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Abstract

One core challenge facing morphological in-
flection systems is capturing language-specific
morphophonological changes. This is particu-
larly true of languages like Arabic which are
morphologically complex. In this paper, we
learn explicit morphophonological rules from
morphologically annotated Egyptian Arabic
and corresponding surface forms. These rules
are human-interpretable, capture known mor-
phophonological phenomena in the language,
and are generalizable to unseen forms.

1 Introduction

Much progress has been made in tasks such as mor-
phological (re-)inflection and morphological anal-
ysis in recent years (e.g., Narasimhan et al., 2015;
Kirov and Cotterell, 2018; Belth et al., 2021). How-
ever, low-resource languages still prove to be a sig-
nificant challenge, despite growing interest, as the
recent SIGMORPHON shared task reveals (Kod-
ner et al., 2022; Kodner and Khalifa, 2022). Arabic
dialects present a specific challenge in that there
is an almost continual variation between dialects,
mainly along the geographical dimension, and most
dialects are low-resource. Cairene Arabic morphol-
ogy is related to that of the dialects of (for exam-
ple) Alexandria, Sohag, Aswan, and Khartoum. So
from an NLP point of view, if we have knowledge
of Cairene and need a morphological tool for one
of the other dialects, we should be able to leverage
our knowledge of Cairene. We propose to address
the challenge by modeling morphophonological
rules explicitly. Such rules provide an explain-
able representation of morphophonology. Once we
have those rules, we can create NLP tools while
leveraging rules from adjacent dialects. Having a
standalone model of morphology, in terms of mor-
phophonology or morphosyntax, improves the per-
formance of many downstream NLP tasks such as
machine translation (Sennrich and Haddow, 2016;
Erdmann et al., 2019; Alhafni et al., 2020), speech

synthesis (Halabi, 2016) and morphological disam-
biguation (Khalifa et al., 2020; Inoue et al., 2022).
Morphological resources provide explicit linguis-
tic knowledge that is not necessarily captured by
learning models.

In this paper we present a preliminary study on
automatically learning morphophonological rules
for Cairene Egyptian Arabic (henceforth, EGY).
We choose EGY because it is well-studied and has
many resources. The learning process relies on the
rule representation inspired by the notion of phono-
logical rules, where a phonological alternation is
explicitly represented via an input, an output, and
the phonemic context. We evaluate our approach
based the accuracy of the generated forms and the
genralizability of the learned rules. Additionally,
we describe the dataset preparation process as there
is no suitable dataset for our task. To the best of our
knowledge, this task of rule-learning to specifically
model morphophonology has not been studied be-
fore in the context of Arabic NLP. This study will
help us investigate to what degree can we learn
explicit linguistic properties from simple represen-
tations.

2 Related Work

There have been many efforts on morphological
modeling for Arabic. Precompiled tabular morpho-
logical analyzers (Buckwalter, 2002, 2004; Graff
et al., 2009; Habash et al., 2012; Khalifa et al.,
2017; Taji et al., 2018) became the standard in
many Arabic NLP pipelines. While they pro-
vide rich morphological analysis, they are directly
encoded into the lexicon and do not explicitly
model descriptive linguistic phenomena such as
morphophonological interactions. In contrast, ear-
lier efforts that modeled morphology using finite-
state technology (e.g., Beesley, 1998; Habash and
Rambow, 2006) used explicit rules leveraging roots
and patterns. However, they were manually built
and were abstracted to a high degree. More re-

295



Dialect Realization
Egyptian kitabha
Sudanese kitaaba
Hijazi kitaabaha
Emirati kitaabha

Table 1: Different realizations of the same underlying
form /kitaab+haa/ ‘her book’ Ah�At� in four dialects.

cently, Habash et al. (2022) focused on modeling
allomorphy through linguistically descriptive rules.
However, the rules are manually created and do not
model phonological representations. Other efforts
adopting neural approaches to modeling morpho-
logical inflections (Wu et al., 2021; Dankers et al.,
2021; Batsuren et al., 2022) perform well for many
languages, however, those models do not provide
insightful general rules or descriptions of linguis-
tic phenomena. In this effort we take a generative
view on morphophonology and we aim to learn
morphophonological rules and apply them auto-
matically.

3 Background

Morphophonology and Arabic Morphophonol-
ogy is the study of the interaction between morpho-
logical and phonological processes. In particular,
morphophonemic analysis aims at discovering the
set of underlying forms and ordered rules that are
consistent with the data it analyzes (Hayes, 2008).

Arabic morphophonology is especially interest-
ing as its complex morphology is both templatic
and concatenative. Morphophonological changes
occur on the stem pattern and on stem and word
boundaries. In the case of concatnative morphol-
ogy, adding morphemes around the stem may trig-
ger phonological changes. Most of these reinterpret
the syllabic structure of utterances, and Arabic va-
rieties may employ different processes to maintain
such structures (Broselow, 2017). Table 1 shows
how different varieties realize the same underlying
representation: Egyptian, Sudanese, and Hijazi all
employ different strategies to avoid a super-heavy
syllable /-taab/, while Emirati permits it.

Rule Representation The transformation rules
that we aim to extract are inspired by the Sound
Pattern of English (SPE; Chomsky and Halle,
1968), where a hypothetical underlying represen-
tation (UR) is transformed into a surface form (SF)
by the application of a series of rules. Below is
an example of a phonological rule representing r-
dropping in many dialects of British English, where

r is dropped when it falls between a vowel and a
syllable boundary ]σ.

r → ∅ / V ]σ
UR → SF / (context) (context)

Our work takes inspiration from the main three
components of a rule, which are the UR, SF, and
the context. The exact notion of rule, however,
differs in order to make it machine-friendly. To this
end, we take additional inspiration from two-level
phonology (Antworth, 1991), which compresses
stacks of SPE rules into a single UR and SF without
intermediate steps.

4 Data

Our focus is on developing an explainable learning
approach. Therefore, we control our experimental
setup by having a few assumptions: a) we deal
with whole words out of context, b) the data is in
a broad phonetic transcription, c) SF is the word
produced and UR is the morphologically segmented
underlying representation, and d) the phonemic and
morphemic inventories are assumed to be acquired
beforehand (for example, by observing words in
which the segmentation task is trivial).

Though EGY is resource-rich relative to many
other varieties, there is no dataset that has been an-
notated for the task of morphophonological learn-
ing. To build such a dataset we need to create pairs
of UR and SF to learn and evaluate morphophono-
logical rules. In this work, we employ two existing
resources created specifically for EGY: ECAL, and
CALIMAEGY .

4.1 Resources

The Egyptian Colloquial Arabic Lexicon
(ECAL; Kilany et al., 2002) is a pronunciation
dictionary primarily based on CALLHOME Egypt
(Gadalla et al., 1997). Each entry in ECAL includes
an orthographic, phonological, and morphological
representation (Table 2(a)). Phonological forms
represent SF. The orthography is undiacritized, and
ECAL does not provide a full morphological seg-
mentation. Therefore, we cannot use ECAL alone
to extract URs, and we employ a separate resource
in order to generate a hypothesized UR with mor-
pheme boundaries.

CALIMAEGY (Habash et al., 2012) is a mor-
phological analyzer that generates a set of possible
analyses for a given input token out of context.
Each analysis includes a diacritized orthographic
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(a) ECA Arabic Pronunciation lemma:morph

mafatIHu ࠬරඞං݅߰ࢁ m@f@tIHu muftAH:noun+masc-inan-plural+gen-3rd-masc-sg

(b) diac lemma BW POS gen num enc0

ُࠬරඞِංَ݅߰ࢁ ْ߰݅ح ُ ࢁ POSS_PRON_3MS/ُه+NOUN/௧ِ َࢇߜघ noun m s 3ms_poss

Table 2: An example of a partial entry from ECAL in (a). An example of a partial entry from CALIMAEGY in (b).

form, morphological segmentation, and morpho-
logical features. We leverage the segmentation pro-
vided through CALIMAEGY as the starting point
for a UR to the SF extracted from ECAL.

4.2 Dataset Creation

We generate a UR from CALIMAEGY for every
SF extracted from ECAL. We use the CamelTools
(Obeid et al., 2020) analyzer engine. We feed in the
ECAL orthographic form to generate all the pos-
sible analyses. We then automatically choose the
best matching analysis based on the orthography,
lemma, part-of-speech (POS), and morphological
features from both resources. Tables 2(a,b) show
the necessary information used from both resources
for the word /mafatiièu/ ‘his keys’ ¢u�y�Afa�. Once
the best analysis is chosen, the segmentation is
extracted from the Buckwalter fine-grained POS
tag (Buckwalter, 2002) generated as part of the
CALIMAEGY analysis.

Forms are normalized to approximate UR

forms. Only stem-bound morphophonological
sound changes, i.e., entirely predictable changes,
are normalized. These included changes such as
unconditioned /q/ > /P/ and the distinction between
emphatic and non-emphatic vowels. Another as-
pect to take into consideration is the hypothesized
underlying representation of the affixes and cl-
itics. Some morphemes, such as the 2.fem.sg
clitic /ik/, can have two forms, [ik] or [kii] de-
pending on the last segment in the stem. In such
cases, we remained faithful to the form provided
by CALIMAEGY which is always consistent.

Finally, we enrich the segmentation provided by
the analyzer, delimiting prefixes with -, suffixes
with =, and word boundaries with #.1 Table 3(a)
shows an example of the final (UR,SF) pair. When
generating the final set of UR and SF pairs, we only

1We do not make a distinction between affixes and clitics
boundaries because we discovered that it does not significantly
affect the learning process.

Data

(a) UR SF

#mafAtIH=uh# #mafatIHu# ُࠬරඞංَ݅߰ࢁ

Locate alternations in UR

(b) #mafAtIH=uh#

Fit to smallest context

(c) afAtIH=uh#

Generalize

(d) aCACIC=uh#

Rule

LHS RHS

(e) aCACIC=uh# → aCaCICu#

Table 3: This figure shows process of rule extraction
starting from (UR,SF) pairs. An entry from the dataset
in (a). In (b), different alternations are located through
Levenshtein distance, morpheme boundary changes are
in blue, and phonemic changes are in red to visualize
the changes. We then reduce UR to the smallest context
in (c). Followed by generalizing the stem consonants in
(d). In (e) we see the final form of the rule.

picked entries that belong to the open-class POS,
i.e., verbs, nouns, and adjective.

4.3 Splits

ECAL was based on a continuous text corpus and
indicates the occurrences of the entries in each
of the three splits in the original corpus, namely,
TRAIN, DEV, and EVAL. Because the splits are
based on running text, words may re-occur in each
of the splits. So in addition to DEV and EVAL, we
also create DEV-OOV and EVAL-OOV by removing
any overlap with TRAIN as shown in Table 4(a).
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5 Learning Approach

We frame the learning problem as learning simple
transformation rules that capture morphophonolog-
ical interactions in a given dataset of (UR,SF) pairs.

5.1 Rule Extraction

We employ a simple rule learning mechanism that
consists of extracting string transformations and
converting those transformations into rules learned
from TRAIN. In the first round, the string transfor-
mations are captured by calculating Levenshtein
distance on every (UR,SF) to extract edit operations.
Those edit operations are then used to locate the
positions of where alternations are happening. Al-
ternations to both the morpheme boundaries and
phonemes are being considered. Levenshtein edits
return whole word contexts. In order to improve
generalizability, we choose a window of 2 around
an alternation, if more than one alternation occur,
then the window will be around the smallest sub-
string that contains all alternations. And to further
generalize, all consonants of the stem are replaced
with a generic C character. The vowels and all
other morphemes remain fully specified. Note that
in the original notion of rules mentioned in §3, the
rule always corresponds to a single change, so sev-
eral rules may have to apply in sequence to yield
the appropriate SF. However, in our adaptation, a
single rule captures all changes simultaneously.

A rule in our definition consists of two compo-
nents: the left-hand side (LHS) of the rule which
represents the UR and context, and the right-hand
side (RHS) of the rule which represents the SF. In
case no change occurs, i.e., UR and SF are identical,
in other words, the only alternations are deletions
of morpheme boundaries, then the rule is reduced
to UR→copy. Every rule has an accompanying fre-
quency which is the number of (UR,SF) pair types
that generated this rule. Table 3(e) shows an exam-
ple of a rule. After rule extraction and generaliza-
tion we ended up with 4,661 rules, which is 35.4%
of the size of TRAIN.

5.2 Rule Selection

Since rules are specified by a limited context, it
is often the case that more than one rule could
apply to a given UR. Finding a rule that matches
a given UR and produces the correct SF is not a
trivial task. At this stage of our study, we employ
a simple heuristic to select the most fitting rule.
For a new UR, the longest and the most specific

(a) TRAIN DEV EVAL
All 13,170 5,180 6,974
OOV – 2,189 2,271

(b) TRAIN DEV EVAL
All 90.1% 80.5% 82.3%
OOV – 69.4% 68.9%

Table 4: Accuracy on each data split in (a). All rep-
resents all the types belonging to the respective splits
as indicated in ECAL. OOV represents the same splits
excluding types which also occur in TRAIN in (b).

LHS is chosen. Specificity is determined by the
least amount of unspecified consonants in the stem,
i.e., the least number of Cs. If the chosen LHS is
found to participate in multiple rules, then the most
frequent rule is applied.

6 Evaluation

To evaluate our current rule learning approach, we
compute the accuracy of the generated SF for ev-
ery UR, reported in Table 4(b). TRAIN accuracy is
reported for the purpose of validating the general-
izability of the rules. Performance is under 100%
because of the rule abstraction process and rule
selection heuristic. Even in TRAIN, there are words
to which multiple rules can apply.

Two numbers are provided for both DEV and
EVAL. The numbers in the All group indicate per-
formance on the full splits. These indicate likely
performance in future downstream tasks applied to
running text, however, these contain words which
were also present in TRAIN, so they are not in them-
selves a good indicator of our model’s ability to
generalize to unseen words. The out-of-vocabulary
(OOV) numbers only report accuracy on types that
were unseen during training. They retain most of
their performance, indicating that the rules that our
model learns do apply to new types.

7 Discussion and Error Analysis

The results discussed in §6 are good indicators of
the generalizability of all the components of our
approach, including rule representation, extraction,
and selection heuristics. We performed a qualita-
tive error analysis to further verify the generaliz-
ability and linguistic validity of the acquired rules.

Sources of Errors We investigated sources of
errors in the SF production by comparing the rules
the were selected with the ground-truth rules of
the 31% of DEV-OOV forms that were incorrectly
produced. The ground-truth rules were classified as
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either in-vocabulary rules (INV-rules) which exist
in the acquired rule inventory or out-of-vocabulary
rules (OOV-rules) which do not. Of the errors, 32%
misproduced words had INV-rules. The selection
heuristic is the driving source of this error: in the
overwhelming majority of cases, the most specific
LHS was selected. On the other hand, 68% of
the errors had OOV-rules, which means that those
rules were never seen before. We investigated 100
of those rules (30%). We found that all phenomena
that those rules capture are in fact already captured
in existing rules, but the context of the alternation
is new, and therefore, the LHS is deemed unseen.
This investigation emphasizes the crucial roles of
the rule search heuristic and choice of the context.

Linguistic Phenomena To reaffirm the value of
learning morphophonology through rules, we an-
alyzed the top 60 (non-copy) most frequent rules.
The most frequent rule in this sample had a fre-
quency of 166 and the lowest was 15. We describe
the captured phenomena in the following points:

• Word-final long vowel shortening.
• Assimilation of determiner-final /l/ to a stem-

initial coronal. The “sun” and “moon” letter rule.
• Shortening of stem /aa/ in certain patterns.
• Epenthetic /u/ and /a/ to break CCC clusters.
• Deletion of stem-initial glottal stop after a prefix.
• Lengthening of the feminine suffix marker /a/

when it attaches to some pronominal suffixes in
active participles.

• Deletion of word-final /h/ in the 3.masc.sg /-uh/.
• Deletion of /i/ in the active participles of the pat-

tern /CACiC/ before a pronominal suffix.

Those findings mirror descriptive phonology for
EGY (Abdel-Massih et al., 1979; Broselow, 2017).
The small number of phenomena we found in the
rules highlights once again the importance of deter-
mining the optimal context. This is a matter we are
currently investigating.

8 Conclusion and Future work

In this paper we presented a morphophonologi-
cal learning approach for Egyptian Arabic. The
main goal was to learn morphophonological rules
from pairs of underlying representations and sur-
face forms. We achieved this goal with a produc-
tion accuracy of 82% on the evaluation set and
68% on completely unseen tokens from the same
set. Additionally, the linguistic phenomena cap-
tured through the rules align with the descriptive

grammars of Egyptian Arabic. This effort also re-
sulted in a new dataset designed specifically for
this task. The dataset was generated by combining
relevant information from a pronunciation lexicon
and an orthography-based morphological analyzer.

In ongoing work, we continue to develop the
crucial components of our rule learning approach.
We are focusing on developing a more dynamic
approach to determine the context of a change and
the degree of phone abstraction. We will validate
our approach by applying it to more dialects, in-
cluding dialects with very scarce resources. Ad-
ditionally, in low resource simulated settings, we
plan to investigate the cognitive plausibility of the
rules which will give insights to child acquisition
of morphophonological phenomena.
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ský, Amarsanaa Ganbold, Šárka Dohnalová, Magda
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