@inproceedings{wada-etal-2023-unsupervised-lexical,
title = "Unsupervised Lexical Simplification with Context Augmentation",
author = "Wada, Takashi and
Baldwin, Timothy and
Lau, Jey",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.627",
doi = "10.18653/v1/2023.findings-emnlp.627",
pages = "9368--9379",
abstract = "We propose a new unsupervised lexical simplification method that uses only monolingual data and pre-trained language models. Given a target word and its context, our method generates substitutes based on the target context and also additional contexts sampled from monolingual data. We conduct experiments in English, Portuguese, and Spanish on the TSAR-2022 shared task, and show that our model substantially outperforms other unsupervised systems across all languages. We also establish a new state-of-the-art by ensembling our model with GPT-3.5. Lastly, we evaluate our model on the SWORDS lexical substitution data set, achieving a state-of-the-art result.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wada-etal-2023-unsupervised-lexical">
<titleInfo>
<title>Unsupervised Lexical Simplification with Context Augmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Takashi</namePart>
<namePart type="family">Wada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jey</namePart>
<namePart type="family">Lau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a new unsupervised lexical simplification method that uses only monolingual data and pre-trained language models. Given a target word and its context, our method generates substitutes based on the target context and also additional contexts sampled from monolingual data. We conduct experiments in English, Portuguese, and Spanish on the TSAR-2022 shared task, and show that our model substantially outperforms other unsupervised systems across all languages. We also establish a new state-of-the-art by ensembling our model with GPT-3.5. Lastly, we evaluate our model on the SWORDS lexical substitution data set, achieving a state-of-the-art result.</abstract>
<identifier type="citekey">wada-etal-2023-unsupervised-lexical</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.627</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.627</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>9368</start>
<end>9379</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Lexical Simplification with Context Augmentation
%A Wada, Takashi
%A Baldwin, Timothy
%A Lau, Jey
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F wada-etal-2023-unsupervised-lexical
%X We propose a new unsupervised lexical simplification method that uses only monolingual data and pre-trained language models. Given a target word and its context, our method generates substitutes based on the target context and also additional contexts sampled from monolingual data. We conduct experiments in English, Portuguese, and Spanish on the TSAR-2022 shared task, and show that our model substantially outperforms other unsupervised systems across all languages. We also establish a new state-of-the-art by ensembling our model with GPT-3.5. Lastly, we evaluate our model on the SWORDS lexical substitution data set, achieving a state-of-the-art result.
%R 10.18653/v1/2023.findings-emnlp.627
%U https://aclanthology.org/2023.findings-emnlp.627
%U https://doi.org/10.18653/v1/2023.findings-emnlp.627
%P 9368-9379
Markdown (Informal)
[Unsupervised Lexical Simplification with Context Augmentation](https://aclanthology.org/2023.findings-emnlp.627) (Wada et al., Findings 2023)
ACL