@inproceedings{abulimiti-etal-2023-generate,
title = "When to generate hedges in peer-tutoring interactions",
author = "Abulimiti, Alafate and
Clavel, Chlo{\'e} and
Cassell, Justine",
editor = "Stoyanchev, Svetlana and
Joty, Shafiq and
Schlangen, David and
Dusek, Ondrej and
Kennington, Casey and
Alikhani, Malihe",
booktitle = "Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.sigdial-1.53/",
doi = "10.18653/v1/2023.sigdial-1.53",
pages = "572--583",
abstract = "This paper explores the application of machine learning techniques to predict where hedging occurs in peer-tutoring interactions. The study uses a naturalistic face-to-face dataset annotated for natural language turns, conversational strategies, tutoring strategies, and nonverbal behaviors. These elements are processed into a vector representation of the previous turns, which serves as input to several machine learning models, including MLP and LSTM. The results show that embedding layers, capturing the semantic information of the previous turns, significantly improves the model`s performance. Additionally, the study provides insights into the importance of various features, such as interpersonal rapport and nonverbal behaviors, in predicting hedges by using Shapley values for feature explanation. We discover that the eye gaze of both the tutor and the tutee has a significant impact on hedge prediction. We further validate this observation through a follow-up ablation study."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="abulimiti-etal-2023-generate">
<titleInfo>
<title>When to generate hedges in peer-tutoring interactions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alafate</namePart>
<namePart type="family">Abulimiti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chloé</namePart>
<namePart type="family">Clavel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Justine</namePart>
<namePart type="family">Cassell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Svetlana</namePart>
<namePart type="family">Stoyanchev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafiq</namePart>
<namePart type="family">Joty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Casey</namePart>
<namePart type="family">Kennington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper explores the application of machine learning techniques to predict where hedging occurs in peer-tutoring interactions. The study uses a naturalistic face-to-face dataset annotated for natural language turns, conversational strategies, tutoring strategies, and nonverbal behaviors. These elements are processed into a vector representation of the previous turns, which serves as input to several machine learning models, including MLP and LSTM. The results show that embedding layers, capturing the semantic information of the previous turns, significantly improves the model‘s performance. Additionally, the study provides insights into the importance of various features, such as interpersonal rapport and nonverbal behaviors, in predicting hedges by using Shapley values for feature explanation. We discover that the eye gaze of both the tutor and the tutee has a significant impact on hedge prediction. We further validate this observation through a follow-up ablation study.</abstract>
<identifier type="citekey">abulimiti-etal-2023-generate</identifier>
<identifier type="doi">10.18653/v1/2023.sigdial-1.53</identifier>
<location>
<url>https://aclanthology.org/2023.sigdial-1.53/</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>572</start>
<end>583</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When to generate hedges in peer-tutoring interactions
%A Abulimiti, Alafate
%A Clavel, Chloé
%A Cassell, Justine
%Y Stoyanchev, Svetlana
%Y Joty, Shafiq
%Y Schlangen, David
%Y Dusek, Ondrej
%Y Kennington, Casey
%Y Alikhani, Malihe
%S Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F abulimiti-etal-2023-generate
%X This paper explores the application of machine learning techniques to predict where hedging occurs in peer-tutoring interactions. The study uses a naturalistic face-to-face dataset annotated for natural language turns, conversational strategies, tutoring strategies, and nonverbal behaviors. These elements are processed into a vector representation of the previous turns, which serves as input to several machine learning models, including MLP and LSTM. The results show that embedding layers, capturing the semantic information of the previous turns, significantly improves the model‘s performance. Additionally, the study provides insights into the importance of various features, such as interpersonal rapport and nonverbal behaviors, in predicting hedges by using Shapley values for feature explanation. We discover that the eye gaze of both the tutor and the tutee has a significant impact on hedge prediction. We further validate this observation through a follow-up ablation study.
%R 10.18653/v1/2023.sigdial-1.53
%U https://aclanthology.org/2023.sigdial-1.53/
%U https://doi.org/10.18653/v1/2023.sigdial-1.53
%P 572-583
Markdown (Informal)
[When to generate hedges in peer-tutoring interactions](https://aclanthology.org/2023.sigdial-1.53/) (Abulimiti et al., SIGDIAL 2023)
ACL
- Alafate Abulimiti, Chloé Clavel, and Justine Cassell. 2023. When to generate hedges in peer-tutoring interactions. In Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 572–583, Prague, Czechia. Association for Computational Linguistics.