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Abstract

Recently, advancements in large language mod-
els (LLMs) have shown an unprecedented abil-
ity across various language tasks. This paper
investigates the potential application of LLMs
to slot filling with noisy ASR transcriptions, via
both in-context learning and task-specific fine-
tuning. Dedicated prompt designs and noise-
robust LoRA fine-tuning are proposed to im-
prove the robustness of LLMs for slot filling
with noisy ASR transcriptions. Moreover, a
linearised knowledge injection (LKI) scheme
is also proposed to integrate dynamic external
knowledge into LLMs. Experiments were per-
formed on SLURP to quantify the performance
of LLMs, including GPT-3.5-turbo, GPT-4,
LLaMA-13B, LLaMA-2-13B and Vicuna-13B
(v1.1 and v1.5) with different ASR error rates.
The use of the noise-robust fine-tuning together
with LKI for Vicuna-13B-v1.5 achieved 6.7%
and 17.6% absolute SLU-F1 improvements
compared to a fully fine-tuned Flan-T5-XL
model on the limited data setup and the zero-
shot setup respectively.

1 Introduction

Slot filling, as an important sub-task of spoken lan-
guage understanding (SLU), is a crucial component
in conversational AI such as spoken dialogue sys-
tems. It requires the extraction and understanding
of pertinent information in the user’s speech query.
Accurate extraction of slot values from the query
speech is indispensable for accurate response gen-
eration and is challenging with limited annotated
data and noisy ASR transcriptions. In particular,
domain-specific named entities that are crucial to
accurate information extraction, usually have high
error rates with a generic ASR system. Although
this problem can be mitigated by training systems
on data in the target domain, it can be expensive
to construct dedicated large-scale training data for
a specific SLU task as it requires an extensive la-
belling effort and domain expertise (Hou et al.,

2020; Liu et al., 2020; Henderson and Vulić, 2021).
This data sparsity problem can be addressed by
transfer learning with pre-trained language mod-
els (PLMs) (Du et al., 2021; Fuisz et al., 2022),
especially with large language models (LLM).

Recent advancements in LLMs, such as GPT-
4 (Ouyang et al., 2022; OpenAI, 2023) and the
LLaMA series (Touvron et al., 2023a,b), have
been shown to exhibit human-level reasoning abil-
ity for natural language tasks even without task-
specific fine-tuning of the model parameters, which
is known as the emergence of LLMs. This is usu-
ally achieved by conditioning the model genera-
tion process on a prompt containing examples or a
task description, referred to as in-context learning.
Although effective, studies have also shown that
LLMs struggle with accurate fine-grained content
extraction such as slot-filling (Heck et al., 2023;
Zhang et al., 2023b; Pan et al., 2023; Shen et al.,
2023), and tend to overly extrapolate beyond the
examples and task descriptions in the prompt, espe-
cially when evaluated using text-based quantitative
metrics. This necessitates the use of dynamic con-
textual knowledge to guide and confine the genera-
tion (Omar et al., 2023; Peng et al., 2023), as well
as efficient task-specific fine-tuning with limited
data (Zhang et al., 2023a). Moreover, as slot-filling
relies on the quality of ASR transcriptions (Seo
et al., 2022; Raju et al., 2022; Rao et al., 2021;
Sun et al., 2023b), it is essential to improve the
performance of LLMs with noisy ASR outputs.

This paper aims to apply LLMs for slot filling
with different ASR error rates under limited data
scenarios. A dedicated prompt design specifically
targeting LLMs is proposed featuring task descrip-
tions with examples, linearised dynamic external
knowledge and multiple alternative ASR hypothe-
ses. In addition to the one-best hypothesis, the
proposed prompt design incorporates multiple hy-
potheses in the form of an N -best list. Moreover,
by leveraging a pre-defined knowledge base (KB)
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(Sun et al., 2023b), dynamic knowledge found in
the N -best list is also linearised into text and used
in the prompt to provide the necessary constraint
to guide the language generation1. LLMs can be
fine-tuned with low-rank adaptation (LoRA), and
the use of alternative hypotheses and LKI enables a
noise-robust LoRA fine-tuning to further improve
the model’s robustness to ASR errors.

Experiments were performed using SLURP data,
where particular attention was paid to the perfor-
mance of in-context learning, supervised few-shot
learning, and zero-shot learning for unseen slot
types. Several LLMs were investigated, including
GPT-3.5-turbo and GPT-4 for in-context learning
and LLaMA and Vicuna models as widely-used
open-source models for fine-tuning. Different sizes
of Whisper ASR models were adopted as a group
of generic off-the-shelf models to provide transcrip-
tions with different ASR error rates. Experiments
showed that Vicuna-13B-v1.5 achieved an abso-
lute 6.7% and 17.6% SLU-F1 increase using the
noise-robust LoRA fine-tuning together with LKI
compared to the fully fine-tuned Flan-T5-XL on
few-shot and zero-shot scenarios respectively, even
though the number of trainable parameters of the
latter was much larger. The main contributions of
this paper can be summarised as follows.
• The performance on slot filling is determined

using SLURP data for a range of widely
used LLMs, including GPT-3.5-turbo, GPT-4,
LLaMA and Vicuna.

• A prompt design and data-efficient noise-robust
LoRA fine-tuning approach for slot filling using
LLMs with noisy ASR transcriptions is provided.

• A linearised knowledge injection (LKI) scheme
is proposed that incorporates contextual knowl-
edge derived using N -best ASR hypotheses into
the prompt for LLMs.

2 Related Work

2.1 LLMs

LLMs refer to the type of LMs with billions of
model parameters and trained on vast amounts of
data. GPT-3 (175 billion parameters) (Brown et al.,
2020) and PaLM (540 billion parameters) (Chowd-
hery et al., 2022) were early examples of LLMs,
significantly outperforming their predecessors such
as BERT (Devlin et al., 2019) (330 million param-
eters) and GPT-2 (Radford et al., 2019) (1.5 billion

1Code and prompt template will be available at https:
//github.com/BriansIDP/LLM4slotfilling

parameters). One of the most prominent applica-
tions of LLMs is ChatGPT, which was built from
GPT-3.5 via reinforcement learning with human
feedback (RLHF) (Christiano et al., 2017) and was
adapted for chat applications. Later, a larger scale
LLM, GPT-4 (OpenAI, 2023), was built to further
support the visual modality. While the capability
of LLMs continued to expand with ever-growing
model sizes, “smaller” LLMs (still with tens of
billions of parameters) such as LLaMA (Touvron
et al., 2023a) were released and achieved a bet-
ter balance between the performance and the com-
puting resource required. Since LLaMA is open-
source, many versions of LLaMA such as Vicuna
(Zheng et al., 2023) have been developed with dif-
ferent conversation-based fine-tuning schemes.

With scaled-up model and training data sizes,
LLMs have demonstrated a superior ability for
solving assorted complex tasks over their prede-
cessors, which are known as “emergent abilities”
(Wei et al., 2022). One of the key capabilities of
LLMs is in-context learning, which has enabled
LLMs to perform specific tasks by providing task
descriptions or examples without explicitly updat-
ing model parameters. Early research explored
in-context learning by providing the schema of the
ontology in a spoken dialogue system. Specifi-
cally, in (Chen et al., 2020), domain-slot relations
from the dialogue ontology were encoded using
a graph neural network (GNN) to guide the sys-
tem. Later, (Hu et al., 2022) proposed an in-context
learning framework by summarising the dialogue
history into a short description, together with the
schema description, as the context. More recently,
(Ouyang et al., 2022) proposed a more powerful
LLM trained via RLHF that performed response
generation via in-context learning.

2.2 Slot Filling with Limited Data

As slot-filling often requires domain expertise for
labelling which makes it very expensive, data ef-
ficiency has been a crucial research topic. Fine-
tuning PLMs on a relatively small-scale task-
specific dataset for slot-filling has been one of the
main themes in this area. In particular, compared to
sequence tagging using pre-trained bi-directional
encoder systems (Henderson and Vulić, 2021), by
formulating slot-filling as a sequence generation
task, the power of language generation of LMs,
such as GPT-2 (Budzianowski and Vulić, 2019) or
T5 (Raffel et al., 2019; Wu et al., 2022; Lin et al.,

6352

https://github.com/BriansIDP/LLM4slotfilling
https://github.com/BriansIDP/LLM4slotfilling


1. meeting power tomorrow 
2. meeting powell tomorrow 
3. meeting poel tomorrow 
4. meeting pawel tomorrow 
5. meeting pavel tomorrow 

……

Knowledge Base

“event_name”: {“meeting”},  
“device_type": {“power”},  
“person”: {“pawel”} 
……

USER: <Task definition> <In-context examples> 
<LKI><Query><Additional instruction> 
“Meeting power tomorrow” 
… … 

ASSISTANT:

Whisper LLM

Recognition (N-best list)

Knowledge search

Linearise 
Knowledge

Output response

Designed 
prompt

Speech Inputs
Low Rank 
Adaptation

{“event_name”: “meeting”, “person”: “pawel”} 

Linearised knowledge for LKI

Top K Hypotheses

Figure 1: Diagram illustrating the slot-filling pipeline using Whisper and LLM. The user prompt comprises parts
introduced in Table 1, followed by the top one hypothesis in the N -best list as an example. Low-rank adaptation
(LoRA) is used for fine-tuning open-source LLMs. Note that the specific format of the roles in the prompt, e.g.
ASSISTANT, is dependent on the specific LLM.

2021b), can be further exploited. These models
achieved few-shot learning by only presenting a
limited number of data samples, and it was also dis-
covered that providing task descriptions in the con-
text helps few-shot learning. Meanwhile, integrat-
ing prior knowledge about slots, such as possible
values of each slot, also showed performance im-
provements (Lin et al., 2021a; Wang et al., 2022a),
especially with limited data(Sun et al., 2023b). For
slot filling with speech input, systems leveraging
pre-trained speech representations have also been
developed (Xu et al., 2023; Wang et al., 2022b). In
contrast to the approach in this paper, these systems
focus on training in an end-to-end fashion.

LLMs have enabled unprecedented slot-filling
performance without task-specific fine-tuning by
only presenting the LLM with a task description
and several examples. The LLM will generate the
desired slot and value pairs in the standard LM
fashion (Pan et al., 2023; Shen et al., 2023; Heck
et al., 2023). Structured contextual knowledge can
be linearised into plain text as a part of the context
to further improve in-context learning ability (Xie
et al., 2022). Despite this ability and the perfor-
mance achieved, the quantitatively measured slot-
filling performance across a wide range of domains
is still far from that of state-of-the-art fine-tuned
systems (Pan et al., 2023; Shen et al., 2023).

3 Methodology

3.1 Prompt Design for Slot Filling
The prompt design is shown in Table 1, which com-
prises five major parts: task definition, in-context
examples, linearised knowledge injection (LKI),
query and additional query with LKI.

The task definition gives a brief definition for
each slot type. It is necessary to encourage the
generated response to focus on the slot types that
are needed. The in-context examples provide fur-
ther context to improve the performance. This part
provides few-shot examples which comprise pairs
of utterances and desired outputs in the prompt. Al-
though in-context examples provide effective guid-
ance on what to generate, the number of samples in
the prompt is always limited by the context length.
The LKI and the additional query with LKI are
two parts that appear in pairs when an external KB
is used. As LLMs tend to extrapolate and create
an excessive number of slot-value pairs, these two
KB-related parts are used to provide a strong prior
that confines the generation of certain slots to the
allowed set of possible values. The main query
prompts LLMs with the question, followed by ut-
terances from which slot values are extracted. The
basic form of the prompt is the concatenation of
the task definition and the query, followed by the
utterance, with the other three parts being optional.

The complete pipeline for speech-based slot fill-
ing with LLMs is shown in Fig. 1. Starting with the
input speech, a Whisper model is used to transcribe
the speech into an N -best list. The prompt is then
constructed according to the design, with an addi-
tional global prompt for systems with instruction
tuning. The top K hypotheses, where K = 1 by
default, are used as the final part of the prompt. The
complete prompt is given to the LLM to generate a
text sequence that completes the assistant response
using a search algorithm as shown in Eqn (1).

W ∗ = argmax
W

P (W |WP ), (1)

where W is the generated token sequence and WP
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Table 1: Prompt design for slot filling using LLMs, including task definition, in-context examples, linearised
knowledge injection (LKI) scheme, query and the extra constraint for LKI only used for in-context learning. The
example shows K = 1 in this table.

Prompt parts Prompt template

Task definition Consider the following list of slot types provided to you in JSON format:
{“slot A": “definition of slot A", “slot B": “definition of slot B", ...}

In-context examples For example, given “utterance_1" you should extract {“slot A": “value A"},
given “utterance_2" you should extract {“slot B": “value B"}, etc.

LKI First, possible values for some slots are provided: {“slot A": “value A", ...}
Slot values not in the KB are not likely to be the correct value

Query Now consider the following sentence(s) containing one or more of the above slot types.
Extract slots belonging to that list and their values in JSON format.
i.e. {“slot type": “slot value"}, or {} if no slots found

Additional instruction If, for a slot in KB, you can not find a value in KB, select most likely values from KB instead

is the prompt token sequence. Note that there is no
stochasticity in the generation process as the task is
to extract the exact information from an utterance
for quantitative measurements.

The LKI part of the prompt improves the robust-
ness of LLMs by constraining the generation with a
pre-defined KB which is especially important with
noisy ASR transcriptions. The external KB con-
tains all possible named entities for each slot type.
Then, for each utterance, entities that can be found
in the N -best list via string matching are selected
together with their slot types, as shown in the exam-
ple in Fig. 1. The selected slot values are linearised
into a text format to be used as part of the prompt.
The use of LKI not only guides the generation pro-
cess so that sensible values constrained by the KB
are generated but also makes further use of ASR
alternatives. For example, the name “pawel" in the
utterance has different substitutions (e.g. “power"),
and when using the top hypothesis for slot filling,
the LLM is unable to fill this slot with the correct
value. However, the name is correctly recognised
in the 4th-best hypothesis and provided the entry
in LKI. With that extra information in the prompt,
the LLM has a much better chance of correctly
performing slot filling for that entity.

3.2 Noise-Robust LoRA Fine-tuning

Fine-tuning is useful when a small amount of train-
ing data is available for the few-shot supervised
learning with LLMs. Specifically, the noise-robust
LoRA (Hu et al., 2021) fine-tuning is used.

LoRA approximates the necessary update to a
full-rank parameter matrix using a low-rank ma-
trix, which can be decomposed into the multipli-
cation of two low-rank matrices. Specifically, for

a pre-trained matrix W0 ∈ Rm×n from a specific
attention block, its update during fine-tuning can
be constrained in the form shown in Eqn. (2).

W0 +∆W = W0 +AB (2)
where A ∈ Rm×r and B ∈ Rr×n contain train-
able parameters with the pre-trained parameters,
W0, fixed, and r ≤ min(m,n). When setting r
to be a value much smaller than the model dimen-
sion, e.g. 8, the total number of parameters to be
learned during fine-tuning is much reduced, which
both improves the training efficiency and avoids
over-fitting with a large number of parameters, es-
pecially for LLMs. Following (Hu et al., 2021),
LoRA is applied to the projection matrices of the
self-attention layer in this paper.

LLMs are trained with the cross-entropy (CE)
loss. As the ASR system is an off-the-shelf Whis-
per model which is not fine-tuned in this paper,
and, given that the training and validation set WER
are similar, the N -best list derived from the train-
ing audio can be used to improve the robustness
of LLM to the noisy transcriptions. Specifically,
instead of feeding in the reference, the top K most
likely hypotheses can instead be concatenated into
one single string and used in the prompt so that the
model learns to robustly extract information from
multiple hypotheses. In addition, LKI can be used
during fine-tuning so that the model is aware of the
knowledge provided and learns to use it. Random
distracting entities can also be added to the LKI
part to avoid the model being over-confident about
the accuracy of the provided knowledge.

4 Experimental Setup

4.1 Data
SLURP (Bastianelli et al., 2020) is a collection of
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25k single-turn user interactions with a home assis-
tant, annotated with scenarios, actions and entities.
The interactions are in English. Experiments were
performed in two data setups. First, the official
training, validation and test split following (Bas-
tianelli et al., 2020) was used where synthesised
audio files were also included. Note that subsets
of the training set were selected, with e.g. 2000
samples corresponding to 8% of the full data, to
demonstrate the limited data scenarios. In addition,
a simulated zero-shot setup (Sun et al., 2023b) was
used. In training, all utterances containing entities
of five randomly selected ‘unseen’ slots were held
out, and the held-out set containing 2000 utterances
was used for testing.

The KB was organised as a simple dictionary
for SLURP, where the keys were slot types and the
values were lists of possible named entities for that
type. It was created by collecting named entities
that appeared in the entire SLURP data for each
slot type, including train, validation and test sets, as
a simulation of a real-world task environment. The
average size of these lists was 106: the largest list
was person which contained 872 entities, and the
smallest list was transport_agency, which
only contained 2 entities.

4.2 Models

Six different LLMs were selected for evaluation in
this paper: GPT-3.5, GPT-4, LLaMA(-2)-13B and
Vicuna-13B (v1.1 and v1.5). The first two mod-
els were chosen as the two most popular LLMs
representing the state-of-the-art performance of
in-context learning without parameter fine-tuning.
The other models were chosen as widely used open-
source models that allow task-specific fine-tuning.
Each model is introduced below:

GPT-3.5 and GPT-4 were used in ChatGPT,
a chatbot application introduced by OpenAI. Al-
though exact details about its architecture and train-
ing procedures were not published, according to
OpenAI, it used a similar architecture and train-
ing method to Ouyang et al. (2022). The versions
released in March 2023 (GPT-3.5-turbo-0301 and
GPT-4-0316) were used for the experiments.

LLaMA-13B, together with its improved ver-
sion LLaMA-2-13B, is a series of LLMs with a
Transformer decoder structure. The model contains
13B parameters and was pre-trained on one trillion
tokens. It includes various techniques used in train-
ing other LLMs such as pre-normalisation (Zhang

and Sennrich, 2019), the SwiGLU activation func-
tion (Shazeer, 2020), and rotary embeddings (Su
et al., 2022).

Vicuna-13B (version 1.1) is a fine-tuned version
of LLaMA which is adapted specifically to chat
applications. It was trained on user-shared conver-
sations with ChatGPT collected using a tool called
ShareGPT. The model contained 13B parameters.
The upgraded version, Vicuna-13B-v1.5, derived
from the LLaMA-2 model was also used in this
paper. The version supporting 16k tokens was used
to represent the long context model.

To make performance contrast with smaller mod-
els with full-parameter fine-tuning, GPT-2 (117M),
Flan-T5-base (250M) and Flan-T5-XL (3B) were
employed and fine-tuned on SLURP2. Note that
since Flan-T5-XXL with 11B parameters has a
similar size to LLMs in this paper, it is categorised
into LLM with results provided in Appendix C.
Four different sizes of English Whisper models
including tiny (39M), base (74M), small (244M)
and medium (769M), were used as the off-the-shelf
ASR models. The Whisper large model achieved
very similar performance to the medium model and
for efficiency, the medium model was used in the
experiments. Both the reference and ASR transcrip-
tions were normalised following the text normali-
sation scheme in (Radford et al., 2022), and were
scored against a normalised SLURP label file3.

4.3 Training and Inference Configurations

The LLaMA and Vicuna models were fine-tuned
using LoRA with rank 8 which adapts 6.5M pa-
rameters, i.e. equivalent to 0.05% of the original
model parameters. While the overall parameters of
LLMs are larger, the number of parameters of the
smaller models with full-parameter fine-tuning is
much larger than the LLMs. During training, the
LKI part was organised by selecting entities that
appeared in the reference transcription, and adding
random distractors found in the ASR hypotheses of
the same utterance. All systems were trained on a
single A100 GPU which took 2 hours to fine-tune a
13B LLaMA model under the 2000 sample setup.

During inference, a greedy search algorithm was
used for all LLMs until the end-of-sequence to-
ken was output. The result was then fed to a post-
processing stage using regular expressions to ex-

2GPT-2 system already achieved the previous best SLU-F1
on cascaded system (Sun et al., 2023a), and Flan-T5 models
achieved further improvements compared to GPT-2.

3The Influence of written form is analysed in Appendix B
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Table 2: SLU-F1 (Precision/Recall) of LLMs with transcriptions from different Whisper ASR systems on SLURP
test set. %WERs of Whisper systems are also provided. LLMs were evaluated using task descriptions and a one-shot
example as the prompt. GPT-2 and Flan-T5 were fine-tuned on the full SLURP training data as a reference.

Whisper Model Tiny (%) Base (%) Small (%) Medium (%) Reference (%)
WER 33.4 26.4 19.8 14.6 0.0

GPT-3.5 34.7 (32.0/38.0) 36.7 (34.1/39.7) 38.6 (35.0/42.7) 40.8 (36.3/46.7) 46.5 (40.5/54.5)
GPT-4 41.3 (43.5/39.3) 42.3 (42.1/42.5) 45.2 (43.1/47.6) 47.0 (43.7/50.9) 53.6 (49.4/58.6)
Vicuna-13B 7.6 (4.5/20.1) 7.7 (5.0/17.0) 8.1 (5.2/17.9) 8.9 (5.8/19.3) 16.5 (11.5/29.5)
Vicuna-13B-v1.5 16.6 (14.9/18.8) 17.8 (16.3/19.6) 20.7 (18.5/23.6) 19.9 (17.3/23.3) 22.4 (18.4/28.5)

GPT-2 Full data 54.9 (66.0/47.0) 58.4 (70.6/49.9) 64.0 (72.6/57.3) 65.2 (74.1/58.2) 84.8 (85.5/84.1)
Flan-T5-base Full data 56.4 (69.2/47.6) 59.1 (72.2/50.8) 64.6 (74.3/57.2) 66.5 (76.7/58.8) 86.3 (87.1/85.5)

tract slot-value pairs in JSON format from the out-
put text. As LLMs may fail to follow the exact
instructions, for any utterances that fail to extract
valid JSON format text, an empty output would be
given. The LKI part was extracted based on the N -
best hypotheses from the corresponding Whisper
model. Systems were evaluated using the SLU-
F1 metric, which combines both word-level and
character-level F1 scores to give partial credit to
non-exact match predictions.

5 Results and Discussion

5.1 In-context learning with noisy ASR
transcriptions

The performance of LLMs on slot filling via in-
context learning with one-shot prompts is sum-
marised in Table 2. The LLaMA models without
fine-tuning were not able to follow instructions and
hence not able to perform slot filling. In general,
LLMs yielded a higher recall rate than precision
as they were not trained with the confined scenario
setting and tended to pick up all possible fillers for
each slot based on their knowledge. This problem
became more severe when the definition of the slot
type was rather abstract, such as event_name or
news_topic, where LLMs tended to extract al-
most the entire utterance as the filler. The problem
was less severe for slots requiring a single named
entity to fill, e.g. person. For all systems, the
degradation in recall was more than the degradation
in precision when the ASR error rate increased, as
important entities tended to be incorrectly recog-
nised by the generic Whisper systems. Note that
the degradation due to noisy transcriptions would
probably be much smaller with an ASR system fine-
tuned on SLURP audio with only a slightly lower
overall WER (Sun et al., 2023a), as it is more likely
to recognise domain-specific entities correctly.

Compared to the Vicuna-13B models contain-

Table 3: SLU-F1 scores of LLMs using few-shot in-
context learning on SLURP test set with the reference
or Whisper medium model transcriptions. GPT-2 and
Flan-T5 models were fine-tuned on the number of sam-
ples indicated. Each sample took 20 tokens on average.
Vicuna-13B was unable to have 100 examples in the
prompt due to the model’s maximum context lengths.

Systems N-samples Medium (%) Ref. (%)

GPT-3.5 0 40.1 45.9
GPT-4 0 46.4 53.0
Vicuna-13B 0 7.6 12.2
Vicuna-13B-v1.5 0 17.6 18.3

GPT-3.5 1 40.8 46.5
GPT-4 1 47.0 53.6
Vicuna-13B 1 8.9 16.5
Vicuna-13B-v1.5 1 19.9 22.4

GPT-3.5 10 42.3 46.8
GPT-4 10 49.9 55.9
Vicuna-13B 10 11.8 21.4
Vicuna-13B-v1.5 10 21.3 24.9

GPT-3.5 100 47.4 53.5
GPT-4 100 57.4 65.8
Vicuna-13B-v1.5 100 25.8 31.3

GPT-2* 100 33.5 38.9
GPT-2* 2000 52.2 65.2
Flan-T5-base* 2000 55.2 68.9

ing 13B model parameters, GPT-3.5 and GPT-4
with much larger model sizes achieved much bet-
ter results without any further parameter updates,
which demonstrated the emergent ability of LLMs
when the model size reached a certain level. GPT-4
achieved around a 7% increase in SLU-F1 com-
pared to GPT-3.5 under different ASR conditions
while yielding a better balance between precision
and recall. While GPT-2 and Flan-T5-base with
task-specific fine-tuning achieved much better re-
sults with reference transcriptions, the performance
degradation of using noisy transcription is also
much larger compared to the non-fine-tuned LLMs.

An important aspect of in-context learning is to
offer examples so that LLM is able to learn from
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them. To investigate the effect of the number of in-
context learning samples, the performance against
the number of samples for different systems is
shown in Table 3. As the number of samples in the
prompt increased (except for the 100-sample case
with Vicuna-13B which exceeded the maximum
token length of the model), there was an increase
in the SLU-F1 found in all LLMs both with ref-
erence and noisy ASR transcriptions, at a cost of
increasing prompt sequence lengths. In particular,
GPT-4 achieved a larger improvement than GPT-
3.5 when more samples were included, indicating
its superior capability in leveraging context infor-
mation in the prompt. Notably, GPT-4 with 100
samples in-context learning performed much better
than a GPT-2 model fine-tuned on the same num-
ber of samples and also surpassed the performance
of a Flan-T5-base model fine-tuned on 2000 sam-
ples when using noisy transcription derived from
the Whisper medium model. However, with 100
samples, the length of the prompt with 100 sam-
ples is close to 3000 while the 10-sample prompt
which is only 1000. This significantly increased
the inference cost with API calls.

5.2 Task-specific fine-tuning

Next, task-specific fine-tuning was applied where
noise-robust LoRA fine-tuning was applied to
LLMs and full-parameter fine-tuning to others. To
begin with, the performance of selected LLMs
against different training set sizes was plotted as
shown in Fig. 2. With 500 and 2000 training sam-
ples representing limited data scenarios (2% and
8% of the full training set respectively), the perfor-
mance of LLaMA-13B and Vicuna-13B achieved
much better performance than GPT-2. With more
samples, LLMs fine-tuned with LoRA gradually
lost their advantage over the full fine-tuned LMs.
Further improvements may require more trainable
parameters for LLMs. In the following sections,
the 2000-sample limited data setup was used where
LLMs achieved better performance than the best in-
context learning performance achieved by GPT-4.
A similar trend was observed with ASR transcrip-
tions (see Appendix A).

Linearised knowledge injection provided im-
portant external information about the application
context. To this end, the effect of such knowledge
injected using the proposed LKI approach was in-
vestigated as shown in Table 4 for both in-context
learning and fine-tuning. As shown in Table 4,

Figure 2: SLU-F1 on the standard SLURP test set us-
ing Whisper medium model transcriptions against the
number of samples in the training set for fine-tuning five
LMs. Note that 25000 represents the full training set.

Table 4: SLU-F1 (Precision/Recall) on SLURP test
set using Whisper medium model transcriptions and
linearised knowledge injection (LKI) with in-context
learning (ICL), full fine-tuning (FFT) and LoRA fine-
tuning (LFT). Fine-tuning was performed on the 2000-
sample subset, and “13B" was omitted for clarity.

Systems With LKI (%) No LKI (%)

GPT-3.5 ICL 46.8 (36.1/66.4) 40.8 (36.3/46.7)
Vicuna ICL 21.8 (15.3/37.4) 8.9 (5.8/19.3)
Vicuna-v1.5 ICL 33.0 (27.3/41.8) 19.9 (17.3/23.3)

GPT-2 FFT 57.0 (65.8/50.2) 52.2 (61.8/45.0)
Flan-T5-base FFT 59.5 (68.3/52.7) 55.2 (66.3/47.3)
Flan-T5-XL FFT 62.5 (72.3/55.1) 58.9 (71.5/50.1)

LLaMA LFT 62.6 (71.2/55.9) 56.7 (69.2/48.0)
Vicuna LFT 61.3 (70.0/54.5) 53.4 (61.5/47.2)
LLaMA-2 LFT 61.8 (65.4/58.5) 57.2 (62.4/53.8)
Vicuna-v1.5 LFT 63.8 (68.0/59.9) 59.3 (65.3/54.3)

the main effect of LKI was to improve the recall
as it mainly provided information for entities that
were not in the top-1 hypothesis. LKI for GPT-3.5
had a rather limited effect, as while improving the
recall, it decreased the precision as noise in the
LKI prompt introduced many irrelevant slot val-
ues. The influence of LKI on Vicuna-13B under
in-context learning almost doubled the SLU-F1,
although the numbers were still much lower than
GPT-3.5. When fine-tuned with LKI in the prompt,
all LMs achieved larger improvements compared
to models without LKI as fine-tuning resulted in a
lower recall. Vicuna-13B-v1.5 benefited the most
from LKI as they could process long context better,
and the best performance was achieved by Vicuna-
13B-v1.5. As a result, the proposed LKI approach
proved to be an effective way for dynamic contex-
tual knowledge integration in LLMs.

Noise-robust LoRA fine-tuning from the ASR
system improves the robustness of LLMs to ASR
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Table 5: SLU-F1 (Precision/Recall) on SLURP test set
with LLMs fine-tuned on noisy transcriptions of the
2000-sample subset. The training column indicates the
number of hypotheses used in the prompt for training.
FFT stands for full fine-tuning, and otherwise, noise-
robust LoRA fine-tuning was used. The same number
of hypotheses in training was used during inference.

System Training SLU-F1 (%)

GPT-2 FFT ref 52.2 (61.8 / 45.0)
GPT-2 FFT 10-best 39.0 (62.3 / 28.3)
Flan-T5-base FFT ref 55.2 (66.3 / 47.3)
Flan-T5-base FFT 10-best 35.2 (59.2 / 25.1)
Flan-T5-XL FFT ref 58.9 (71.5 / 50.1)
Flan-T5-XL FFT 10-best 43.0 (47.5 / 39.1)

Vicuna-13B-v1.5 ref. 59.3 (65.3 / 54.3)
Vicuna-13B-v1.5 1-best 60.1 (69.2 / 53.2)
Vicuna-13B-v1.5 5-best 63.3 (66.1 / 60.7)
Vicuna-13B-v1.5 10-best 63.4 (65.9 / 60.9)
Vicuna-13B-v1.5 20-best 61.2 (64.3 / 58.4)
Vicuna-13B-v1.5 9-best + ref. 62.4 (66.9 / 56.1)

Vicuna-13B-v1.5 LKI 10-best 65.6 (75.3 / 58.1)

errors for slot filling as shown in Table 5. In the
first part of Table 5, 10-best hypotheses in full-
parameter fine-tuned PLMs confused the model
and yielded much worse results. However, using
N -best hypotheses in the context during training
improved the performance of LLMs, demonstrat-
ing the superiority of LLMs in leveraging complex
context information. Besides, incorporating the
references into N -best lists for training yielded a
worse performance as the model still relied on the
reference presented in the N -best list.

The best SLU-F1 score was achieved by com-
bining the proposed LKI with the use of noisy tran-
scriptions for fine-tuning, yielding an overall 6.3%
absolute SLU-F1 increase compared to using the
1-best prompt. This method is the most effective on
LLMs, with 6.7% absolute increase compared to
the strong Flan-T5-XL contrast system whose total
number of trainable parameters (3B) is 500 times
larger than that of Vicuna-13B-v1.5. Although
the knowledge was selected based on the N -best
hypotheses, LKI was still informative when the N -
best list was included in the context and achieved a
2.2% absolute increase in SLU-F1.

5.3 Generalisation to unseen slots
To further demonstrate the power of the proposed
approaches, the generalisation of various LLMs to
unseen slot types was studied using the simulated
zero-shot setup. The SLU-F1 of LLaMA-2-13B
and Vicuna-13B-v1.5 on the held-out test set are
shown in Table 6 compared to the Flan-T5-base.

Table 6: SLU-F1 (Precision/Recall) on SLURP zero-
shot test set containing unseen slots. Slot-filling systems
were fine-tuned using 2000 samples and the full training
set. Whisper medium outputs were used. Flan-T5 sys-
tems were trained with full-parameter fine-tuning, and
other systems were trained with LoRA fine-tuning.

System 2000 samples (%) Full (%)

Flan-T5-base 25.2 (28.7 / 22.4) 25.1 (28.3 / 22.6)
+ LKI 36.5 (42.2 / 32.2) 32.4 (38.3 / 28.0)

Flan-T5-XL 30.1 (35.5 / 26.1) 29.4 (34.6 / 25.5)
+ LKI 46.5 (60.3 / 37.8) 46.4 (65.2 / 36.0)

LLaMA-2-13B 32.6 (42.7 / 26.3) 32.1 (40.7 / 26.5)
+ LKI 54.3 (66.7 / 45.7) 57.0 (70.5 / 47.8)

+ 10-best 56.5 (58.6 / 54.5) 58.2 (74.3 / 47.8)

Vicuna-13B-v1.5 37.0 (41.0 / 33.7) 36.5 (42.7 / 31.9)
+ LKI 57.0 (66.1 / 50.1) 61.6 (76.4 / 51.7)

+ 10-best 58.0 (68.3 / 50.3) 64.0 (80.5 / 53.1)

As shown in Table 6, when trained on 2000
samples, Vicuna-13B-v1.5 achieved 6.9% absolute
SLU-F1 improvement compared to Flan-T5-XL, as
LLMs were better at leveraging the task descrip-
tion part in the prompt design. In addition, such
improvement was further increased to 11.5% when
LKI and noise-robust LoRA fine-tuning were ap-
plied, indicating that LLMs were much better at
using external knowledge in the context. More-
over, providing further in-domain data is helpful
for LLM with LKI and noise-robust LoRA fine-
tuning, which increased the improvements further
to 17.6% compared to Flan-T5-XL. It is also worth-
while highlighting that the LLMs with the proposed
approaches achieved a performance close to that
on the standard test set even though the majority
of slot types in the zero-shot test set have never
appeared in training.

6 Conclusions
This paper investigated the performance of LLMs
for slot filling with noisy speech transcriptions. It
quantified the performance of six different LLMs
using ASR transcriptions from four different sizes
of Whisper ASR models and proposed a dedicated
prompt design, a noise-robust LoRA fine-tuning
approach and a linearised knowledge integration
(LKI) scheme. The prompt design with few-shot
examples enabled GPT-4 to outperform a GPT-2
model fine-tuned on 20 times more data. Vicuna-
13B-v1.5 achieved an absolute 6.7% and 17.6%
SLU-F1 increase using both the noise-robust LoRA
fine-tuning and LKI compared to the fully fine-
tuned Flan-T5-XL model on few-shot and zero-
shot scenarios respectively, while the number of
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trainable parameters of the latter was much larger.

7 Limitations

The main limitation of using LKI and N -best hy-
potheses for training is the context length of LLMs.
When sequence length becomes much longer by
incorporating more examples or more hypotheses,
the efficacy of long context is inherently limited
by the effective spans of the attention mechanisms
in LLMs. Even with the Vicuna-13B-v1.5 model
which supports a sequence length of 4k tokens, a
clear reduction in improvements was found when
adding much more information into the context.
Therefore, future work needs to be done on improv-
ing the effectiveness of the context instead of only
increasing the maximum allowed sequence length.

Due to resource constraints, experiments were
only conducted on the SLURP corpus. Further
studies will be carried out in the future on other
speech-based slot-filling corpora using LLMs.
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The approaches in this paper do not give rise to any
additional risks beyond the ones directly inherited
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A Training set sizes

The influence of training set sizes on different
LLMs and GPT-2 under Whisper medium ASR
transcription is shown in Fig. 3.

B Influence of written form

As shown in Table 7, written form in general had a
lower SLU-F1 than spoken form. This was mainly
because numbers that used to appear as several
words were converted to a single word in written
form (e.g. radio ninety-three point five ⇒ radio

Figure 3: Variation of SLU-F1 on SLURP test set un-
der reference ASR transcriptions against the number of
samples in the training set for fine-tuning LLMs.

Table 7: SLU-F1 comparison between written form
(after Whisper text normalisation) and spoken form on
standard SLURP test set using GPT-2 and Flan-T5-base
model on reference transcriptions.

System SLU-F1

GPT-2 Spoken 89.5
GPT-2 84.8

Flan-T5-base Spoken 90.3
Flan-T5-base 86.3

Flan-T5-XL Spoken 90.8
Flan-T5-XL 86.7

93.5). As a result, the written form SLU-F1 was
closer to the measurement of the F1 score of en-
tire entities, and fewer partial credits were given
to partly correct answers. This became more obvi-
ous when ASR transcriptions were used, causing
a larger degradation than spoken form when using
noisy transcriptions. Such degradation more hon-
estly reflected the actual performance as a mistake
in a word of a number, unlike other typo-like mis-
takes in names, would result in a different number.

C Results with Flan-T5-XXL

Flan-T5-XXL results, categorised as another LLM,
are included in Table 8 and Table 9, as extended
versions of Table 5 and Table 6 respectively.

As with other LLMs, Flan-T5-XXL was trained
using noise-robust fine-tuning with LoRA (0.05%
of the total number of model parameters). Note
that while Flan-T5-XXL outperformed Vicuna-
13B-v1.5 on in-domain few-shot learning tasks, the
zero-shot learning performance of Flan-T5-XXL is
much worse. Vicuna-13B-v1.5 had an 8.0% abso-
lute SLU-F1 increase compared to Flan-T5-XXL,
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Table 8: SLU-F1 (Precision/Recall) on SLURP test set
with LLMs fine-tuned on noisy transcriptions of the
2000-sample subset. The training column indicates the
number of hypotheses used in the prompt for training.
FFT stands for full fine-tuning, and otherwise, noise-
robust LoRA fine-tuning was used. The same number
of hypotheses in training was used during inference.

System Training SLU-F1 (%)

GPT-2 FFT ref 52.2 (61.8 / 45.0)
GPT-2 FFT 10-best 39.0 (62.3 / 28.3)
Flan-T5-base FFT ref 55.2 (66.3 / 47.3)
Flan-T5-base FFT 10-best 35.2 (59.2 / 25.1)
Flan-T5-XL FFT ref 58.9 (71.5 / 50.1)
Flan-T5-XL FFT 10-best 43.0 (47.5 / 39.1)
Flan-T5-XXL FFT ref 59.9 (65.2 / 55.4)
Flan-T5-XXL FFT 10-best 58.7 (67.3 / 52.1)

Vicuna-13B-v1.5 ref. 59.3 (65.3 / 54.3)
Vicuna-13B-v1.5 1-best 60.1 (69.2 / 53.2)
Vicuna-13B-v1.5 5-best 63.3 (66.1 / 60.7)
Vicuna-13B-v1.5 10-best 63.4 (65.9 / 60.9)
Vicuna-13B-v1.5 20-best 61.2 (64.3 / 58.4)
Vicuna-13B-v1.5 9-best + ref. 62.4 (66.9 / 56.1)

Flan-T5-XXL + LKI 10-best 69.8 (75.1 / 65.3)
Vicuna-13B-v1.5 LKI 10-best 65.6 (75.3 / 58.1)

which was increased to 13.0% when the full train-
ing data was used.

Table 9: SLU-F1 (Precision/Recall) on SLURP zero-
shot test set containing unseen slots. Slot-filling systems
were fine-tuned using 2000 samples and the full training
set. Whisper medium outputs were used. FFT stands
for full fine-tuning, and otherwise, noise-robust LoRA
fine-tuning was used.

System 2000 samples (%) Full (%)

Flan-T5-base FFT 25.2 (28.7 / 22.4) 25.1 (28.3 / 22.6)
+ LKI 36.5 (42.2 / 32.2) 32.4 (38.3 / 28.0)

Flan-T5-XL FFT 30.1 (35.5 / 26.1) 29.4 (34.6 / 25.5)
+ LKI 46.5 (60.3 / 37.8) 46.4 (65.2 / 36.0)

Flan-T5-XXL FFT 32.8 (36.5 / 29.7) 32.1 (36.8 / 28.5)
+ LKI 50.0 (61.3 / 42.1) 51.0 (57.8 / 45.7)

LLaMA-2-13B 32.6 (42.7 / 26.3) 32.1 (40.7 / 26.5)
+ LKI 54.3 (66.7 / 45.7) 57.0 (70.5 / 47.8)

+ 10-best 56.5 (58.6 / 54.5) 58.2 (74.3 / 47.8)

Vicuna-13B-v1.5 37.0 (41.0 / 33.7) 36.5 (42.7 / 31.9)
+ LKI 57.0 (66.1 / 50.1) 61.6 (76.4 / 51.7)

+ 10-best 58.0 (68.3 / 50.3) 64.0 (80.5 / 53.1)
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