@inproceedings{haghighatkhah-etal-2022-story,
title = "Story Trees: Representing Documents using Topological Persistence",
author = "Haghighatkhah, Pantea and
Fokkens, Antske and
Sommerauer, Pia and
Speckmann, Bettina and
Verbeek, Kevin",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.258/",
pages = "2413--2429",
abstract = "Topological Data Analysis (TDA) focuses on the inherent shape of (spatial) data. As such, it may provide useful methods to explore spatial representations of linguistic data (embeddings) which have become central in NLP. In this paper we aim to introduce TDA to researchers in language technology. We use TDA to represent document structure as so-called story trees. Story trees are hierarchical representations created from semantic vector representations of sentences via persistent homology. They can be used to identify and clearly visualize prominent components of a story line. We showcase their potential by using story trees to create extractive summaries for news stories."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="haghighatkhah-etal-2022-story">
<titleInfo>
<title>Story Trees: Representing Documents using Topological Persistence</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pantea</namePart>
<namePart type="family">Haghighatkhah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antske</namePart>
<namePart type="family">Fokkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pia</namePart>
<namePart type="family">Sommerauer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bettina</namePart>
<namePart type="family">Speckmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Verbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topological Data Analysis (TDA) focuses on the inherent shape of (spatial) data. As such, it may provide useful methods to explore spatial representations of linguistic data (embeddings) which have become central in NLP. In this paper we aim to introduce TDA to researchers in language technology. We use TDA to represent document structure as so-called story trees. Story trees are hierarchical representations created from semantic vector representations of sentences via persistent homology. They can be used to identify and clearly visualize prominent components of a story line. We showcase their potential by using story trees to create extractive summaries for news stories.</abstract>
<identifier type="citekey">haghighatkhah-etal-2022-story</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.258/</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>2413</start>
<end>2429</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Story Trees: Representing Documents using Topological Persistence
%A Haghighatkhah, Pantea
%A Fokkens, Antske
%A Sommerauer, Pia
%A Speckmann, Bettina
%A Verbeek, Kevin
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F haghighatkhah-etal-2022-story
%X Topological Data Analysis (TDA) focuses on the inherent shape of (spatial) data. As such, it may provide useful methods to explore spatial representations of linguistic data (embeddings) which have become central in NLP. In this paper we aim to introduce TDA to researchers in language technology. We use TDA to represent document structure as so-called story trees. Story trees are hierarchical representations created from semantic vector representations of sentences via persistent homology. They can be used to identify and clearly visualize prominent components of a story line. We showcase their potential by using story trees to create extractive summaries for news stories.
%U https://aclanthology.org/2022.lrec-1.258/
%P 2413-2429
Markdown (Informal)
[Story Trees: Representing Documents using Topological Persistence](https://aclanthology.org/2022.lrec-1.258/) (Haghighatkhah et al., LREC 2022)
ACL