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Abstract

Having been trained on massive pretraining
data, large language models have shown excel-
lent performance on many knowledge-intensive
tasks. However, pretraining data tends to con-
tain misleading and even conflicting informa-
tion, and it is intriguing to understand how
LLMs handle these noisy data during train-
ing. In this study, we systematically analyze
LLMs’ learning preferences for data with con-
flicting knowledge. We find that pretrained
LLMs establish learning preferences similar to
humans, i.e., preferences towards formal texts
and texts with fewer spelling errors, resulting
in faster learning and more favorable treatment
of knowledge in data with such features when
facing conflicts. This finding is generalizable
across models and languages and is more ev-
ident in larger models. An in-depth analysis
reveals that LLMs tend to trust data with fea-
tures that signify consistency with the majority
of data, and it is possible to instill new prefer-
ences and erase old ones by manipulating the
degree of consistency with the majority data. 1

1 Introduction

Large Language Models (LLMs) such as
LLaMA (Touvron et al., 2023), ChatGPT and
GPT4 (Achiam et al., 2023) have revolutionized
the landscape of natural language process re-
search, and are shown to possess massive world
knowledge (Sun et al., 2023; Singhal et al., 2023;
Choi et al., 2021), even surpassing human-level
performance in various knowledge-intensive
benchmarks (Team et al., 2023; Yang et al.,
2023b; Gilardi et al., 2023; Wang et al., 2023c).
Nearly all knowledge of LLMs comes from the
pretraining corpus, a large amount of which
are web-crawled. Although rigorously cleaned,
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1The code of this paper is available at https://github.
com/CaoYiqingT/Formality-is-Favored

they still inevitably contain misleading and even
conflicting information. It is intriguing how LLMs
deals with these noisy data.

When encountering conflicts of knowledge in a
text, human beings can leverage additional perspec-
tives, such as information sources or consistency
with more information, to aid in their judgments.
As LLMs have accumulated a large amount of com-
mon sense knowledge in their parameters, it is in-
teresting to investigate whether LLMs have devel-
oped similar strategies when faced with conflicting
knowledge from different texts.

In this paper, we present a systematic study on
the learning preferences of LLMs, i.e., the strate-
gies they use to choose between texts with specific
features when facing conflicting knowledge in the
training corpora. We first construct our own bio-
graphical pseudo-data with conflicting knowledge.
Then, we fine-tune LLMs on data with specified
features, ensuring that data with different features
contain conflicting knowledge. The preference for
different data features in model fine-tuning can be
identified by calculating the degree of preference
of the LLMs after fine-tuning.

Empirically, we find that pretrained LLMs ex-
hibit notable learning preferences towards specific
textual features. These preferences are reflected in
two ways: (1) at training time, LLMs learn faster
on data with more preferred features; (2) at test
time, LLMs assign larger probability to knowledge
in data with more preferred features. Concretely,
LLMs prefer formal styles, such as scientific re-
ports and newspaper styles, rather than relatively
casual expressions, such as social media and novel
styles. This preference for stylistic features arises
as the model scale increases and is observed across
different LLMs and in different languages. We also
observed that spelling errors in the training data
lead to negative preferences in the model, a phe-
nomenon that is prevalent across multiple models
in multiple languages. Observing that preferred
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Features Example Biography

General Type In Toronto, Canada, Olivia Hamilton was born on October 13, 1921...

Poor Spelling In Tokyo, Japan, Olivia Hamilton was born on April 19, 1878. She atended University
of Minnesota for her hiyer edukashun...

Newspapers Style Born on May 29, 2012 in Nanjing, China, Olivia Hamilton embarked on a scholarly path
at Stanford University, majoring in Wildlife Biology...

Novels Style Once upon a time, specifically on October 22, 1803, the city of Paris, France gave birth
to a person destined to make a mark - Olivia Hamilton...

Table 1: Examples of biography text with different features. For the Poor-Spelling text, the misspelled words are
displayed in bold font. For other different styles, examples for Newspaper and Novels are presented as a reference.
Please note that in the examples, the knowledge are all about the name “Olivia Hamilton”, but conflict in different
styles.

features of LLMs, such as newspaper and scien-
tific reports, are also more reliable for human be-
ings and likely to be consistent with other data, we
propose a Consistency-driven Feature Preference
Hypothesis for explaining where LLMs’ learning
preferences come from: LLMs are capable of ef-
fectively identifying features that signify the de-
gree of consistency between current data and other
data, and using these features to decide whether
current data is worth learning. Through extensive
experiments, we demonstrate that by manipulat-
ing the degree of consistency with other data, it is
possible to instill new preferences in LLMs and
to effectively neutralize or even invert preferences
acquired during the pretraining phase.

Contributions of the paper are summarized as:

• We propose to investigate models’ learning
preferences on data with conflict knowledge,

• We demonstrate that existing LLMs establish
notable learning preferences towards formal
texts and texts with less spelling errors, and
validate the findings across models and lan-
guages,

• We provide a deeper explanation on how
LLMs develop learning certain preferences:
they can identify features that signify the con-
sistency between current data and other data,
which are used for deciding whether current
data is worth learning.

We construct synthetic biographical data, which
is similar with Allen-Zhu and Li (2023a,b). Charac-
ters appearing in biographies are fictionalized and
accompanied by falsified personal information, so
they have no conflict with the current knowledge
in LLMs. LLMs are trained on these data to learn

the information, and then tested for their learning
result.

1.1 Definitions and Notations
The following definitions and notations are used
throughout this paper.

• Knowledge k. Information of a specific per-
son name, such as birth date, birth place, etc.
Knowledge for a set of person is denoted by
K.

• Conflicting Knowledge. Pieces of knowledge
for the same name but are different for all the
information.

• Template T . A specific text template for de-
scribing the knowledge. Each template is as-
sociated with certain text features.

• Text feature. Specific features of a text, such
as the narrative style, spelling correctness or
specific n-gram patterns. Denoted by capital
letters such as A or B.

• Biography T (k). Specific text description of a
person, which is obtained by inserting knowl-
edge k into a template T . A set of biography
is denoted by I .

1.2 Data Construction
Synthetic Knowledge Our dataset contains
1,000 characters, i.e. names. We select 5 charac-
teristics as information associated with each name,
including birth date, birth place, university, major
and company. The original knowledge set of these
1000 characters are denoted as K̄.

We study various types of text features, such as
narrative style, e.g. Newspaper Style, Scientific Re-
porting Style, Social Media Style and Novel Style;



spelling correctness, e.g. Good-spelling and Poor-
Spelling; and some specific text features ( examples
are shown in Table 1). To cover the diversity of
language usage, for each feature, we generate 50
different templates. Each template describes all the
5 characteristics together with the person name.

Biographies are then generated by inserting
knowledge into these templates. All the synthetic
data are generated with the help of GPT4. More
details can be found in the Appendix A.

Data with Conflicting Knowledge In order to
investigate whether LLMs have a propensity on the
presentation of the data, we introduce conflict into
the data. To explore whether there is a preference
between textual features A and B during training,
we create conflicting knowledge kA and kB , and
describe them with templates in features A and B,
respectively.

More specifically, the conflicting data is gener-
ated for each knowledge kA ∈ K̄ as follows:

IA vs B = {T i
A(kA)}5i=1 ∪ { T j

B(kB)}
5
j=1. (1)

where kB is the conflicting knowledge generating
from kA, TA and TB are templates in features
A and B, respectively. Considering the diver-
sity of representations can help the LLMs mem-
orize knowledge during training (Allen-Zhu and Li,
2023a), we describe each knowledge by randomly
selecting five different templates, {T i(k)}5i=1.

1.3 Learning with Training
Unless otherwise specified, we finetune LLaMA2-
7B model on the constructed biographical data us-
ing standard language modeling objective. The
batch size is 64 and the number of training epochs
is 5. More details of the training process can be
found in the Appendix B .

1.4 Evaluating the Preference
We let the LLMs learn the data with conflicting
knowledge, IA vs B , and comparing the learning
results, which are measured by the probabilities
they assigned to the conflicting knowledge.

More specifically, we construct a test set contain-
ing pairs of statements {(sA, sB)}N1 , where sA and
sB is consistent with kA and kB in the training set,
respectively, and N is the size of the test set. All
test statements are simple and short sentence, ob-
tained by filling in the blanks with templates (Table
6 in the Appendix C). We then define the pairwise
preference score Pr(A,B) to be the percentage of

test statements where the LLM pθ assigns larger
probability to sA than sB:

Pr(A,B) =
1

N

N∑
i=1

1(pθ(sA) > pθ(sB)). (2)

2 What Learning Preferences Has LLMs
Developed?

2.1 Hypothesis
We hypothesize that LLMs can discriminate in-
formation by certain textual features. Assuming
that the information in novel text is always differ-
ent from most other training data, the model may
learn that "texts featuring novels are less credible",
which in turn reduces the learning efficiency on
novel-style texts.

Since the potential textual features that help the
model to distinguish between texts cannot be enu-
merated, we select two representative types of fea-
tures to be explored: text style and spelling correct-
ness.

Text Style Knowledge expressed in texts with
similar styles is also likely to have the same char-
acteristics. For example, a novel style text is more
likely to have knowledge that is contrary to reality,
while the opposite is true for a newspaper style text.

We explore whether the model learns the rela-
tionship between style and knowledge and to pre-
fer certain styles in fine-tuning. We train a mix-
ture of conflicting data with different features and
test which feature has the largest preference score.
Moreover, we do a set of experiments without data
conflicts, which measured the training preference
of the model by the speed of convergence of the
model fine-tuning and the accuracy of the training.

Spelling Correctness Texts with spelling errors
reflect a lack of care of the author and lead to
a greater likelihood of errors in knowledge. We
add spelling errors to a portion of the text to ex-
plore whether the learning preference of model is
affected by spelling correctness in the data.

We denote text without spelling errors as
TGoodSpelling as shown in the General Type line in
Table 1. The training and testing methods in this
part are the same as in the text style experiment.

2.2 General Findings
We verified the model’s preference for certain text
features from two perspectives: the speed of mod-
els when picking up knowledge from texts and the



Experiment birth date birth place university major company avg

Newspapers vs Scientific Reports 48.3 49.1 55.5 48.5 50.3 50.3
Newspapers vs Novels 80.1 58.2 62.6 63.7 55.0 63.9
Newspapers vs Social Media 77.6 58.5 61.3 53.7 52.5 60.7
Scientific Reports vs Novels 75.5 53.4 57.2 62.6 60.2 61.8
Scientific Reports vs Social Media 76.0 55.5 54.3 55.8 54.3 59.1
Social Media vs Novels 52.9 51.4 46.2 54.7 45.8 50.2

Good Spelling vs Poor Spelling 74.5 66.3 54.4 48.1 54.0 59.5

Table 2: Pairwise preference score of finetuned LLaMA-2-7B. The values in the table are the preference scores for
the types labeled bold.

Experiment birth date birth place university major company avg

Newspapers vs Scientific Reports 48.5 46.7 59.6 47.0 52.3 50.8
Newspapers vs Novels 57.0 61.3 65.8 83.5 56.5 64.8
Newspapers vs Social Media 67.4 64.0 65.3 64.3 54.7 63.1
Scientific Reports vs Novels 70.2 53.9 59.3 80.8 57.1 64.2
Scientific Reports vs Social Media 74.4 53.8 54.7 61.0 53.7 59.6
Social Media vs Novels 46.7 48.9 44.6 59.5 46.7 49.3

Table 3: Pairwise preference score of finetuned LLaMA-2-7B. The test statements used in this table is in novel style.

models’ learning preference in the presence of con-
flicting knowledge.

LLMs learn texts with specific features faster
We train the LLaMA2 model on data with each
specified feature and observe the learning dynamics
of the model. We evaluate the model’s accuracy
in answering multiple choice questions related to
the training data. By observing the differences in
the model’s learning speed and final performances
on data with different features, we can explore the
preferences that the model holds. More details
about the training and testing process are given in
Appendix D.

We present the results on different text styles
in Figure 1. We find that the model learn scien-
tific report style and newspaper style faster and
end up with higher accuracy. Similar observations
can be made on good spelling VS. bad spelling in
Appendix D, where the model learn good spelling
faster.

LLMs show preferences when conflict exists
We present the pairwise comparison results in Ta-
ble 2. We find that the model has a significantly
higher preference for activating knowledge for for-
mal styles, such as scientific reports style and news
style. Compared to general style, the model had sig-
nificantly lower preference scores for poor spelling
texts.

To test whether the similarity between the test
statements’ style and the training statements’ style
had a decisive influence on the final results, we also

Figure 1: Models’ accuracy of LLMs trained on differ-
ent styles of data at different epochs during training.

constructed novel style test statements (Table 7 in
Appendix C). Results are shown in Table 3. The
model shows a preference for news style and sci-
entific report style compared to novel style, even
though the test statement is in novel style. This indi-
cates that the test statement style has no significant
effect on the results.

We also conduct study when text with multiple
styles are learned together. The results shows simi-
lar preference (Figure 9 in Appendix E).

2.3 Relationship between Preferences and
Model Scale

To explore the relationship between the model’s
preference for text feature in fine-tuning and the
model’s scale, we run the set of experiments "News-
papers vs Social media" on Pythia models (Bider-



English LLMs Chinese LLMs
LLaMA2-7B Pythia-6.9B deepseek-llm-7B Baichuan-7B

Newspapers vs Social Media 60.7 77.3 57.2 60.1
Good Spelling vs Poor Spelling 59.5 53.3 58.8 58.8

Table 4: Pr(A,B) for multilingual and multiple models. The values in the table are the preference scores for the
types labeled bold.

Figure 2: Pr(Newspapers,Social Media) with differ-
ent model size different features.

man et al., 2023) of different scales. The results are
shown in Figure 2. We can see that the model’s
preference for the newspapers style grows with in-
creasing model scale. This indicates the learning
prefrences are more likely a high-level features that
only emerges in larger models.

2.4 Generalizing Findings across Models and
Languages

To investigate the generalizability of learning pref-
erences found in previous sections, we conduct
experiments on more LLMs and languages. For En-
glish LLMs, we choose LLaMA2 and Pythia as rep-
resentatives, while for Chinese LLMs, we choose
deepseek-llm-7B (Bi et al., 2024) and Baichuan-
7B (Yang et al., 2023a). In the Chinese LLM
experiment, we translate templates from English to
Chinese and construct the dataset in Chinese.

The results are shown in Table 4. As can be
seen from the table, different LLMs for different
languages show a consistent preference. However,
the degree of preference varies considerably across
models, e.g., Pythia-6.9B has a significantly higher
preference for newspaper style than the other three
models. This difference may result from the dif-
ferences in the pre-training corpus as well as the
training methods of different LLMs.

Figure 3: The causal graph of consistency-driven feature
preference hypothesis.

3 Why did LLMs Developed Certain
Preferences?

We have shown that large language models demon-
strate certain learning preferences when facing
conflicting knowledge from different information
sources. However, it is intriguing how LLMs devel-
ops such preferences. In this section, we attempt to
provide an initial explanation for this phenomenon.
We first present our main hypothesis in Section
3.1. We then present our experimental setup and
results in Section 3.3 and 3.4. Finally, we provide
an in-depth analysis of representation and counter-
factual manipulating experiments in Section 3.5
and 3.6, respectively.

3.1 Hypothesis

We note that preferred features discovered in the
previous section is highly consistent with human
beings, e.g. Newspaper and Scientific reports, data
with which are more likely to be consistent with
other data. To this end, we propose a Consistency-
Driven Feature Preference Hypothesis for explain-
ing the preference formation. Formally speaking,
given features A and B, LLMs can observe the de-
gree of consistency C between texts with each fea-
ture and other data, and form an inherent preference
P (A,B). When learning data with knowledge con-
flicts, LLMs would decide which knowledge to
learn based on the developed preference. Figure 3
shows the corresponding casual graph.



(a) Source Name (b) Source Time

Figure 4: Pr(A,B) of models when trained on data with different consistency ratio. Synthetic features: (a)
information source (b) information time.

3.2 Synthetic Features

To validate the proposed hypothesis, we begin by
experimenting injecting new synthetic preference
to pretrained models. We design two types of syn-
thetic features: source name and source time, that
are different from existing text features. So their
preference are purely decided by our own training.

Source Name The two features of this type of
feature are merely two different synthetic informa-
tion source at the beginning of a vanilla template
T :

T̃ = According to <newspaper>, + T (3)

where <newspaper> are synthetic newspaper
names. We ask GPT-4 to generate two sets of such
names for feature A and feature B, respectively.

Source Time The previous type of feature may
be easily discriminated by fixed surface tokens. In
contrast, we design the time feature, which prepend
the same name source but different publishing vol-
umes:

T̃ = According to Global News (Vol. <vol>),+T
(4)

The <vol> token are random numbers smaller than
1000 for TA and larger than 1000 for TB . This
requires a more sophistic process as models need
to firstly decide the relationship between <vol>
and 1000 before discriminating the two features.

3.3 Controlling the Consistency Ratio for
Different Features

Given two features A and B, and a set of knowl-
edge K, our goal is to construct a dataset where

data with features A and B exhibits different con-
sistency degree, i.e. C(A) and C(B), respectively,
with other data. To this end, we first partition the
original knowledge set K̄ into two subsets:

• evidence knowledge set Ke. This set is used
to construct biography that provide clues for
LLMs to decide which feature is more consis-
tent with other data in the training corpus.

• test knowledge set Kt. This set contains the
knowledge to be tested at the inference time.

For each knowledge kA ∈ Ke, we generate its
conflicting knowledge kB , and compose m+n+2
biographies in the following way:

Ie ={T̃A(kA), T̃B(kB)} ∪ (5)

{Ti(kA)}mi=1 ∪ {Tj(kB)}nj=1 (6)

where T̃A and T̃B is the template with fea-
tures A and B, respectively. {Ti(kA)}mi=1 and
{Tj(kB)}nj=1 are the support sets of feature A and
B with neutral templates T 2, and m and n are
sizes of these sets, respectively. By adjusting the
value of m and n, we can effectively manipulate the
consistency ratio, i.e. how consistent kA is within
Ie.

For each knowledge kA in the test knowledge
set, we also generate a conflicting knowledge kB ,
and compose their corresponding biographies with
feature A and B, respectively:

It = {T̃A(kA), T̃B(kB)} (7)

2Here, neutral templates means they do not exhibit features
either like A or B.



Figure 5: The preference score of models at different
training epochs. m : n = 9 : 1

At the training time, we finetune LLaMA-2-7B
on training data consists of all Ie and It for keA and
ktA: ⋃

kA∈Ke

Ie(kA) ∪
⋃

kA∈Kt

It(kA) (8)

At the test time, we compute the preference score
Pr(A,B) on the test knowledge set Kt.

3.4 General Results
We vary different consistency ratio m : n, and
examine the preference score Pr(A,B) of the pro-
posed two features. The results are shown in Fig-
ure 4. From the figure, we can see that:

LLMs prefer the source that is consistent with
major sources. As illustrated in Figure 4a, mod-
els fine-tuned on data where the supportive data for
A and B are of equal size (m : n = 5 : 5) yield
preference scores close to 0.5. However, when the
ratio of supportive data becomes imbalanced, e.g.
favoring feature A, the preference score Pr(A,B)
significantly increases across all information fields,
corresponding to the degree of majority. It is inter-
esting to see that LLMs could develop preferences
from not only surface text, but also from complex
relations such as number comparisons.

LLMs develop the preferences as the training
goes. Figure 5 depicts the dynamic evolution of
the model’s preference score for the given pairs of
features as training progresses over epochs. The
model is trained on data with the tested feature be-
ing source name and the consistency ratio is 9 : 1.
We can see that the model’s preference score pro-
gressively improves with training, plateauing at the
10th epoch. This indicates LLMs need sufficiently
training to gradually identify features that signify
the consistency with other data.

Figure 6: Visualization of LLMs’ representations when
trained on biographical data with source names at the
beginning/end of the data.

3.5 LLMs Learns Similar Representations for
Features with Consistent Knowledge

To gain deeper insights into the learning mecha-
nisms of LLMs, we train an additional model us-
ing the same biography dataset as employed in
the source name experiments. However, in this
instance, we position the information source at
the end of each biography. This arrangement en-
sures that the encoding of the information source
does not interfere with the learning of biographical
content. We then select four different informa-
tion sources: A1, A2, B1, B2, such that A1/A2
and B1/B2 belong to the same newspaper name
set, respectively. Subsequently, we apply Principal
Component Analysis to the representations, which
are derived by averaging the token representations
from models trained on data where the informa-
tion source is placed at the beginning or end of the
biographies, respectively.

The results are shown in Figure 6. From the
figure, we can see that when the LLM is trained



Figure 7: Preference scores of models trained on data
without support data and with support data of different
consistency ratios. Feature A: Newspaper style. Feature
B: Novels

on biographical data with source names at the end
of the biographies, it does not make a distinction
between groups A and B. In contrast, after train-
ing on biographical data with source names at the
beginning of the biography, the model learns to
pull representations from the same group together,
indicating that LLMs can successfully identify the
consistency relationship features during training.

3.6 Erasing/Reversing Inherent Preferences
by Manipulating Consistency Degree

In Section 3.4, we provide evidence that for con-
crete token features, LLMs can identify informa-
tion source that are consistent with majority data
and use it to adjust their preferences when fac-
ing conflicting knowledge from two information
sources. We are intriguing whether this finding
also applies to preferences in Section 2, which are
more abstract.

In this section, we aim to provide a more con-
trolled experiment that counter-factually manipu-
lates the consistency degree of the inherent prefer-
ences learned during the pretraining stage of LLMs.
Specifically, for the style preferences investigated
in Section 2, we construct counterfactual synthetic
datasets, i.e., by associating the more preferred
feature obtained during the pretraining stage with
minority data and vice versa. According to Sec-
tion 2, we choose Newspaper as the more preferred
style and Novels as the less preferred style.

We present the experimental results in Figure 7.
From the figure, we can see that when fine-tuned
without any support evidence data, the model ex-
hibits strong preferences towards Newspaper, as
shown in Section 2. However, when fine-tuned on

data with a balanced consistency ratio, this prefer-
ence is erased, i.e., Pr(Newspaper,Novels) is near
0.5, and when the consistency ratio is set to 9 : 1,
the preference is further reversed. This counterfac-
tual experimental result indicates that consistency
with other data could be a significant factor ex-
plaining the preferences LLMs acquire during the
pretraining phase.

4 Related Work

Understanding the mechanism of knowledge
learning for LLMs. There are a handful of works
that aim to understand the mechanism of knowl-
edge learning for LLMs. Many works attempt to
understand how knowledge is stored and retrieved
in the LLMs’ parameters. Jawahar et al. (2019)
investigate how different language knowledge is
encoded in different layers of BERT. Geva et al.
(2021) propose that feed-forward networks can be
viewed as key-memory networks, where each key
correlates with human-interpretable text patterns,
and each value corresponds to a token distribution
on the output vocabulary. Dai et al. (2022) and
Meng et al. (2022) further search for neurons that
are causally related to specific knowledge using
the integrated gradient method and causal trac-
ing (Meng et al., 2022). Compared to these works,
our paper mainly focuses on how the presentation
of knowledge affects the learning process.

Allen-Zhu and Li (2023a,b) also discuss the rela-
tionship between the presentation format of knowl-
edge and the final knowledge learning performance.
They find that adopting knowledge augmentation,
e.g., paraphrasing, during the pretraining stage sub-
stantially improves the downstream question an-
swering performance on knowledge-related tasks.
We follow this strategy in our paper and investi-
gate how high-level features, e.g., style, spelling
correctness, and consistency with other data, affect
the learning process.

Machine Unlearning and Knowledge Editing
Our findings seek to alter models’ behavior ac-
quired from the pretraining process. This is concep-
tually similar to machine unlearning (Wang et al.,
2023a; Pawelczyk et al., 2024; Yao et al., 2023),
which researches making models forget knowledge
about specific training instances, and knowledge
editing (Wang et al., 2023b; Zhang et al., 2024),
which aims to modify specific knowledge inside
models with the requirement of local specificity
and global generalization, all seeking to alter mod-



els’ behavior acquired from the pretraining pro-
cess. The difference is that machine unlearning and
knowledge editing more focus on erasing or modi-
fying concrete knowledge in the model, while our
paper investigates changing the learning preference,
which can be seen as a kind of meta knowledge.

5 Conclusion

In this paper, we investigate the learning prefer-
ences of large language models. Thorough exten-
sive experiments on synthetic biographies data, we
reveal that existing pretrained large language mod-
els have established preferences as human beings
do, e.g. preferring formal texts and texts with less
spelling errors. We also provide an initial attempt
to explain how such preferences is developed, i.e.
LLMs can effectively identify features that signify
the degree of consistency between current text and
the remaining data, and use such features to de-
termine whether the current text is worth learning.
We hope our work could provide a new perspec-
tive to study the knowledge learning mechanism of
LLMs.

Limitations

The main limitation of this paper is that we only
conduct our experiments on a synthetic dataset due
to the need to manipulate various style of the text.
Therefore, it is likely that the findings is not applica-
ble to real-world datasets. Another limitation is that
due to the high computational cost, Section 3 does
not provide a causal experiment in the pretraining
stage, i.e. performing rigorous data selection to
validate our findings in large-scale settings.
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A Data Construction Details

The details of each biographical data entry are sam-
pled independently and randomly from a uniform
distribution. Birthday information has 200∗12∗28
choices, while all other features have 100 choices.

The names of these characters do not overlap
with celebrities to ensure that knowledge in the
base dataset does not conflict with the model’s ex-
isting knowledge. Moreover, there is some correla-
tion between graduation school and major, as well
as work company and work city, to prevent the in-
troduction of counterfactual knowledge. All of the
above characterization information was generated
by GPT4.

B Training Details

The specific hyper-parameters of the model training
is shown in Table 5.

Hyper-parameter Value

Batch Size 64
Learning Rate 1e-5
Epoch 5
LR scheduler cosine
Warmup Ratio 0.03
Weight Decay 0.0

Table 5: Fine-tune Hyper-parameters

C Test Data Construction

We used the same set of templates to construct
test statements in almost all experiments and in all
settings in our paper. The test templates we used
are shown in Table 6.

In order to verify whether the similarity between
the style of the test statements and the style of the
training statements has a decisive influence on the
final results, this work also constructed novel style
test statements. The novel style test statements are
shown in Table 7.

D Setups and Additional Results of the
learning speed experiment

D.1 Data Construction

In the training data testing experiments, we do not
introduce conflicts, but instead directly allow the
model to be trained on data with a single text fea-
ture. Thus, the dataset in this section can be simply
represented by IA = T i

A(k)
5
i=1, where TA denotes

the template with the current text feature A to be

Figure 8: Accuray as different epochs during training
process of LLM trained on Good Spelling data and Poor
Spelling data

examined and k denotes the character in the bi-
ography. We randomly selected five expressions
for each biography to allow the model to better
memorize the knowledge in the data.

D.2 Training

The training details in this experiment are identical
to those presented in Appendix B.

D.3 Evaluation

We measure the effectiveness of the model in learn-
ing the training data by the accuracy with which
the model completes multiple choice questions re-
lated to the training data. Specifically, we construct
a test set {(s̄, sa, sb, sc)}N1 , where each piece of
data in the test set contains four statements. s̄ is the
statement that is consistent with the training data
representation, whereas sa, sb, sc are the incorrect
choices constructed with random data, and N is
the size of the test set. We then used perplexity to
examine the proportion of models that preferred s̄.

E Results of multiple-style comparison

In real training scenarios, the LLMs may face far
more sources of conflict than the two styles. In
order to investigate whether the model’s aforemen-
tioned preferences exist when multiple styles all
conflict on the same knowledge, we conduct ex-
periments on 10 different styles simultaneously.
All styles describe the same characters, but the
character attributes are all different. We evaluate
the percentage of attributes corresponding to each
style as having the highest probability of output,
as shown in Figure 9. As can be seen from the
figure, the model preference remains, i.e. the more
formal styles such as textbooks style, newspapers



Test feature Test statement

Birth Date {}’s birthday is {}.
Birth Place {} was born at {}.
University {} received education at the {}.
Major {} focused on {} during her university study.
Company {} worked for {}.

Table 6: The templates used to construct test statements in this paper.

Test feature Test statement

Birth Date {}’s birthday is on the unforgettable day of {}.
Birth Place {} was born under the bright sky of {}.
University {} embarked on a journey of knowledge at the esteemed {}.
Major {} went to university and hone her skills in {}.
Company {} contributes her expertise to {}.

Table 7: Novel style test statements.

Figure 9: Results of ten styles mixed together. The
styles represented by the corresponding sector are la-
beled around the pie chart. Percentages within the pie
chart indicate the proportion of the corresponding sector
that is assigned the highest preference.

style, scientific reports style and wikipedia style
are more preferred by the model.
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