_event_create(start_time="18:30",
duration="2 hours", name="soccer game")
System: request_information(date)
User: inform_information(date="Tue 2025-02-25")
System: notify_done(calendar_event_create(date="Tue
2025-02-25", start_time="18:30", duration="2 hours",
name="soccer game"))

Output example:
User: Can you schedule a soccer game for me
starting at 18:30 and lasting for 2 hours?
System: When should it be?
User: On Tuesday, the day after tomorrow.
System: I have scheduled the soccer game for you
on Tuesday, the 25th of February, 2025 starting at
18:30 and lasting for 2 hours.

Output example:
today: 'Sun 2025-02-23',
contacts: [{'relationship': 'Friend', 'full_name': 'Luis
Morales'}...],
calendar_events: [{'name': 'Maintenance', 'attendees':
['Laura Miller', 'Jason Brown'], 'date': 'Mon 2025-02-24',
'start_time': '08:00', 'duration': '8 hours'}...],
messages: [{'contacts': ['Luis Morales'], 'text': "Hey
Emily! I heard about this new art exhibition happening
downtown. It seems right up your alley..."}],
...

Figure 2: Overview of the TOAD Automatic Generation Pipeline in 3 Steps: (i) Persona-grounded user device
context generation, (ii) Action plot generation, and (iii) Dialog utterance realization.

and dialog as in-context learning examples. Math-
Dial (Macina et al., 2023) distilled teacher-student
math reasoning tutoring dialog through pairing hu-
man teachers with a LLM. There are also works
that distil multi-turn open-domain instructional con-
versations, such as Baize (Xu et al., 2023) and Ul-
traChat (Ding et al., 2023). Our TOAD represents
the first work in distilling TOD dialog with mul-
tiple response style options, which requires more
nuanced control over the conversation content.

3 Data Generation Pipeline

The TOAD pipeline, depicted in Fig. 2, comprises
three key stages for the automated creation of dia-
logues. The initial stage involves the generation of
device context, simulating users’ personas and their
device app contexts. In the second stage, essential
conversation attributes, including conversational
content, flow, and language phenomena, are deter-
mined and incorporated into a dialog plot. The final
stage involves the realization of the dialog plot into
dialog utterances by a dialog generator. This gener-
ator simulates user speaking habits and provides a
spectrum of system response styles.

3.1 Persona-Grounded Context Generation

Interacting with on-device context information
such as calendar and alarms is an important part
of real-life virtual assistant use-cases. A recent
dataset, PRESTO (Goel et al., 2023), provides sim-
ulated structured contexts, but their influence is
very limited as most dialogs are irrelevant to their
contexts and there is no interaction such as modifi-
cation or deletion.

Data diversity is important to the model’s robust-
ness and generalization. However, LLM-generated
data given the same input prompt often lacks diver-

sity. To address the two issues mentioned above,
we develop a persona-grounded context generation
pipeline, which combines sampling from external
data sources and chain-of-thought generation (Wei
et al., 2022). Recent work (Hu and Collier, 2024)
has shown that LLMs are capable to simulate dif-
ferent perspectives.

We synthesize each persona in 3 steps: 1) We
synthesize random occupation information, by sam-
pling from work statuses including employed, un-
employed/retired, and student. For students or the
employed, occupations are based on NAICS 6-digit
industries.3 Additional occupation details such as
location, affiliation, and job level are generated by
prompting the LLM. 2) We sample surname and
race together from the 2010 US Census data,4 and
sample other attributes such as gender, MBTI per-
sonality from pre-defined sets. 3) The sampled
information is input into the LLM to write an in-
troduction with additional fictionalized details (e.g.
first name, age, marital status, hobbies).

Based on each persona’s introduction, attributes
and a random ‘current time’, we prompt the LLM
to generate app context instances for each service.
Details about the supporting services are provided
in Section 5. There are dependencies across ser-
vices, e.g. information of generated contacts might
be shared by messages and calendar.

3.2 Plot Generation
Schema Our pipeline, inspired by the approach
in SGD (Rastogi et al., 2020), establishes a schema
for each service by outlining supported intents, as-
sociated slots and relevant meta-data. For example,

3https://www.census.gov/naics/2022NAICS/2022_
NAICS_Structure.xlsx

4https://www2.census.gov/topics/genealogy/
2010surnames/names.zip

8343

https://www.census.gov/naics/2022NAICS/2022_NAICS_Structure.xlsx
https://www.census.gov/naics/2022NAICS/2022_NAICS_Structure.xlsx
https://www2.census.gov/topics/genealogy/2010surnames/names.zip
https://www2.census.gov/topics/genealogy/2010surnames/names.zip

Phenomena Actions Utterance

Compound
restaurant_booking_reserve_table(restaurant
="French Brasserie", time="8:00 PM"),

I would like to reserve a table at the French
Brasserie for 8:00 PM. Also, can you help me
find a hotel in Las Vegas?hotel_booking_search_hotel(location="Las Vegas")

Compositional weather_get_weather(date=get_calendar_events(
name="Art Class").calendar_events_check(date).date)

What’s the weather like on the day of my Art
Class event?

Self-correction get_movie_time(movie_name="Fast & Furious Presents:
Hobbs & Shaw", location="Miami").self_correction(
location="Houston")

Could you find the showtimes for Fast & Furious
Presents: Hobbs & Shaw in Miami? Actually,
make that Houston instead.

Complex referral get_alarms(ordered_by="time", index=0).check(time) What’s the time for my earliest alarm?

Table 2: Dialog Phenomena Examples. Actionns and utterance for initial query examples, For multi-intent
phenomena, compound and compositional, we concate service name as prefix to the intent actions.

the calendar_events service has four supporting
intents (create, modify, check and delete). Each in-
tent specifies required slots like start_time, date
and duration along with optional slots such as
attendees, name and location. Additionally, we
also specify a list of meta-indicators for each in-
tent to control the conversation flow. For instance,
the intent of reserve_table is marked as for “re-
quire_confirmation=True”, indicating the need for
an additional confirmation in the dialog flow. Fur-
ther details about the schema are provided in Ap-
pendix A.

Dialog Phenomena To enhance the authentic-
ity of our conversation flows, we simulate various
dialog phenomena, exemplified in Tab. 2. These
phenomena are categorized into multi-intent and
single-intent types. Compound and compositional
dialogs fall into the multi-intent category, where
users pursue related or unrelated goals simulta-
neously or their initial intent depends on another
implicit intent. In the Tab. 2 example, to obtain
the weather information for the day of the “Art
Class”, an implicit intent check is needed to get
the actual date of the “Art Class”. Self-correction
and complex referral are phenomena that simulate
real-life conversation dynamics. In self-correction,
users correct themselves or alter their requests mid-
sentence or afterward. In complex referral, users
employ realistic referring expressions that require
additional logic to comprehend. For instance, an
oral expression like “earliest alarm” requires rank-
ing all alarms in app context by time to pinpoint
the user’s reference accurately.

Intent Sampling In TOAD, intent represents
user’s intention and determines the conversation
content and goal. To compose the dialog, we sam-
ple services and intents, and generate correspond-
ing slot values through LLM prompts. For consis-

tency, all slot values are generated simultaneously.

For multi-intent compound dialog, two intents
and their respective slot values are independently
sampled. While for compositional dialog, as the
output of the implicit intent will be used as the input
of the initial intent, the two intents are jointly sam-
pled with a slot matching strategy. Further details
on the intents sampling and slot values generation
are provided in Appendix C.

Plot Representation As illustrated in Fig. 2, a
plot serves as a conversation skeleton, consisting of
a sequence of Meaning Representations (MRs) that
encapsulate all the necessary dialog information.
The manipulation of these MRs allows control over
the dialog’s content and flow. In contrast to SGD
and STAR, which rely on a finite set of function-
like actions for MRs, TOAD opts for a pseudocode
format to represent actions. This choice avoids
dependence on a fixed set of predefined actions,
enriching the meaning space, particularly in terms
of referring expressions. Furthermore, the decision
to use pseudocode aligns with the fact that most lat-
est LLMs have been pre-trained on code, ensuring
their comprehension of code-like MRs.

Plot Construction Dialog plot construction fol-
lows the flowchart in Fig. 3. The core mechanism
employs a slot-filling strategy, with the system ask-
ing the user to fill all required slots to achieve their
intent. The meta-indicators specified in the intent
schema also determine the plot components, e.g.
including additional confirmation turns or replying
with search result summarization. For multi-intent
dialogues, the plots are composed by merging in-
dividual plots for each intent in a natural order.
The details of the merging policy are provided in
Appendix D.

8344

User: Initial query

Necessary slots filled?

Yes No

(Optional)
Sys: ask_confirm()
Usr: confirm()

Sys: notify_done()

Sys: request_information()
Usr: inform_information()Search query?

No Yes

Sys: summarise()

(Optional)
Usr: request_information_for()
Sys: inform_result()

Figure 3: Plot construction for single intent dialog based
on slot-filling strategy.

Context Interaction Dialogues involving inter-
actions with context apps are ubiquitous in real-life
scenarios but have not been adequately addressed
in existing datasets. TOAD is the first work that
includes conversations with context interactions,
supporting generic intents of checking, deleting,
and modifying on app services such as calendar
events, alarms, and messages.

This expansion significantly broadens the scope
for simulating dialogues with natural referring ex-
pressions and introduces the concept of proper re-
ferring expressions. Users can refer to a calendar
event using any slots, but the system should adhere
to a preference order: While multiple slots may be
unambiguous, certain slots are more intuitive for
users. For instance, when referring to a calendar
event, “the 9 a.m. meeting” is preferred over “the
meeting in the office.” Therefore, referring by time
is prioritized over referring by location. For each
intent, we define a preference order for the slots,
enhancing the naturalness of the system response.

Database query Traditional TOD datasets sup-
port intents that require database queries, such as
restaurant or movie searching. In contrast to SGD’s
use of FreeBase for realistic slot values, our TOAD
pipeline leverages LLMs as a knowledge database.
To ensure consistent query results, we prompt the
LLMs with input slot values as conditions. For
each query, we instruct LLMs to generate five dif-
ferent instances, simulating the search operation
and ensuring diversity in the returned values. The
advantages of using LLMs as a knowledge base

include: 1) It avoids the issues of empty or noisy
searching results. 2) The query outcomes are more
consistent with other slot values.

3.3 Dialog Generator

The dialog generator realizes the composed plots
into natural utterances. Similar to SGD and STAR,
we adopt the Machine-to-Machine (M2M) ap-
proach, where different LLMs take turns to play
the roles of user and system for generating conver-
sation utterances.

Style Control To offer natural responses across
various scenarios, we generate a spectrum of re-
sponse styles for each system turn as shown in the
example in Fig. 1, including combinations of low,
mid and high verbosity and mirroring or no mir-
roring. This is achieved by providing In-Context
Learning (ICL) examples and style definitions for
different styles to LLMs. The motivations behind
these style designs are explained in Section 4.

Given the six style options for each system turn,
a selection must be made to construct the dialog
history, which will shape the subsequent genera-
tion. The dialog history significantly influences
the generation of future conversation utterances.
For instance, if the system consistently responds
with low verbosity, user utterances tend to become
shorter as well. Hence, the most natural style for a
given conversation context should be selected, re-
ferred to as the default style, which should balance
between efficient communication and minimizing
the risk of misoperation. The selection rules are
explained in detail in Section 4.

Prompt Template The prompt templates for user
and system encapsulate three key pieces of infor-
mation: 1) Current turn dialog action, 2) dialog
history, and 3) style instruction. ICL demostration
for action-to-utterance are also provided to guide
the utterance realization. For user turns, the style in-
struction describes the user’s speaking habit based
on the sampled persona. For system turns, the style
instruction provides a brief definition of each style
with corresponding ICL examples. Examples of
prompt templates can be found in Appendix H.

For efficiency and cost considerations, TOAD
prompts LLMs to generate all system styles in a
single inference pass. While generating one style
utterance at a time improves textual quality and
control performance, it represents a trade-off be-
tween quality and cost.

8345

3.4 Dataset Quality Control

To ensure the quality of the generated dataset, we
conducted a two-step quality control process. The
first step involved two automatic sanity checks:
1) Removing datapoints with utterances contain-
ing unformatted values, such as internal datetime
representations like ‘2025-12-16’. 2) Removing
datapoints that have missing slot values in the cor-
responding utterances.

The second step addressed the potential incon-
sistencies between plot actions and utterances that
may arise due to the non-deterministic nature of
language models. Although human evaluation is
considered the gold standard, it is not always feasi-
ble or scalable for large-scale dataset expansion. As
an alternative, we propose using a language model
evaluator to perform quality control, an approach
that has gained popularity in recent works (Chen
et al., 2023b; Zeng et al., 2023; Liu et al., 2024).
These studies have demonstrated the effectiveness
of language model evaluators in assessing various
aspects of generation tasks, such as summarization
and data-to-text.

To implement this approach, we provide the
LLM evaluator (gpt-3.5-turbo) with evaluation cri-
teria, app context, action plot, and corresponding
utterances. The evaluator then determines whether
the utterances are consistent with the action plot
and the app context. In our case, the LLM labeled
37 data points as inconsistent. Upon manual ex-
amination, we confirmed that 32 of these samples
were indeed inconsistent. We listed the template
used for quality control in Appendix I.

4 System Response Style

The primary evaluation criterion for today’s virtual
assistants is their accuracy in responding and as-
sisting users in achieving their goals. The next gen-
eration of virtual assistants is expected to exhibit
increased naturalness and adaptability to various
usage scenarios, which means the systems should
be able to respond with different styles. TOAD
stands as the first work in investigating the dimen-
sions of style that virtual assistants should consider.
We aim to open the discussion on optimal response
styles to encourage future exploration. In this work,
our focus centers on two main aspects: verbosity
level and mirroring.

4.1 Verbosity

Verbosity refers to the degree of details or amount
of information expressed in a response utterance.
In many cases, clear and concise communication is
preferred as it ensures efficient delivery and easy
comprehension. However, certain contexts may de-
mand a higher verbosity to provide comprehensive
explanations and avoid ambiguity. It’s essential
to strike a balance and use an appropriate level
of verbosity based on the specific communication
situation and user needs.

In TOAD, we define three levels of verbosity,
illustrated through examples in Fig. 1: Low ver-
bosity responses should only contain a few words
and may not necessarily be a complete sentence.
Mid verbosity responses should use pronouns to
refer any previously mentioned events. High ver-
bosity responses should refer to events with proper
and detailed expression and provide all relevant
information. System verbosity critically impacts
user experience, and we propose a set of rules to
determine the most natural response for a given
context, which we consider the default style.

1. If there is special language phenomena in the
user’s last query, the system should employ
higher verbosity.

2. If the system needs to respond with new infor-
mation, verbosity should be mid or high.

3. If the system is requesting user confirmation
for an irreversible operation, such as calender
deleting or ticket booking, verbosity should
be high.

4. Otherwise, the system should exhibit low ver-
bosity for efficient communication.

We note that this approach is subjective, and differ-
ent styles may be favored in various situations.

4.2 Mirroring

Extensive research (Liao and He, 2020; Vartanov
et al., 2023) demonstrates the benefits of mirroring
user behavior, emotions, personas, and expressions
in psychological tasks. Mirroring enhances mu-
tual understanding, promotes efficient communi-
cation, and consequently leads to improved user
feedback (Garrod and Pickering, 2009). In TOAD,
the response style of mirroring refers to the reuse
of noun or verb phrases from the user’s expression
whenever feasible, as illustrated in Fig. 1. In con-
trast, a non-mirroring style avoids directly copying
the user’s expression.

Mirroring is generally a favorable strategy, fos-

8346

2 4 6 8 10 12 14 16 18
Number of Turns

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
ta

ge
 (%

)
(i) Histogram of dialog lengths

Single-intent
Multi-intent:Compound
Multi-intent:Composition

1 3 5 7 9 11 13 15 17 >19
Word Count

0.0

0.2

0.4

0.6

Pe
rc

en
ta

ge
 (%

)

(ii) Histogram of word counts in utterance

User Turns
System, Low verb.
System, Mid verb.
System , High verb.

cal
endar_

eve
nts

rem
inders

mess
ages

ala
rm

s

movi
e_b

ook
ing

res
tau

ran
t_b

ook
ing

weat
her

music

hote
l_b

ook
ing

bankin
g

hom
e_a

utom
atio

n
0.0

0.1

0.2

0.3

Pe
rc

en
ta

ge
 (%

)

(iii) Service Distribution

Single-intent
Multi-intent: Compound
Multi-intent: Compositional

inform_infomation
check

confirmcreate
modify

get_w
eather

send_message

request_in
formation_for

operation_on_device

reserve_table
delete

summarise

ask_confirm

inform_result

notify_done

request_in
fomation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rc

en
ta

ge
 (%

)

(iv) Action Distribution

User System

Figure 4: (i) Distribution of the dialog lengths. (ii) Distribution of the word count in dialog utterance. (iii) Service
Coverage Distribution in Dialogs. (iv) Distribution of plot actions (Actions with > 3% inclusion). Note: All
distributions are flattened, e.g. each service or action in multi-intent dialogs individually

tering natural conversation. However, caution is
warranted, as a virtual assistant should consistently
maintain professionalism and ensure positive com-
munication. Instances where mirroring may be
inappropriate include:

• Emotional and improper phrasing: In real-life
scenarios, users may use sentimental or inap-
propriate language, such as cursing words.

• Bias: Users’ expressions may contain negative
connotations related to gender, culture, race,
or politics. A virtual assistant should avoid
reinforcing these biases.

• Non-factual information: Users may not al-
ways provide accurate information, particu-
larly in knowledge domains. For instance, ask-
ing “Who is the king of the United States?”.

• Ambiguous terms or referring expressions:
Mirroring potentially ambiguous expressions
could be confusing to the user. For exam-
ple, a user might mention “my meeting with
David,” and if the system copies this refer-
ring expression, the user could be uncertain
when identifying the event, as they may not be
aware of the possibility of having more than
one scheduled meeting with David.

Mirroring user expressions is not universally safe
or appropriate, and it is challenging to exhaustively
enumerate all misuse cases. The outlined situa-
tions provide a foundation for identifying potential
challenges, and we encourage future exploration.

5 Dataset Statistics

The current TOAD dataset covers 11 service do-
mains with 37,678 turns (18,839 user turn and
113,034 system response variations, 131,873 turns
in total) in 8,087 dialogues. It’s worth highlighting
that as TOAD operates as an automatic generation
pipeline, both datasize and covered service can be
scaled up. Additionally, the creation of a new ser-
vice schema typically requires only 15 minutes.

Across the 8087 dialogs, 40.5% are multi-intent
compound, 20.9% are compositional and 38.6%
are single intent. The distributions of the number
of turns and word counts in utterances are shown in
Fig. 4(i) and (ii) respectively. As for local phenom-
ena, 19.0% dialog are self-revision, 15.1% have
complex referral, 3.3% have both and 62.6% have
no local phenomena. Note that local phenomena
can appear in both single and multi-intent dialog.

Fig. 4(iii) illustrates the service distribution
which is relatively uniform for single intent and
compound dialogs. However, in compositional di-
alog, due to the joint sample requirement, certain
services may have less matchable slots. Scaling up
the supporting services in the schema can poten-
tially expand the joint service sample pool.

As mentioned above, TOAD does not have a
fixed set of plot actions. Fig. 4(iv) displays the dis-
tribution of actions whose occurrences are greater
than 3%. Based on the selection rules for the de-
fault response style, 61.7% of the system responses
are default high verbosity, 28.8% and 9.5% are mid
and low verbosity. The average word counts for

8347

Model
Act to Text DH+Act to Text

Test Zero-shot Test Test Zero-shot Test
B R M B R M B R M B R M

FlanT5-250m 44.8 61.8 65.0 28.4 51.5 55.1 54.2 67.2 69.4 38.3 55.3 59.3
FlanT5-3b 45.5 62.4 65.6 34.2 54.3 56.9 52.8 67.5 70.9 41.9 59.2 64.0
FlanT5-11b 43.0 60.9 64.2 35.9 57.8 60.8 54.9 68.9 72.0 44.7 59.2 63.3
Llama2-7b 41.4 61.1 63.5 31.3 52.2 54.0 48.2 62.9 65.1 40.6 54.6 61.5
Llama2-13b 41.4 59.6 64.8 34.8 55.5 57.5 49.4 64.0 68.7 42.7 56.0 62.0

Table 3: Results for two benchmarks, Action to utterance and Dialog History (DH)+Action to utterance, reported in
BLEU(B), Rouge-L(R) and Meteor(M) scores. All models are fine-tuned on the train set and evaluated on test and
zero-shot test sets.

these three levels are 17.6, 9.0 and 2.5 respectively.

6 Evaluation

TOAD data supports a range of TOD tasks, in-
cluding Intent Detection, Slot Labeling in Natural
Language Understanding, Dialog or Action State
Tracking (D/AST) and Natural Language Gener-
ation (NLG). This paper establishes benchmarks
for two response generation setups, aligning with
TOAD’s primary objective of producing more natu-
ral, realistic dialogues and diverse response styles.

6.1 Response Generation Benchmarks

The first benchmark setup is a traditionally surface
realization setup, where a dialog action is aimed to
convert into a natural language utterance (Williams
and Young, 2007) The second, following Hu et al.
(2023), is ‘oracle’ language model setup, where
both previous dialog history and current action are
available to produce the target utterance. For both
setups, the target verbosity and mirroring option
are given as part of the input.

We partition the TOAD dataset into three sets:
a training set (≈ 81.8%), a test set (10%), and a
zero-shot test set (≈ 8.2%) containing dialogs ex-
clusively related to the ‘banking’ service. The zero-
shot test set aims to assess models’ generalization
ability to unseen services.

Each response style option is treated as an in-
dividual datapoint. The surface realization setup
only includes non-mirroring response options, as it
does not have access to previous dialog utterances.
Whereas, the oracle language model setup consid-
ers all six options. In total, the two setups have
56.5K and 113K datapoints respectively

We applied supervised fine-tuning (SFT) to five
baseline models from two LM families: Encoder-
decoder models, including FlanT5-(base, XL and
XXL) (Chung et al., 2022), with parameter sizes of

Model
Mirror Verbosity

w. w./o. High Mid Low
FlanT5-250m 56.0 47.8 45.3 49.8 51.0
FlanT5-3b 59.4 49.0 45.8 49.9 52.6
FlanT5-11b 59.2 49.4 46.4 50.1 53.2
Llama2-7b 49.3 43.6 38.1 43.6 50.5
Llama2-13b 51.5 45.3 39.7 45.8 52.3

Table 4: Results for inferring mirroring and non-
mirroring responses, reported in BLEU score. All LMs
are fine-tuned with the train set under DH+Act to utter-
ance setting.

250M, 3B and 11B respectively, and decoder-only
models Llama2-(7b, 13b) (Touvron et al., 2023).
The SFT hyper-parameters are provided in Ap-
pendix F.

We evaluate model predictions using three
widely-used NLG metrics: BLEU (Papineni et al.,
2002), ROUGE-L (Lin and Hovy, 2002) and ME-
TEOR (Banerjee and Lavie, 2005) scores. The
results are reported in Tab. 3. In both setups, we
observed that performance is generally better on
the test set compared to the zero-shot test set, and
increasing model sizes can improve the perfor-
mance on both sets. However, the performance
gaps between the test and zero-shot test sets be-
come smaller for LMs with increasing sizes, which
we believe is due to the increasing zero-shot gener-
alization ability of larger LMs.

Additionally, we consistently observe that the or-
acle language model setup outperforms the surface
realization setup, which means having extra infor-
mation of the dialog history can steadily improve
the response generation performance.

6.2 Predictions on Different Response Styles
In this section, we explore the modeling difficulty
posed by different response styles. In Tab. 4, we
compare the performances on mirroring and non-
mirroring responses as well as the performances

8348

across different verbosity styles. All results are
evaluated on the predictions generated by the oracle
language model setup on the test set.

We consistently noting that the performance on
mirroring responses is better than non-mirroring
ones, as expected, given that mirroring allows the
system to replicate user expressions directly from
the dialog history, making it easier to predict. We
also observe that as verbosity increases, perfor-
mance tends to decrease. This decline is likely
attributed to lower verbosity resulting in shorter
utterances with a reduced vocabulary, making them
easier to model.

Another observation worth noticing is that, even
for non-mirroring options, having access to dialog
history can yield improved modeling performance,
as evident when comparing the left-most column of
Tab.3 with the second left-most column of Tab.4.

7 Conclusion

In conclusion, our study explores the naturalness
and adaptiveness of system responses for the next
generation of TOD virtual assistants. We introduce
TOAD, a dataset designed to train TOD systems
for diverse verbosity levels, mirroring styles, and
realistic app context interactions. Additionally, we
present a cost-effective and scalable automatic data
generation pipeline as a practical alternative to tra-
ditional human annotations. By addressing those
critical gaps, we aim for TOAD to inspire future
exploration in modeling and analyzing system re-
sponse styles.

8 Limitations

Entities The names and entities are generated by
ChatGPT, therefore some of them are figures from
publications, such as movies or novels.

Difficult cases for style modeling When produc-
ing the six response styles, certain scenarios pose
challenges to model desired styles, which means
the difference between some styles might become
less evident. We listed some observations during
TOAD’s construction:

• In cases when the system needs to present
new information to the user, such as report-
ing database search results, in order to pro-
vide necessary information, sometimes low
verbosity option can be relatively lengthy.

• When the system is requesting value for a new
slot, it usually struggles to mirror users, who

may not have mentioned the required slots.
• The use of proper referring expressions in user

interactions with contextual apps can result in
responses that are very similar between mir-
roring and non-mirroring styles.

9 Ethics and Risks

To ensure no user is disadvantaged, a dataset for
model training needs to represent a diverse range
of users. The distribution of persona attributes in
the TOAD dataset is detailed in Appendix E.

References
Satanjeev Banerjee and Alon Lavie. 2005. METEOR:

An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026, Brussels,
Belgium. Association for Computational Linguistics.

Maximillian Chen, Alexandros Papangelis, Chenyang
Tao, Seokhwan Kim, Andy Rosenbaum, Yang Liu,
and Dilek Hakkani-Tür. 2023a. Places: Prompting
language models for social conversation synthesis.
In EACL 2023.

Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and
Ruifeng Xu. 2023b. Exploring the use of large lan-
guage models for reference-free text quality evalua-
tion: An empirical study. In Findings of the Associa-
tion for Computational Linguistics: IJCNLP-AACL
2023 (Findings), pages 361–374.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Long Duong, Vu Cong Duy Hoang, Tuyen Quang
Pham, Yu-Heng Hong, Vladislavs Dovgalecs, Guy
Bashkansky, Jason Black, Andrew Bleeker, Serge Le
Huitouze, and Mark Johnson. 2019. An adaptable

8349

https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://www.amazon.science/publications/places-prompting-language-models-for-social-conversation-synthesis
https://www.amazon.science/publications/places-prompting-language-models-for-social-conversation-synthesis
https://doi.org/10.18653/v1/P19-3009

task-oriented dialog system for stand-alone embed-
ded devices. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 49–57, Florence, Italy.
Association for Computational Linguistics.

Layla El Asri, Hannes Schulz, Shikhar Kr Sarma,
Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017a. Frames: a
corpus for adding memory to goal-oriented dialogue
systems. In Proceedings of the 18th Annual SIGdial
Meeting on Discourse and Dialogue, pages 207–219.

Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie
Zumer, Justin Harris, Emery Fine, Rahul Mehrotra,
and Kaheer Suleman. 2017b. Frames: a corpus for
adding memory to goal-oriented dialogue systems.
In Proceedings of the 18th Annual SIGdial Meeting
on Discourse and Dialogue, pages 207–219, Saar-
brücken, Germany. Association for Computational
Linguistics.

Simon Garrod and Martin J Pickering. 2009. Joint ac-
tion, interactive alignment, and dialog. Topics in
Cognitive Science, 1(2):292–304.

Rahul Goel, Waleed Ammar, Aditya Gupta, Siddharth
Vashishtha, Motoki Sano, Faiz Surani, Max Chang,
HyunJeong Choe, David Greene, Kyle He, et al.
2023. Presto: A multilingual dataset for pars-
ing realistic task-oriented dialogs. arXiv preprint
arXiv:2303.08954.

Matthew B Hoy. 2018. Alexa, Siri, Cortana, and more:
an introduction to voice assistants. Medical reference
services quarterly, 37(1):81–88.

Songbo Hu, Han Zhou, Mete Hergul, Milan Gritta,
Guchun Zhang, Ignacio Iacobacci, Ivan Vulić, and
Anna Korhonen. 2023. Multi3woz: A multilingual,
multi-domain, multi-parallel dataset for training and
evaluating culturally adapted task-oriented dialog sys-
tems. arXiv preprint arXiv:2307.14031.

Tiancheng Hu and Nigel Collier. 2024. Quantifying the
persona effect in llm simulations.

JF Kelley. 1984. Iterative design methodology for user-
friendly natural language office information applica-
tions. ACM Trans. Off. Syst.;(United States), 1.

Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West,
Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Le Bras,
Malihe Alikhani, Gunhee Kim, Maarten Sap, and
Yejin Choi. 2023. Soda: Million-scale dialogue dis-
tillation with social commonsense contextualization.

Satwik Kottur, Seungwhan Moon, Alborz Geramifard,
and Babak Damavandi. 2021. SIMMC 2.0: A task-
oriented dialog dataset for immersive multimodal
conversations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 4903–4912, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Stefan Larson and Kevin Leach. 2022. A survey of
intent classification and slot-filling datasets for task-
oriented dialog.

Yuting Liao and Jiangen He. 2020. Racial mirroring
effects on human-agent interaction in psychothera-
peutic conversations. In Proceedings of the 25th in-
ternational conference on intelligent user interfaces,
pages 430–442.

Chin-Yew Lin and Eduard Hovy. 2002. Manual and au-
tomatic evaluation of summaries. In Proceedings of
the ACL-02 Workshop on Automatic Summarization,
pages 45–51.

Yinhong Liu, Han Zhou, Zhijiang Guo, Ehsan Shareghi,
Ivan Vulić, Anna Korhonen, and Nigel Collier. 2024.
Aligning with human judgement: The role of pair-
wise preference in large language model evaluators.

Jakub Macina, Nico Daheim, Sankalan Pal Chowdhury,
Tanmay Sinha, Manu Kapur, Iryna Gurevych, and
Mrinmaya Sachan. 2023. Mathdial: A dialogue tutor-
ing dataset with rich pedagogical properties grounded
in math reasoning problems.

Johannes EM Mosig, Shikib Mehri, and Thomas Kober.
2020. Star: A schema-guided dialog dataset for trans-
fer learning. arXiv preprint arXiv:2010.11853.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 34, pages 8689–8696.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Abhinav
Rastogi, Ankur Bapna, Neha Nayak, and Larry Heck.
2018. Building a conversational agent overnight with
dialogue self-play. arXiv preprint arXiv:1801.04871.

Joe Stacey, Jianpeng Cheng, John Torr, Tristan Guigue,
Joris Driesen, Alexandru Coca, Mark Gaynor, and
Anders Johannsen. 2024. Lucid: Llm-generated ut-
terances for complex and interesting dialogues.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alexander V Vartanov, Sofia A Izbasarova, Yulia M
Neroznikova, Igor M Artamonov, Yana N Arta-
monova, and Irine I Vartanova. 2023. The effect
of psychological mirroring in telecommunicative dia-
logue. Cognitive Systems Research, 80:110–117.

8350

https://doi.org/10.18653/v1/P19-3009
https://doi.org/10.18653/v1/P19-3009
https://doi.org/10.18653/v1/W17-5526
https://doi.org/10.18653/v1/W17-5526
http://arxiv.org/abs/2402.10811
http://arxiv.org/abs/2402.10811
http://arxiv.org/abs/2212.10465
http://arxiv.org/abs/2212.10465
https://doi.org/10.18653/v1/2021.emnlp-main.401
https://doi.org/10.18653/v1/2021.emnlp-main.401
https://doi.org/10.18653/v1/2021.emnlp-main.401
http://arxiv.org/abs/2207.13211
http://arxiv.org/abs/2207.13211
http://arxiv.org/abs/2207.13211
http://arxiv.org/abs/2403.16950
http://arxiv.org/abs/2403.16950
http://arxiv.org/abs/2305.14536
http://arxiv.org/abs/2305.14536
http://arxiv.org/abs/2305.14536
http://arxiv.org/abs/2403.00462
http://arxiv.org/abs/2403.00462

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Mil-
ica Gasic, Lina M Rojas Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young. 2017. A network-based
end-to-end trainable task-oriented dialogue system.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 438–449.

Jason D Williams and Steve Young. 2007. Partially ob-
servable markov decision processes for spoken dialog
systems. Computer Speech & Language, 21(2):393–
422.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2023. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data.

Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe
Zhou, and Zhoujun Li. 2017. Building task-oriented
dialogue systems for online shopping. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 31.

Steve Young. 2010. Cognitive user interfaces. IEEE
Signal Processing Magazine, 27(3):128–140.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2023. Evaluating large
language models at evaluating instruction following.
arXiv preprint arXiv:2310.07641.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

A Schema Details and Example

The schema is defined in JSON format. For each
service, there are a list of supporting intents and a
list of slots. For each intent, there are lists of “re-
quired_slots”, “optional_slots” and “result_slots”.
There are also meta-indicators to control the plot
construction for that intent.
{

"service_name": "calendar_events",
"intent_operations": [

{
"name": "create",
"description": "Create a calendar

event.",
"require_input_values": true ,
"require_context": false ,
"require_confirmation": false ,
"return_list": false ,

"report_result": false ,
"check_on_input": false ,
"can_refer_to_input_slot": true ,
"minimum_input_slot_number": 1,
"minimum_initial_slots": [],
"summary_emphasis_slots": [],
"required_slots": [

"date",
"start_time",
"duration_time"

],
"optional_slots": [

"attendees",
"name",
"location"

],
"result_slots": []

}
],
"slots": [

{
"name": "date",
"description": "The date of the

calendar event.",
"potential_values": [],
"alias": ["start_date"]

},
{

"name": "start_time",
"description": "The time of the

calendar event.",
"potential_values": [],
"alias": ["time"]

},
{

"name": "duration_time",
"description": "The duration_time

of the calendar event.",
"potential_values": [],
"alias": []

}
]

}

Listing 1: Schema example for intent "create" of service
"calendar_events" with parts of the relevent slots.

B Data Structure

Each datapoint contains a multi-turn dialog action
plot and corresponding utterances, each system
turn contains 6 styles of responses and an indicator
of the default style. Each datapoint also contains a
user persona, relevant app contexts and labels for
services, intents and phenomena.

C Intents and slot values sampling

The intent sampling for single-intent dialog is
straightforward. A service is randomly sampled
first and then one of the supported intents is ran-
domly sampled. For compound dialog, two intents
are sampled by this method.

As for compositional dialog, intents are sampled
based on the slot matching strategy, because the

8351

http://arxiv.org/abs/2304.01196
http://arxiv.org/abs/2304.01196
https://doi.org/10.1109/MSP.2010.935874
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

output slot of the inner intent, sinneroutput, will be used
as the input slot of the outer intent, souterinput. As
shown in the compositional example in Tab. 2, the
output slot of the inner intent “check” is “date”,
which is passed to the outer intent “get_weather”
as the input slot. The slot matching strategy
does not require sinneroutput and souterinput to be exactly
the same, instead, it only requires souterinput being a
super-set of sinneroutput. For example, in the phrase
“Book an alarm at the time when the show be-
gins,” the souterinput =“time” is the super-set of the
sinneroutput =“showtime”. As shown in the schema
example in Listing 1, for each slot, its parent slot
is assigned in “alias”.

To ensure the consistency among the slot values,
all values are generated by LLM within one infer-
ence. The input slot values are generated first, such
that the output slot values can condition on them.

D Multi-intent plot merging

Compound dialog contains two intents. When con-
structing the plot for compound dialog, the plots
for two individual intents are merged into one, but
with certain merging rules to maintain the natural-
ness of the conversation flow. Here are the merging
policy:

• Initial user query: Concatenate the actions of
two individual initial queries and realize them
into one single user utterance.

• For system response: If both system re-
sponses require user information, arrange the
responses into two subsequent turns. Other-
wise, combine two system responses into a
single turn, but re-ordered to keep confirma-
tion responses first.

• For subsequent user turn: Only answer the
system response.

As for compositional dialog, the initial user
queries will be merged by substituting the matching
input slot of the outer intent with the inner intent
action, as illustrated in Tab.2. Then the rest of
the plots will be rearranged that the system should
always finish the plot for the inner intent first.

E Persona and App Context Statistics

In TOAD, we simulate 500 personas with diverse
backgrounds, with one persona randomly assigned
to each dialog as the user’s information source.
The gender distribution of the simulated personas
is approximately 52% male and 48% female.

Examining the racial distribution, we find that
17% are White, 10% Hispanic or Latino, 6% Black
or African American, 4% Asian or Pacific Islander,
4% American Indian or Alaska Native, and 59%
are not specified. The job descriptions encompass
a total of 67 distinct occupations categorized into
four job levels: senior (18%), intermediate (31%),
entry-level (22%), and not-specified (29%).

In terms of context app distribution, the di-
alogs are diversified with 17.9% involving calendar
events, 13.5% messages, 13.5% reminders, 13.1%
alarms, 8.9% contacts, and 33.1% having no speci-
fied context.

F SFT hyperparameters

SFT batch sizes for FlanT5-250m, 3b, 11b are 16,
16, and 4, respectively. Llama2-7b and 13b have
batch sizes set at 2. The learning rates are 3e −
5, and fine-tuning halts upon meeting the early
stopping criterion, which is 5 consecutive increases
in validation set loss.

G Plot and Dialog Examples

We show more dialog and action plot examples in
Tab. 5.

8352

App Context Action Plot Dialog Utterances

{'today ':'Wed 2025 -04 -16',
'alarms ':[{'time':'07:00 ',
'name':'Morning Workout ', '
if_repeat ':True}, {'time':'
18:30 ', 'name':'Family
Dinner ', 'if_repeat ':True
}]}

User: [get_alarms(ordered_by="
time", index =0).alarms_delete(
name), get_alarms(ordered_by="
time", index =1).alarms_check(name
)]
System: [alarms_ask_confirm(get_
alarms(name=" Morning Workout ").
delete(name)), alarms_inform_
result(name=" Family Dinner ")]
User: alarms_confirm ()
System: alarms_notify_done(get_
alarms(name=" Morning Workout ").
delete(name))

User: Can you delete my earliest alarm and
check the next one?
System: {
HV M: Are you sure you want to delete the '
Morning Workout ' alarm? Your next alarm is '
Family Dinner ' at 18:30.
HV no_M: Do you confirm the deletion of your
earliest alarm , 'Morning Workout '? The
following alarm is 'Family Dinner ' at 18:30.
MV M: You want to delete the 'Morning Workout '
alarm , correct? Your next one is 'Family Dinner
' at 18:30.
MV no_M: Confirm to delete this alarm? The next
one is at 18:30 for 'Family Dinner '.

LV M: Delete 'Morning Workout '? Next: 'Family
Dinner ' 18:30.
LV no_M: Confirm deletion? Next: 18:30 'Family
Dinner '. }
User: Yes , go ahead and delete it.
System: {
HV M: Your 'Morning Workout ' alarm has been
deleted.
HV no_M: The earliest alarm has been deleted.
MV M: 'Morning Workout ' alarm is deleted.
MV no_M: It 's deleted.
LV M: Deleted.
LV no_M: Done.}

{'today ':'Mon 2026 -12 -28'} User: purchase_tickets(movie_name
=" Joker", date="Tue 2026 -12 -29" ,
cinema_name=" Regal Cinemas",
ticket_quantity=1, movie_format
="3d")
System: request_infomation(
showtime)
User: inform_infomation(showtime
="20:00")
System: ask_confirm(purchase_
tickets(movie_name=" Joker",
ticket_quantity=1, date="Tue
2026-12-29" , showtime ="20:00" ,
movie_format ="3d", cinema_name="
Regal Cinemas "))
User: confirm ()
System: notify_done(purchase_
tickets(movie_name=" Joker",
ticket_quantity=1, date="Tue
2026-12-29" , showtime ="20:00" ,
movie_format ="3d", cinema_name="
Regal Cinemas "))

User: I'd like to buy a 3D ticket for Joker at
Regal Cinemas tomorrow , please.
System: {
HV M: What time would you like to watch Joker
at Regal Cinemas tomorrow?
HV no_M: What showtime do you prefer?
MV M: When would you like to see it?
MV no_M: When is the preferred time?
LV M: Showtime?
LV no_M: Time? }
User: At 20:00.
System: {
HV M: So , you 'd like to purchase a 3D ticket
for Joker at Regal Cinemas on Tue 2026 -12 -29 at
20:00. Is that correct?

HV no_M: Just to confirm , you want to buy a 3D
ticket for the movie Joker at Regal Cinemas on
Tue 2026 -12 -29 at 20:00, right?
MV M: You 're buying a 3D ticket for Joker at
Regal Cinemas tomorrow at 20:00. Correct?
MV no_M: So, you 're purchasing a ticket for
Joker in 3D at Regal Cinemas tomorrow at 20:00.
Is that right?

LV M: Confirm purchase?
LV no_M: Confirm? }
User: Yes , that 's correct.
System: {
HV M: Your 3D ticket for Joker at Regal Cinemas
on Tue 2026 -12 -29 at 20:00 has been purchased.

HV no_M: The ticket has been successfully
purchased.
MV M: I've bought your ticket for that movie at
that time.

MV no_M: It 's done , the ticket is bought.
LV M: Done.
LV no_M: Purchased. }

Table 5: Datapoint examples showing app context, action plots and dialog utterances with all response style options.

8353

H Dialog Generator Template

Prompt template for user utterance generation

"""\
You are a smartphone user and you are testing your virtual assistant on your phone
by \
engaging in a multi -turn conversations with it.
Here is your personal introduction: {{ user_intro }}

Instructions:
1. You need to communicate with the assistant following the guidance of "actions ".
2. Based on the introduction , think about what speech habit you should have and \
communicate with this pattern.
3. The "message" should have minimum words possible.
4. You must return in JSON format , following the provided examples.

The context information is: {{ context }}.

You are using these apps: {{ situation }}.

Begin conversation (you are identified as "user").
user: {" actions ": ["hello()"], "message ": "Hi."}
assistant: {" actions ": ["offer_help()"], "message ": "Hello , how can I help ?"}
{% if dialog_history | length >0 %}{{ dialog_history }}{% endif %}

The "actions" you need to follow is {{ action[cur_turn] }}. What are you going to
say next? \
{{ user_style_instruction }}
user:\
"""

Table 6: Prompt template example for the user role in the dialog generator

8354

Prompt template for system utterance generation

"""\
Instructions:
1. You are a virtual assistant. Your goal is to assist the user to accomplish their
goal.
2. Your responses should strictly follow the given actions and be helpful , natural ,
\
professional and concise.
3. Your response should strictly follow the corresponding "actions ".

The user is interacting with these apps: {{ situation }}.

Style instruction:
'verbosity_low ': Your response must only have a couple of words , such as "when", \
"how long" or "done".
'verbosity_mid ': Your response should be a concise but complete sentence and must \
replace the nouns or noun phrases mentioned by user with pronouns , such as "it", "
that" and "its".
'verbosity_high ': Your response should use full expressions with all the details.
'mirroring ': Your response should use the user 's noun phrase or verb expressions
when possible.
'no_mirroring ': Ignore all previous dialog. Do not affect by user expression.
'summary ': Your response should be a brief report of the given summary.

Response Example:
assistant actions: {" verbosity_low mirroring ": [" notify_done()"], \
"verbosity_low no_mirroring ": [" notify_done()"], \
"verbosity_mid mirroring ": [" notify_done(operation_on_device (\
operation ="turn_off", device =" heating", home_space=" bedroom "))"], \
"verbosity_mid no_mirroring ": [" notify_done(operation_on_device (\
operation ="turn_off", device =" heating", home_space=" bedroom "))"], \
"verbosity_high mirroring ": [" notify_done(operation_on_device (\
operation ="turn_off", device =" heating", home_space=" bedroom "))"], \
"verbosity_high no_mirroring ": [" notify_done(operation_on_device (\
operation ="turn_off", device =" heating", home_space=" bedroom "))"]}
assistant: {" verbosity_low mirroring ": "Turned off.", \
"verbosity_low no_mirroring ": "Done.", \
"verbosity_mid mirroring ": "I have turned off the heating in that room.", \
"verbosity_mid no_mirroring ": "I have turned it off in that room.", \
"verbosity_high mirroring ": "I have turned off the bedroom heating.", \
"verbosity_high no_mirroring ": "Sure , I have turned off the heating in the bedroom
."}

Conversation history:
{% if dialog_history | length >0 %}{{ dialog_history }}{% endif %}

New turn:
You should return in JSON format with 6 keys: [" verbosity_low mirroring", \
"verbosity_low no_mirroring", "verbosity_mid mirroring", "verbosity_mid no_mirroring
", \
"verbosity_high mirroring", "verbosity_high no_mirroring "].
assistant actions: {{ action[cur_turn] }}.
assistant: \
"""

Table 7: Prompt template example for the system role in the dialog generator

8355

I Quality Control Template

Prompt template for quality control

"""\
Please check the consistency between the actions and the corresponding utterances
for the following dialog. They might refer to the context below.

Context: {{ context }}

Dialog: {{ actions_and_utterances }}

Response: \
"""

Table 8: Prompt template example for examining the consistency between action plot and utterances

8356

