@inproceedings{xie-etal-2022-word,
title = "A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools Stock Prediction",
author = "Xie, Yong and
Wang, Dakuo and
Chen, Pin-Yu and
Xiong, Jinjun and
Liu, Sijia and
Koyejo, Oluwasanmi",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.43/",
doi = "10.18653/v1/2022.naacl-main.43",
pages = "587--599",
abstract = "More and more investors and machine learning models rely on social media (e.g., Twitter and Reddit) to gather information and predict movements stock prices. Although text-based models are known to be vulnerable to adversarial attacks, whether stock prediction models have similar vulnerability given necessary constraints is underexplored. In this paper, we experiment with a variety of adversarial attack configurations to fool three stock prediction victim models. We address the task of adversarial generation by solving combinatorial optimization problems with semantics and budget constraints. Our results show that the proposed attack method can achieve consistent success rates and cause significant monetary loss in trading simulation by simply concatenating a perturbed but semantically similar tweet."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xie-etal-2022-word">
<titleInfo>
<title>A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools Stock Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dakuo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pin-Yu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinjun</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sijia</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oluwasanmi</namePart>
<namePart type="family">Koyejo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>More and more investors and machine learning models rely on social media (e.g., Twitter and Reddit) to gather information and predict movements stock prices. Although text-based models are known to be vulnerable to adversarial attacks, whether stock prediction models have similar vulnerability given necessary constraints is underexplored. In this paper, we experiment with a variety of adversarial attack configurations to fool three stock prediction victim models. We address the task of adversarial generation by solving combinatorial optimization problems with semantics and budget constraints. Our results show that the proposed attack method can achieve consistent success rates and cause significant monetary loss in trading simulation by simply concatenating a perturbed but semantically similar tweet.</abstract>
<identifier type="citekey">xie-etal-2022-word</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.43</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.43/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>587</start>
<end>599</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools Stock Prediction
%A Xie, Yong
%A Wang, Dakuo
%A Chen, Pin-Yu
%A Xiong, Jinjun
%A Liu, Sijia
%A Koyejo, Oluwasanmi
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F xie-etal-2022-word
%X More and more investors and machine learning models rely on social media (e.g., Twitter and Reddit) to gather information and predict movements stock prices. Although text-based models are known to be vulnerable to adversarial attacks, whether stock prediction models have similar vulnerability given necessary constraints is underexplored. In this paper, we experiment with a variety of adversarial attack configurations to fool three stock prediction victim models. We address the task of adversarial generation by solving combinatorial optimization problems with semantics and budget constraints. Our results show that the proposed attack method can achieve consistent success rates and cause significant monetary loss in trading simulation by simply concatenating a perturbed but semantically similar tweet.
%R 10.18653/v1/2022.naacl-main.43
%U https://aclanthology.org/2022.naacl-main.43/
%U https://doi.org/10.18653/v1/2022.naacl-main.43
%P 587-599
Markdown (Informal)
[A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools Stock Prediction](https://aclanthology.org/2022.naacl-main.43/) (Xie et al., NAACL 2022)
ACL