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Abstract
Vision-and-Language Navigation (VLN) tasks
require an agent to navigate through the envi-
ronment based on language instructions. In
this paper, we aim to solve two key challenges
in this task: utilizing multilingual instructions
for improved instruction-path grounding and
navigating through new environments that are
unseen during training. To address these chal-
lenges, first, our agent learns a shared and
visually-aligned cross-lingual language rep-
resentation for the three languages (English,
Hindi and Telugu) in the Room-Across-Room
dataset. Our language representation learn-
ing is guided by text pairs that are aligned
by visual information. Second, our agent
learns an environment-agnostic visual represen-
tation by maximizing the similarity between
semantically-aligned image pairs (with con-
straints on object-matching) from different en-
vironments. Our environment agnostic vi-
sual representation can mitigate the environ-
ment bias induced by low-level visual informa-
tion. Empirically, on the Room-Across-Room
dataset, we show that our multi-lingual agent
gets large improvements in all metrics over
the strong baseline model when generalizing
to unseen environments with the cross-lingual
language representation and the environment-
agnostic visual representation. Furthermore,
we show that our learned language and visual
representations can be successfully transferred
to the Room-to-Room and Cooperative Vision-
and-Dialogue Navigation task, and present de-
tailed qualitative and quantitative generaliza-
tion and grounding analysis.1

1 Introduction

The Vision-and-Language Navigation task requires
an agent to navigate through the environment based
on language instructions. This task has two un-
solved challenges. First, directly introducing pre-
trained linguistic and visual representations into

1Code and model are available at https://github.
com/jialuli-luka/CLEAR.

You are facing towards the closed 
door right now, turn back, you can 
find a washroom in front of you, 
enter into the washroom, stand in 
between the bath tub and the 
wash basin, that would be your 
end point.

మీరు నిలు్చున్న చోటు నుండి 
ఎడమవైపుకు తిరిగి, ఎదురుగా ఉన్న 
ద�్వారంలోకి ప్రవేశించి, ఎడమవైపు ఉన్న 
వాష్ బేసిన్ పక్కకు వెȅళ్లి ఆగండి.    

पीछे पलटकर द्वार के अंदर जाइये सीधा, 
ͧसकं के दाए ओर पर आकर रुक जाइये।  

Path A Path BEnglish Instruction

Telugu Instruction

Hindi Instruction

Figure 1: Motivation for cross-lingual and environment-
agnostic visual representations: The English instruction,
Telugu instruction, Hindi instruction on the left all cor-
respond to the same path – Path A. The words in red
correspond to the same visual object “wash basin". Path
A and Path B are similar paths (i.e., the instruction for
these two paths are semantically similar) in different
environments.

these agents suffers from domain shift (i.e., pre-
trained linguistic and visual representation might
not generalize to VLN task) (Huang et al., 2019b).
Learning the instruction representation while also
learning how to navigate based on the instruc-
tion is even more challenging for a multi-lingual
agent, since more language variance is injected
via multi-lingual instructions. At the same time,
it also poses the important question that whether
we can utilize multi-lingual instructions to learn
a better cross-lingual representation and improve
instruction-path grounding and referencing. Sec-
ond, previous works (Fried et al., 2018; Wang
et al., 2019a; Landi et al., 2021; Wang et al., 2020a;
Huang et al., 2019a; Ma et al., 2019a; Majumdar
et al., 2020; Qi et al., 2020a) on vision-language
navigation have seen that agents tend to perform
substantially worse in environments that are unseen
during training, indicating the lack of generaliz-
ability of the navigation agent. In this paper, we
propose to address these two challenges via cross-
lingual and environment agnostic representations.
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Although some initial progress (Huang et al.,
2019b; Majumdar et al., 2020; Hong et al., 2021;
Chen et al., 2021) has been made towards intro-
ducing pre-trained linguistic representations into
vision-language navigation agents, how to under-
stand and utilize paired multilingual instructions
to transfer the pre-trained linguistic representation
to multilingual navigation agent still remains un-
explored. We argue that for a multilingual agent,
the linguistic representation can capture more vi-
sual concepts from learning the similarity between
paired multilingual instructions. As shown in Fig-
ure 1, though the three instructions shown here are
in different languages and vary in length and level
of detail2, all of them correspond to the sample
path – Path A. Hence, by learning the similarity
between these paired instructions, the cross-lingual
language representation of the same visual concept
mentioned in these paired instructions (e.g., the red
words correspond to the same visual object “wash
basin") will be close to each other, making it eas-
ier for the agent to comprehend. Furthermore, the
cross-lingual language representation will benefit
from the complementary information from instruc-
tions in different languages since they elicit more
references to visible entities. For example, in Fig-
ure 1, the target room environment “washroom" is
only mentioned in English instructions. Hindi and
Telugu instructions could benefit from learning the
connection between “washroom" and “wash basin"
through learning from the English instruction.

Moreover, many methods have been proposed to
encourage agent generalization to unseen environ-
ments during training (Tan et al., 2019; Wang et al.,
2020c; Fu et al., 2020; Zhang et al., 2020). Zhang
et al. (2020) has shown that it is the low-level ap-
pearance information that causes the environment
bias. To mitigate this bias, previous works only
consider one single environment when learning the
visual representation for a given path. We instead
learn an environment-agnostic visual representa-
tion by exploring the connections between multiple
environments. For the example shown in Figure
1, Path A and Path B are two semantically aligned
paths in different environments. In both cases, the

2We translate Telugu instruction and Hindi instruction into
English instruction with Google Translation for reference here
(the translated instructions are not used in representation learn-
ing or navigation learning). Telugu: Return to the left from
where you are standing, enter the door on the opposite side,
and go to the side of the wash basin on the left and wait. Hindi:
Turn back and go inside the door directly, come to the right
side of the sink and stop.

agent needs to head into the washroom and stop
beside the wash basin. Learning the relationship
between these paired paths helps the agent compre-
hend concepts like “bath tub", and not be distracted
by the low-level appearance of the objects in un-
seen environments.

Overall, in this paper, we propose ‘CLEAR:
Cross-Lingual and Environment-Agnostic
Representations’ to address the two challenges
above. First, we define a visually-aligned instruc-
tion pair as two instructions that correspond to
the same navigation path. Given the instruction
pairs, we transfer the pre-trained multilingual
BERT (Devlin et al., 2019) to the Vision-Language
Navigation task by encouraging these paired
instructions to be embedded close to each other.
Second, we identify semantically-aligned path
pairs based on the similarity between instructions.
Intuitively, if the similarity between the two
instructions is high, then their corresponding
navigation path will be semantically similar (i.e.,
mentioning the same objects like “wash basin").
We further filter out image pairs (a pair of paths
will contain multiple image pairs) that do not
contain the same objects, for higher path pair
similarity. Then, we train an environment agnostic
visual representation that learns the connection
between these semantically-aligned path pairs.

We conduct experiments on the Room-Across-
Room (RxR) dataset (Ku et al., 2020), which con-
tains instruction in three languages (English, Hindi,
and Telugu). Empirical results show that our pro-
posed representations significantly improves the
performance over the mono-lingual model (Shen
et al., 2022) by 2.59% in nDTW score on RxR test
leaderboard. We further show that our CLEAR
approach outperforms our baseline that utilizes
ResNet (He et al., 2016) to extract image fea-
tures by 5.3% in success rate and 4.3% in nDTW
score (and it also outperforms a stronger base-
line that utilizes the recent CLIP (Radford et al.,
2021) method to extract image features). More-
over, our CLEAR approach shows better generaliz-
ability when transferred to Room-to-Room (R2R)
dataset (Anderson et al., 2018b) and Cooperative
Vision-and-Dialogue Navigation dataset (Thoma-
son et al., 2019), and adapted to other SotA VLN
Agent (Chen et al., 2021). We also demonstrate
the advantage of optimizing similarity between all
the three languages in RxR dataset for language
representation learning and the effectiveness of the
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way we generate positive path pairs for visual repre-
sentation learning. Lastly, we demonstrate that our
cross-lingual language representation captures vi-
sual semantics underlying the instructions, and our
environment-agnostic visual representation gener-
alizes better to the unseen environment with both
qualitative and quantitative analysis.

2 Related Work

Vision-and-language navigation. Vision-and-
Language Navigation (VLN) requires an agent to
find the routes to the desired target based on in-
structions (Jain et al., 2019; Thomason et al., 2020;
Nguyen and Daumé III, 2019; Qi et al., 2020b;
Chen et al., 2019; Krantz et al., 2020). Specifically,
there are two key challenges in VLN: grounding
the natural language instruction to visual environ-
ments and generalizing to unseen environments. To
address the first challenge, one line of research in
VLN utilizes carefully designed cross-modal atten-
tion modules (Wang et al., 2018, 2019a; Tan et al.,
2019; Landi et al., 2021; Xia et al., 2020; Wang
et al., 2020b,a; Zhu et al., 2020; Li et al., 2021;
Zhu et al., 2021; An et al., 2021; Kim et al., 2021),
progress monitor modules (Ma et al., 2019b,a; Ke
et al., 2019), and object-action aware modules (Qi
et al., 2020a). Another line of research improves
vision and language co-grounding by improving vi-
sion and language representations with pre-training
techniques (Li et al., 2019; Huang et al., 2019b;
Hao et al., 2020; Majumdar et al., 2020; Hong et al.,
2021). Li et al. (2019) directly adopts pre-trained
BERT for encoding instructions, Hao et al. (2020)
and Hong et al. (2021) learn from a large amount of
image-text-action triplets, Majumdar et al. (2020)
learns from large amount of text-image pairs from
the web, and Huang et al. (2019b) transfers lan-
guage and visual representation to in-domain rep-
resentation with auxiliary tasks. Different from
them, we utilize the visually-aligned multilingual
instructions to learn a cross-lingual language repre-
sentation that inherently captures visual semantics
underlying the instruction.

Multiple methods have been proposed to encour-
age generalization to unseen environments during
training (Zhang et al., 2020; Tan et al., 2019; Wang
et al., 2020c; Fu et al., 2020; Li et al., 2022). Zhang
et al. (2020) demonstrates that it is the low-level
appearance information that causes the large per-
formance gap between seen and unseen environ-
ments. Tan et al. (2019) proposes to use environ-

ment dropout on visual features to create new envi-
ronments and Fu et al. (2020) utilizes adversarial
path sampling to encourage generalization. How-
ever, both of these methods rely on a speaker mod-
ule to generate synthetic training data and can be
considered as data augmentation methods, which
are complementary to our proposed environment-
agnostic visual representation. The closest work
to ours is Wang et al. (2020c), where they pro-
poses to pair an environment classifier with gradi-
ent reversal layer to learn an environment-agnostic
representation. However, they only consider one
single environment when learning the visual rep-
resentation for a given path (i.e., given one path
and predict its environment). In our environment-
agnostic representation learning, we explore the
connections between multiple environments (i.e.,
maximize the similarity between paths from differ-
ent environments).
Vision-and-language with multilinguality. There
has been growing interest in combining vision and
language for tasks such as visual-guided machine
translation (Sigurdsson et al., 2020; Surís et al.,
2022; Huang et al., 2020), multi-lingual visual
question answering (Gao et al., 2015; Gupta et al.,
2020; Shimizu et al., 2018), multi-lingual image
captioning (Gu et al., 2018; Lan et al., 2017), multi-
lingual video captioning (Wang et al., 2019b), and
multi-lingual image-sentence retrieval (Kim et al.,
2020; Burns et al., 2020). In this paper, we work
on multi-lingual vision-and-language navigation.
We use vision (i.e., navigation path) as a bridge be-
tween multi-lingual instructions and learn a cross-
lingual representation that captures visual concepts.
Moreover, our method also use language as a bridge
between different visual environments to learn an
environment-agnostic visual representation.

3 Method

In this section, we present our CLEAR method
that learns cross-lingual language representations
and environment-agnostic visual representations.
Given these learned language and visual represen-
tations, we then train the agent on the vision-and-
language navigation task with imitation learning
and reinforcement learning. The overall represen-
tation learning and navigation agent training pro-
cesses are illustrated in Figure 2. We next describe
our representation learning methods in Sec. 3.1 and
Sec. 3.2. The navigation model (Tan et al., 2019)
and training process are detailed in Appendix.
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You will start by standing in front of a 
glass door and on your right is a 
doorway….

మీరు బల్లు  వైపు తిరిగి ఉనా్నరు. ఎడమవైపుకి 
తిరగండి….

Multilingual 
Encoder

Visual 
Encoder

Negative pairs
Positive pairs (with object-matching constraints)

Stage1: Representation Learning

Navigation 
Decoder

Right now you are facing towards a 
corner of a door, slightly turn left and 
move forward...

Cross-Modal 
Attention

Visual 
Encoder

Multilingual 
Encoder

Stage 2:Training Navigation Agent

Figure 2: Left: the agent learns a cross-lingual language representation and an environment-agnostic visual
representation via maximizing the similarity between positive pairs (connected with blue line) and minimizing
the similarity between negative pairs (connected with red dashed line). For simplicity, we use 3 as batch size
when illustrating the positive pairs and negative pairs. Right: then the agent is trained on the vision-and-language
navigation task based on these learned representations.

3.1 Language Representation Learning

The goal of our language representation learning
approach is to learn a cross-lingual language rep-
resentation that can mitigate the natural ambigu-
ity and variance in multilingual instructions and
improve the path-instruction alignment by captur-
ing the shared and salient visual concepts under-
lying the instructions. We define visually-aligned
instruction pairs as instructions that correspond to
the same navigation path. Since these instruction
pairs refer to the same navigation path, the visual
concepts underlying these instructions (e.g., visual
objects mentioned in the instruction) are shared.
Thus, we could train the language representation
to emphasize these visual concepts by learning the
connection between these visually-aligned instruc-
tion pairs.

For each navigation path, the Room-Across-
Room (RxR) dataset (Ku et al., 2020) provides
9 corresponding language instructions in 3 lan-
guages (English, Hindi, and Telugu). During train-
ing, for each navigation path, we randomly sample
two instructions out of the nine corresponding in-
structions as the visually-aligned instruction pairs.
The two instructions can be in different languages,
which helps the agent learn a cross-lingual lan-
guage representation. Exclusively learning connec-
tions between instructions in the same language
will lose crucial information across languages, and
we quantitatively illustrate this result in Sec. 6.1.

Given the instruction {wi}mi=0 with m words,
we use feature of the [CLS] token (i.e., w0) in the
pre-trained multilingual BERT (Devlin et al., 2019)

outputs as the sentence representation w̃:

{ŵi}mi=0 = m-BERT({wi}mi=0) (1)

w̃ = ŵ0 (2)

In a batch of size N , we have N positive pairs of
instructions with representations (w̃j , ũj)

N
j=1 from

Eqn. 2. Each positive pair is matched with 2(N−1)
negatives in the batch (i.e., {w̃k}k ̸=i and {ũk}k ̸=j).
Our goal is to learn a representation that maps in-
structions for the same path closer to each other
in the representation space, regardless of the lan-
guage and the natural variance in human-generated
instructions. We learn the representation by opti-
mizing a contrastive loss:

Llang = −
N∑

i=1

log
exp(αi,i/τ)∑2N

k=1 1k ̸=i exp(αi,k/τ)
(3)

αi,j =
w̃T
i ũj

∥w̃i∥∥ũj∥
(4)

where αi,j is the similarity between the instruction
w̃i and ũj , and τ is the temperature hyperparame-
ter.

3.2 Visual Representation Learning
Our goal in visual representation learning is to
learn an environment-agnostic visual representa-
tion that can mitigate the environment bias caused
by objects’ low-level appearance, such that it could
generalize better to unseen environments. Intu-
itively, the agent would learn the general concept
of objects instead of the low-level appearance if the
agent can identify the same objects in two images
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in different environment. Thus, we train the agent
to learn the connected visual semantics between the
semantically-aligned navigation paths (i.e., paths
that mention the same objects or mention similar
actions in different environments).

Identifying semantically-aligned path pairs: Al-
though the appearance of the path varies a lot in dif-
ferent environments, the instructions that describe
the similar paths are more consistent across en-
vironments. Based on this intuition, we use lan-
guage as the bridge between paths in multiple vi-
sual environments. Specifically, we propose to use
instruction similarity as a direct measurement of
how semantically similar two paths are. For each
instruction-path pairs (I, P ) given in the Room-
Across-Room (RxR) dataset, we first represent
each instruction I as in Eqn. 2. Then, we compute
the cosine similarity between the representation of
instruction I and all the other instructions in the
training set. We pick the instruction Î that is most
similar to I and also constraints that Î’s correspond-
ing path P̂ has the same path length as P . Thus,
we group P and P̂ as the semantically-similar path
pair.

Constraint on object-matching: In a batch of size
N, we have N positive semantically-aligned path
pairs (Pk, Qk)

N
k=1. We represent the positive path

pair (Pk, Qk) as sequences of panoramic views
({pk,t}Lk

t=1, {qk,t}Lk
t=1) with length Lk. Since paths

might not be fully aligned (i.e., correspondence
between image pairs {pk,t} and {qk,t} might not
hold), we use object-matching to filter out image
pairs that don’t contain the same objects. Specifi-
cally, we use Mask-RCNN (He et al., 2017) model
trained on LVIS dataset (Gupta et al., 2019) in de-
tectron2 (Wu et al., 2019) to detect objects in the
36 discretized views of the panoramic view. We
filter out object classes that appear less than 1% of
the time in all panoramic views. 27 object classes
left, including objects like ‘cabinet’, ‘chair’, and
‘sofa’. All object classes can be found in Appendix.
During training, we randomly sample 10 out of 27
object classes in each iteration and filter out image
pairs that don’t contain same objects of the sampled
10 object classes. Our object-matching constraint
ensures that the corresponding image pairs {pk,t}
and {qk,t} also have a high semantic similarity.

Visual encoder: The panoramic view of time step
t is discretized into 36 single views {ot,i}36i=1. We

encode the visual representation for each view as:

ôt,i = pre-trained model(ot,i) (5)

vt,i = Wv1ReLU(Wv2ôt,i) (6)

v̂t,i = LayerNorm(vt,i + ôt,i) (7)

We first encode images with pre-trained vision mod-
els. Then the encoded view features are passed
through two fully-connected layers with ReLU
as activation function. Layer normalization and
residual connection are applied on top of the fully-
connected layer.
Learning visual representation: Given the N pos-
itive semantically-aligned path pairs (Pk, Qk)

N
k=1,

at each time step t, we have Np panoramic views
(computed as the average of 36 single views as in
Eqn. 10) that have a positive pair (i.e., the paired
view contain at least one same object). For each
view pk,t that has a positive pair, the visual en-
coder is trained to predict which of the N possible
panoramic views {qk,t}Nk=1 contain similar seman-
tic information. Specifically, we train the visual
encoder to maximize the cosine similarity of the
Np positive image pairs in the batch while mini-
mizing the cosine similarity of the N ∗ Np − Np

negative image pairs (i.e. each view has N − 1
negatives). We optimize the contrastive loss as:

Lvisual = −
Np∑

k=1

Lk∑

t=1

log(Softmaxk(βk,t/τ))

(8)

βk,t =
pTk,tqk,t

∥pk,t∥∥qk,t∥
(9)

where βk,t is the similarity between positive
panoramic view pair pk,t and qk,t, and τ is the
temperature hyperparameter. We compute the
panoramic view representation as the average of 36
single views:

pk,t =
1

36

36∑

i=1

v̂p,k,t,i (10)

where v̂p,k,t,i is the output representation from the
visual encoder. qk,t is computed similarly.

3.3 Learning
Our CLEAR agent has two stages of learning: rep-
resentation learning and navigation learning.

In the representation learning stage, we train the
multilingual encoder and visual encoder by opti-
mizing the contrastive loss Llang in Eqn. 3 and
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Models SR↑ SPL↑ NDTW↑ SDTW↑
RxR 20.98 18.55 36.81 16.88
CLIP 38.34 35.17 51.10 32.42
Our 40.29 36.57 53.69 34.86

Table 1: Test leaderboard results under single run setup.
RxR is the mono-lingual baseline in Ku et al. (2020),
CLIP is the mono-lingual agent in Shen et al. (2022)

Lvisual in Eqn. 8 respectively. The representation
learning process transfers the language represen-
tation to domain-specific language representation
and adapts the visual representation to learn the cor-
relation underlying the navigation environments.

In the navigation learning stage, we use a mix-
ture of imitation learning and reinforcement learn-
ing to train the agent on the navigation task as in
Tan et al. (2019). Details can be found in Appendix.

4 Experimental Setup

4.1 Dataset
We evaluate our agent on the Room-Across-Room
(RxR) dataset (Ku et al., 2020). The dataset is split
into training set, seen and unseen validation set,
and test set. In the unseen validation set and test
set, the environments are not appeared in training
set. Thus the performance on these two sets show
the model’s generalizability to new environments.
More details can be found in Appendix.

4.2 Evaluation Metrics
To evaluate the performance of our model, we fol-
low the metrics used in the Room-Across-Room pa-
per (Ku et al., 2020) (details in Appendix): Success
Rate (SR), Success rate weighted by Path Length
(SPL) (Anderson et al., 2018a), normalized Dy-
namic Time Warping (nDTW) (Magalhaes et al.,
2019), and success rate weighted by Dynamic Time
Warping (sDTW) (Magalhaes et al., 2019). nDTW
and sDTW are the main metrics for RxR and SR
and SPL are the main metrics for R2R.

4.3 Implementation Details
In our experiments, we learn the shared cross-
lingual representation based on cased multilingual
BERTBASE. For the pre-trained vision model, we
compare performance between image features ex-
tracted from ImageNet-pre-trained (Russakovsky
et al., 2015) ResNet-152 (He et al., 2016) and CLIP-
pre-trained (Radford et al., 2021) vision trans-
former (ViT-B/32) (Dosovitskiy et al., 2021) (ab-
breviated as ‘CLIP feature’ later). More details

about representation learning and navigation train-
ing can be found in Appendix.

5 Results

5.1 Test Set Results

We compare our final agent model with results on
the Room-Across-Room (RxR) leaderboard. Our
agent is a multilingual model that learn three lan-
guages in the same model. Compared with mono-
lingual agents that learn instructions in three lan-
guages separately, a multilingual agent performs
worse due to high-resource languages degradation
(Ku et al., 2020; Aharoni et al., 2019; Pratap et al.,
2020). Our agent is tested under the single-run
setup. In the single-run setting, the agent only nav-
igates once and does not pre-explore the test envi-
ronment. As shown in Table 1, our CLEAR model
with CLIP features is 16.88% higher in nDTW
score than the baseline mono-lingual model (Ku
et al., 2020) (‘RxR’) that utilizes ResNet features
and other base navigation model. Furthremore, our
model is 2.59% higher in nDTW score than the
mono-lingual model (Shen et al., 2022) (‘CLIP’)
that utilizes CLIP features and the same base navi-
gation model as ours.

5.2 Ablation Results

We demonstrate the effectiveness of our learned
visual and language representations with ablation
studies. The baseline model (annotated as ‘ResNet’
in Table 2) uses multilingual BERT and pre-trained
ResNet to encode instructions and images without
the representation learning stage. Our CLEAR-
ResNet (‘ResNet+both’ in Table 2) outperforms its
baseline models in all evaluation metrics on aver-
age. Specifically, it improves the baseline model
by 5.3% in success rate (SR) and 4.3% in nDTW
score on average over three languages. These re-
sults demonstrate that our CLEAR agent is not
only more capable of reaching the target, but also
follows the ground-truth path better.

We then show that both the cross-lingual lan-
guage representation and environment-agnostic vi-
sual representation contribute to the overall im-
provement. When the cross-lingual language rep-
resentation is added (‘+text’), we see consistent
improvement on the averaged metrics and ob-
serve that Hindi benefits most from the cross-
lingual language representation. When adding the
environment-agnostic visual representation (‘+vi-
sual’), the nDTW score improves by 2.6%. These
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Models SR↑ SPL↑ NDTW↑ SDTW↑
avg en hi te avg en hi te avg en hi te avg en hi te

RxR 22.8 22.2 23.0 23.1 20.4 19.8 20.7 20.7 38.9 38.6 39.2 38.8 18.2 17.8 18.3 18.4
ResNet 35.1 35.4 36.4 33.4 31.6 31.6 33.0 30.4 51.1 50.7 52.3 50.3 30.1 30.1 31.4 28.7
+text 36.0 36.1 37.6 34.3 31.7 31.7 33.2 30.3 52.0 52.3 53.4 50.2 30.5 30.5 32.0 29.1
+visual 35.6 35.8 36.9 33.9 32.5 32.6 33.9 31.0 53.7 53.6 55.1 52.5 30.5 30.5 31.7 29.1
+both 40.4 41.5 42.2 37.6 36.5 36.7 38.5 34.3 55.4 54.4 57.8 54.1 34.6 35.1 36.4 32.2
CLIP 41.7 42.5 44.0 38.6 37.1 37.2 39.2 34.8 55.8 55.6 57.3 54.5 35.6 36.3 37.6 33.3
+both 44.4 46.0 46.0 41.1 39.3 40.1 41.0 36.9 57.0 57.2 58.1 55.7 37.8 38.7 39.3 35.3

Table 2: Ablation study of our model with ResNet features and CLIP features on validation unseen sets. ‘avg’ is the
agent’s average performance on English, Hindi, and Telugu instructions.

Methods SR↑ SPL↑ NDTW↑ SDTW↑
m-BERT 35.1 31.6 51.1 30.1

Mono 32.9 30.4 51.4 28.0
Multi 36.0 31.7 52.0 30.5

Table 3: Comparison between language representation
trained with mono-lingual instruction pairs (‘Mono’)
and multi-lingual instruction pairs (‘Multi’) on valida-
tion unseen sets. ‘m-BERT’ is the method that uses
original multilingual BERT as language representation.

improvements validate the effectiveness of our
learned language and visual representations.

Moreover, we show that our CLEAR approach
could generalize to other pre-trained visual features.
We implement another model (annotated as ‘CLIP’
in Table 2) that uses CLIP to encode images, which
is a stronger baseline compared with the ResNet
baseline (‘ResNet’ in Table 2). Our CLEAR-CLIP
model (‘CLIP+both’ in Table 2) also shows 2.7%
improvement in success rate (SR) and 1.2% im-
provement in nDTW score on average over three
languages. This demonstrates the effectiveness of
our CLEAR approach over different pre-trained
visual features.

6 Analysis

6.1 Effectiveness of Cross-Lingual
Representations

In this section, we show the effectiveness of our
language representation learning method described
in Sec. 3.1. We first show the effectiveness of using
paired multilingual instructions instead of mono-
lingual instructions in the language representation
learning stage. Then, we show that our learned
cross-lingual language representation captures the
visual concepts behind the instruction better than
the original multilingual BERT representation.
Multilingual vs. monolingual. To show that
the multilingual instruction pairs are crucial for
our cross-lingual language representation learn-
ing, we experiment with fine-tuning multilingual

BERT with instruction pairs in same language only
(‘Mono’ in Table 3). We observe that compared
with the agent with cross-lingual representation
(‘Multi’), the success rate decreases by 3.1% and
sDTW score decreases by 2.5%. Furthermore, com-
pared with the baseline model that uses the original
multilingual-BERT (‘m-BERT’), the success rate
drops 2.2% and the sDTW score drops 2.1%. This
result indicates that instruction representations in
one language cannot benefit from learning repre-
sentation in other languages if the multi-lingual
representation is only supervised by contrastive
loss between mono-lingual instruction pairs.

Capturing visual concepts. Our cross-lingual
language representation can ground to the visual
environment more easily by capturing the visual
concepts in the instruction. We demonstrate that
shared visual concepts in different paths are cap-
tured by our language representation. We first en-
code the instruction as in Eqn. 2 with cross-lingual
representation and original multilingual BERT sep-
arately. For every instruction, we retrieve another
instruction with the highest cosine similarity under
the constraints that two instructions don’t corre-
spond to the same path and equal path length. As
shown in Figure 3, the second row is the query
instruction and the first row is its corresponding
path. The following four rows correspond to the
instruction-path picked with cross-lingual represen-
tation and multilingual-BERT representation. First,
we observe in Figure 3 that our cross-lingual rep-
resentation retrieves a Hindi instruction while the
multilingual-BERT picks an English instruction.
This indicates that our cross-lingual representation
learns to encode instructions with similar semantics
in different languages closer to each other. Besides,
we observe that in all three paths, the agent passes
tables and chairs, but only in the query path and the
cross-lingual paired path, the agent stops at places
similar to “bar stools". This demonstrates that the
visual objects in the cross-lingual picked path are
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Right now you're standing at a point where on the right side you can see a couch and on the left you can see a dining table. Turn left and move forward and exit the room through the sliding door. Now 
slightly turn left and move forward till you reach a round white table in front of you. Now slightly turn left, move forward there are four bar stools in front of you. Move forward and stand behind the bar stools 
and that is the end point.

ఇపు్పుడు మీరు నీళ్ల  తొట�్టి  పక్కన ఉనా్నరు. ఎడమవ±ౖపు తిరిగి తెరిచి ఉన్న గాజు తలుపు లోపలికి నడవండ.ి మీ ఎదురుగా తలుపు రంగు కుర�్చీలు ఉనా్నయి. కుడివ±ౖపు తిరిగి ముందుకి నడవండ.ి మీ ఎడమవ±ౖపున బల్ల  మరియు సో ఫాలు ఉనా్నయి. అవి 
దాటుతూ మీ ముందు ఉన్న దారిలో నడవండ.ి కాస్త  కుడివ±ౖపు తిరిగి తెలుపు రంగు కుర�్చీ ముందుకు వ±ళ్ళండ.ి ఇక్కడ మీ కుడివ±ౖపున తెలుపు రంగు సో ఫాలు మరియు బల్ల  ఉనా్నయి. ఇక్కడ ినుండ ిఎడమవ±ౖపు తిరిగి మీ కుడివ±ౖపు ఉన్న బల్లను దాటుతూ 
ముందుకి నడవండ.ి ఇపు్పుడు మీ ఎదురుగా అల�్మారా ఉంద.ి కుడివ±ౖపున సింకు ఉంద.ి ఇక్కడ ేఆగండ.ి  
(Now you are next to the water tank. Walk inside the glass door that opens back to the left. There are door colored chairs in front of you. Walk back to the right. To your left are the table and sofas. Cross them 
and walk on the path in front of you. Go straight back to the white chair slightly to the right. Here are the white sofas and table to your right. From here turn left and walk forward, crossing the table to your right. 
Now there is a cupboard in front of you. To the right is the sink. Stay right here.)

Right now you're facing towards a chair. Turn behind and exit the room. Now slightly turn left and move forward by passing through a large black table on the right side and a large portrait on the left side. 
Right now you can see a white teapoy and a sofa set in front of you. Move towards that teapoy. Now there is a couch on the right side. Move forward and stand in between the couch and the window and 
that is the end point.

Instruction:

Path:

Cross-Lingual 
paired instruction:

Cross-Lingual 
paired path:

Multilingual-BERT 
paired instruction:

Multilingual-BERT 
paired path:

Figure 3: Comparison of the most similar instruction picked with cross-lingual representation and multilingual-
BERT. Our cross-lingual picked instruction mentions more visual object as in the query instruction. Besides, the
path corresponding to the cross-lingual picked instruction contains more accurate visual objects as in the query path.

Similarity SR↑ SPL↑ NDTW↑ SDTW↑
mono 32.9 30.4 51.4 28.0
en+hi 32.0 28.3 48.4 26.9
en+te 30.0 27.2 48.8 25.4
hi+te 27.8 25.0 46.1 23.2
multi 36.0 31.7 52.0 30.5

Table 4: Comparison between language representation
trained with different instruction pairs. ‘mono’ indi-
cates representation trained with mono-lingual instruc-
tion pairs, ‘multi’ indicates representation trained with
multi-lingual instruction pairs in all three languages,
and ‘en+hi’ indicates representation trained with multi-
lingual instruction pairs in English and Hindi only.

more similar to the objects in the query path.

6.2 Effectiveness of Optimizing Similarity
between Three Languages

In this section, we further show that only optimiz-
ing the similarity between a subset of languages
(i.e., two out of three languages) will hurt the per-
formance. Specifically, we train the language rep-
resentation that optimizes similarity between only
English and Hindi (‘en+hi’), only English and Tel-
ugu (‘en+te’), only Hindi and Telugu (‘hi+te’),
and only single language (‘mono’). Given paired
language instructions in English and Hindi in un-
seen set, the average distance is 0.61 for our lan-
guage representation (i.e., optimizes similarity be-
tween all three languages), 0.43 for en+te, 1.67 for
hi+te, and 1.55 for same language only, indicating
that explicitly optimizing the similarity between
en+hi helps reduce the distance between en+hi
most. Adding te in optimization will make en+hi
farther from each other, but still much better than

only optimizing hi+te, and could also make the
distance between all three languages to be closer
to each other. We further show the performance of
training the navigation agent with these language
representations in Table 4. We observe that both
the success rate and the nDTW score drop signifi-
cantly when only training on a subset of languages.
This result shows that it’s crucial to train the lan-
guage representation with instruction pairs in all
three languages.

6.3 Decreasing Gap between Seen and Unseen
Environments

Most previous navigation models (Wang et al.,
2019a; Ma et al., 2019a; Majumdar et al., 2020)
suffer from a large performance drop when moving
from seen validation to unseen validation because
the visual encoder overfits the low-level appear-
ance features (Zhang et al., 2020). Our environ-
ment agnostic visual representation can decrease
the performance gap between validation seen and
unseen environments. As shown in Table 5, the
nDTW gap is decreased from 1.6 to 1.0 compared
with baseline model. It is also lower than the gap
of multi-lingual agent in Ku et al. (2020).

6.4 Comparison with Other Contrastive
Learning Approaches

In this section, we compare with SimCSE (Gao
et al., 2021), an effective contrastive learning
approach for text representation learning. We
use SimCSE on our visual representation learn-
ing, where we use dropout as positives in con-
trastive learning. Using SimCSE to train the vi-
sual representation gets 34.8/53.0 (SR/nDTW),
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Models seen unseen |∆|
SR SPL NDTW SDTW SR SPL NDTW SDTW SR SPL NDTW SDTW

Ku et al. (2020) 25.2 - 42.2 20.7 22.8 - 38.9 18.2 2.4 - 3.3 2.5
ResNet 38.4 34.1 52.7 32.6 35.1 31.6 51.1 30.1 3.3 2.5 1.6 2.5
+visual 34.1 31.1 52.7 28.8 35.6 32.5 53.7 30.5 1.5 1.4 1.0 1.7

Table 5: The results of adding our learned visual representation on validation seen environments and validation
unseen environments. |∆| indicates absolute performance difference between seen and unseen environments.

Models SR↑ SPL↑ NDTW↑ SDTW↑
ResNet 49.1 44.7 58.8 42.0
+text 49.0 45.2 59.5 42.3

+visual 50.4 46.3 60.3 43.4
CLEAR 50.5 46.4 60.6 43.3

ResNet-zero 30.9 27.9 49.0 26.3
CLEAR-zero 35.4 30.1 49.0 28.2

Table 6: Results on R2R validation unseen environ-
ments. “CLEAR" (based on ResNet) transfers the
language and visual representation from RxR dataset,
and “ResNet" is the baseline model that uses multilin-
gual BERT and pre-trained ResNet. “ResNet-zero" and
“CLEAR-zero" are zero-shot performance of baseline
and our approach on R2R dataset.

which is lower than our visual representation
(35.6/53.7). Furthermore, we experiment with us-
ing both dropout as positives and our identified
path pairs as positives. The performance decreases
in nDTW score (52.4) compared with only using
our identified path pairs as positives (53.7).

6.5 Generalization to Other VLN Tasks

We further evaluate our CLEAR approach’s gener-
alizability on Room-to-Room (R2R) dataset (An-
derson et al., 2018b) and Cooperative Vision-and-
Dialog Navigation (CVDN) dataset (Thomason
et al., 2019), in which we directly transfer our
CLEAR approach and train on the navigation task
on R2R and CVDN. R2R and CVDN follows the
same training, validation seen, and validation un-
seen split of environments as Room-Across-Room
dataset. The main difference is that the language
instructions in R2R and CVDN is monolingual (i.e.,
English). Besides, instructions in CVDN are multi-
round dialogues between navigator and the oracle.
Our baseline model uses multilingual BERT to en-
code instructions and the ResNet pretrained on Im-
ageNet to extract image features. The cross-lingual
language representation and environment-agnostic
visual representation is trained on RxR dataset (as
in Sec. 3.1 and Sec. 3.2). We then train the naviga-
tion agent on R2R dataset and CVDN dataset with
the language and visual encoder initialized from
our CLEAR representation.

As shown in Table 6, on R2R dataset, our learned

representation outperforms the baseline by 1.4%
in success rate and 1.8% in nDTW. Furthermore,
we show that the zero-shot performance of our ap-
proach improves the baseline by 4.5% in success
rate and 2.2% in SPL on R2R dataset. On CVDN
dataset, our learned representation outperforms the
baseline by 0.74 in Goal Progress (4.05 vs. 3.31) af-
ter training on CVDN dataset, and outperforms the
baseline by 0.42 in Goal Progress (0.92 vs. 0.50)
in the zero-shot setting. Goal Progress measures
the progress made towards the target location and
is the main evaluation metric in CVDN. This result
demonstrates that our learned cross-lingual and en-
vironment agnostic representation could generalize
to other tasks.

6.6 Generalization to Other VLN Agents
We further evaluate our CLEAR approach’s gen-
eralizability to other VLN agent. Specifically, we
adapt CLEAR to SotA VLN agent HAMT (Chen
et al., 2021). With the pre-trained weights released
in HAMT, we further learn the text representation
and visual representation with our approach. Adapt-
ing CLEAR to HAMT achieves 57.2% in success
rate and 65.6% in nDTW score, which is 0.7%
higher than HAMT in success rate and 2.5% higher
than HAMT in nDTW score on RxR validation
unseen set, demonstrating the effectiveness of our
proposed approach over SotA VLN models.

7 Conclusion

In this paper, we presented the CLEAR method that
learns a cross-lingual and environment-agnostic
representation. We demonstrated that our cross-
lingual language representation captures more vi-
sual semantics and our environment-agnostic rep-
resentation generalizes better to unseen environ-
ments. Our experiments on Room-Across-Room
dataset suggest that our CLEAR method improved
the performance in all evaluation metrics over a
strong baseline. Furthermore, we qualitatively and
quantitatively analyze the effectiveness of every
component of our CLEAR approach and its gener-
alizability to other tasks and base VLN agents.
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Ethics Statement

In this paper, we presented a method to learn cross-
lingual and environment-agnostic representations
for Vision-and-Language Navigation. Vision-and-
Language Navigation task can be used in many real-
world applications, for example, a home service
robot can bring things to the owner based on natu-
ral language instructions, making people’s life eas-
ier. Our learned representations enable the agent to
understand multi-lingual instructions and improve
agents’ generalizability to unseen environments.
However, currently we learn our cross-lingual rep-
resentation from three languages (i.e., English,
Hindi, and Telugu) only due to dataset availabil-
ity, which might limit its generalization to other
languages. Besides, similar to other instruction-
following agent, our agent might fail to reach the
target given some instructions, which requires fur-
ther human assistance.
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Appendix

A Overview

In this supplementary, we provide a detailed de-
scription of our navigation model structure (Sec. B),
representation learning and navigation learning ob-
jective (Sec. C), dataset (Sec. D), evaluation met-
rics (Sec. E), implementation details (Sec. F), and
additional analysis in the last four sections. In this
analysis, we first show that using object-matching
as constraints during visual representation learn-
ing improves the nDTW score (Sec. G). Then we
show that our CLEAR approach decreases the per-
formance variance among different environments
(Sec. H) and learn better alignment between the
instruction and the environment (Sec. J). We fur-
ther analyze whether the word representation from
our learned cross-lingual representation also learn
the visual/spatial information (Sec. I). Moreover,
we investigate the effect of filtering out low-quality
paths (Sec. K). Lastly, we show the high correspon-
dence between instruction similarity and path pair
alignment in Sec. L.

B Navigation Model

Our navigation agent follows the decoder structure
as Tan et al. (2019).

At each time step t, the agent perceives a
panoramic view of the current location. The
panoramic view is discretized into 36 single views
{ot,m}36m=1 (12 angles and 3 camera poses per an-
gle). Given the visual representation for each view
v̂t,m, we concatenate it with the orientation feature
to get the view features {ft,m}36m=1:

ft,m = [v̂t,m; (cos θt,m, sin θt,m, cosϕt,m, sinϕt,m)]
(11)

where θt,m and ϕt,m the heading and elevation of
view ot,m.

As a reaction to the input, the agent needs to
select one of the K navigable locations as an ac-
tion. The action is represented as the orientation
features (heading and elevation) between the cur-
rent viewpoint and the chosen navigable viewpoint.
The navigation decoder takes the attended visual
feature f̂t of the current viewpoint and the previous
action embedding at−1 as input, and updates its
environment-aware context vector ht:

γt,m = Softmaxm(fT
t,mWf ĥt−1) (12)

f̂t =
∑

m

γt,mft,m (13)

ht = LSTM([f̂t; at−1], ĥt−1) (14)

where at−1 is represented
as the orientation features
(cos θt−1,k⋆ , sin θt−1,k⋆ , cosϕt−1,k⋆ , sinϕt−1,k⋆)
of the chosen navigable viewpoint k⋆ at time
step t − 1, and ĥt−1 is the instruction-aware
context vector that incorporates the attended
instruction information. The navigator calculates
the probability of moving to the k-th navigable
location based on the alignment between the visual
feature gt,k of that navigable location and the
instruction-aware context vector ĥt:

ρt,j = Softmaxj(ŵ
T
j Wlht) (15)

ut =
∑

j

ρt,jŵj (16)

ĥt = tanh(Wm[ut;ht]) (17)

p(at = k) = Softmaxk(g
T
t,kWaĥt) (18)

where gt,k is constructed similarly as ft,i in Eqn. 11,
and ŵj is the language representation.

C Learning

Our CLEAR agent has two stages of learning: rep-
resentation learning and navigation learning.

In the representation learning stage, given a pair
of instructions that correspond to the same naviga-
tion path, we train the shared multilingual encoder
to generate representations of paired instructions
close to each other by optimizing a contrastive loss
Llang. Furthermore, we train the visual encoder
to learn the connections between paths with simi-
lar instructions by optimizing the contrastive loss
Lvisual. The representation learning process trans-
fers the language representation to domain-specific
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language representation and adapts the visual rep-
resentation to learn the correlation underlying the
navigation environments.

In the navigation learning stage, we use a mix-
ture of imitation learning and reinforcement learn-
ing to train the agent on the navigation task as in
Tan et al. (2019).

In imitation learning, we use teacher-forcing to
determine the next navigable viewpoint. Differ-
ent from previous methods (Hong et al., 2021; Tan
et al., 2019; Huang et al., 2019b) that takes the
shortest path as the teacher action, our teacher ac-
tion a⋆t at each time step t is picked based on the
given ground truth path between the start point and
target point. The agent tries to imitate the teacher
action a⋆t by minimizing the negative log probabil-
ity:

LIL =
∑

t

−a⋆t log pt (19)

We combine reinforcement learning with imita-
tion learning to learn a more generalizable agent.
At each time step t, the agent samples an action
at from the predicted distribution pt(at). We fol-
low (Hong et al., 2021) to do the reward shaping.
The immediate reward at each time step t consists
of three parts. First, if the agent moves closer to
the target viewpoint, a positive reward +1 is given,
otherwise the agent receives a negative reward -1.
Second, to encourage instruction following, we in-
clude normalized Dynamic Time Warping (nDTW)
score in the reward. The agent gets a positive re-
ward if the nDTW score for the navigated path
increases. Lastly, the agent receives a negative re-
ward if it misses the target. When the agent predicts
the “STOP" action, the agent will receive a +3/-3
reward based on whether the agent is within 3 me-
ters from the target viewpoint. We use Advantage
Actor-Critic (Mnih et al., 2016) to train the agent.

The navigation loss Lnav is a weighted combi-
nation of imitation learning loss and reinforcement
learning loss.

Lnav = LRL + λLIL (20)

D Dataset

We evaluate our agent on the Room-Across-Room
(RxR) dataset (Ku et al., 2020). The dataset is built
on the Matterport3D simulator (Anderson et al.,
2018b). It contains 126,069 human-annotated in-
structions with an average instruction length of 78.

Methods SR↑ SPL↑ NDTW↑ SDTW↑
+visual 35.6 32.5 53.7 30.5
-sample 37.8 33.7 53.0 32.1
-object 36.6 33.0 52.4 30.9

Table 7: Comparison between visual representation
trained with objects constraints (‘+visual’), without sam-
pling strategy (‘-sample’) and without object constraints
(‘-object’) on validation unseen sets. nDTW is the main
metric for Room-Across-Room (RxR) dataset.

The dataset is split into training set, seen validation
set, unseen validation set, and test set. In the unseen
validation set and test set, the environments do not
appear in the training set. Thus the performance on
these two sets show the model’s generalizability to
new environments. There are 16,522 paths in total,
and each path is annotated in 3 languages (and 3
instructions per language on average). The training
set contains 11,089 paths, the seen validation set
contains 1,232 paths, the unseen validation con-
tains 1,517 paths, and the test set contains 2,684
paths.

E Evaluation Metrics

To evaluate the performance of our model, we fol-
low the metrics used in the Room-Across-Room
paper (Ku et al., 2020). The metrics include: (1)
Success Rate (SR): We consider a success for nav-
igation if the agent stops less than 3m from the
target location. (2) Success rate weighted by Path
Length (SPL) (Anderson et al., 2018a): This metric
penalizes the navigation with long paths (i.e., when
both navigations reach the target, the navigation
with shorter path length has a higher SPL score).
(3) normalized Dynamic Time Warping (nDTW)
(Magalhaes et al., 2019): This metric measures
the path fidelity by penalizing deviations from the
reference path. The agent navigates to the target
through the shortest path instead of instruction fol-
lowing will be penalized. (4) success rate weighted
by Dynamic Time Warping (sDTW) (Magalhaes
et al., 2019): This metric only considers nDTW of
successful navigation and ignores failed navigation.
Normalized Dynamic Time Warping (nDTW) is
the main metrics for RxR and Success Rate (SR)
and Success rate weighted by Path Length (SPL)
are the main metrics for R2R.
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F Implementation Details

In our experiments, we learn the shared multilin-
gual representation based on cased multilingual
BERTBASE. The instruction is truncated from the
end with a maximum sequence length of 160. For
the pre-trained vision model, we compare per-
formance between image features extracted from
ImageNet-pre-trained (Russakovsky et al., 2015)
ResNet-152 (He et al., 2016) and CLIP-pre-trained
(Radford et al., 2021) vision transformer (ViT-
B/32) (Dosovitskiy et al., 2021) (abbreviated as
‘CLIP feature’ later). The 27 object classes are:
‘drawer’, ‘faucet’, ‘cabinet’, ‘hinge’, ‘cushion’,
‘sofa’, ‘chair’, ‘pillow’, ‘armchair’, ‘lamp’, ‘vase’,
‘knob’, ‘curtain’, ‘statue(sculpture)’, ‘doorknob’,
‘vent’, ‘lightbulb’, ‘flowerpot’, ‘book’, ‘pipe’,
‘painting’, ‘wall socket’, ‘bed’, ‘mirror’, ‘televi-
sion set’, ‘flower arrangement’, ‘chandelier’. The
navigation decoder’s hidden size is 768 and the ac-
tion embedding size is 128. The language encoder
is optimized with AdamW (Loshchilov and Hut-
ter, 2019) with linear-decayed learning rate. The
peak learning rate is 4e-5 for both the represen-
tation learning and the navigation agent learning
stage. The visual encoder, the navigation decoder,
and the discriminator are optimized with RMSProp
(Hinton et al., 2012) with learning rate 1e-4. The
weight λ we use to combine loss is set to be 0.4
for the ResNet-based full model and 0.2 for the
CLIP-based full model. The batch size for train-
ing ResNet features and CLIP features are 12 and
16, respectively. During training, CLIP model is
around 1.5 times faster than ResNet model in this
setting since CLIP features are 512 dimensions
while ResNet features are 2048 dimensions. To
keep roughly the same amount of training time, we
train the agent with ResNet features for 100K itera-
tions, while we train model CLIP-ViT features for
150K iterations.

G Analysis: Effectiveness of
Object-Matching Constraints

Our visual representation learning optimizes the
similarity between panoramic views at each step of
the semantically-aligned path pairs. Since paths are
not fully-aligned, we use object-matching as a con-
straints to filter out panoramic view pairs that don’t
contain same objects. As shown in Table 7, the vi-
sual representation trained with fixed object classes
as constraints (‘-sample’) improve the nDTW score
(the main metric for RxR dataset) by 0.6% com-

pared with the visual representation trained without
object-matching constraints (‘-object’), suggesting
that using object-matching as constraints help learn
a better visual representation. Besides, the sam-
pling strategy (i.e., randomly sample 10 object
classes from 27 object classes during each iteration)
also helps the visual representation learning (‘+vi-
sual’), further improving the nDTW score by 0.7%
compared with the visual representation learned
with fixed 27 object classes (‘-sample’). In total,
our object-matching constraints and sampling strat-
egy (‘+visual’) improves the performance by 1.3%
in nDTW score compared with learning without
object constraints (‘-object’).

H Analysis: Performance Variance
Reduction among Different
Environments

We demonstrate that our CLEAR approach could
decrease the performance variance (i.e., perfor-
mance’s standard deviation) among different envi-
ronments. Intuitively, we hope the agent to perform
equally well in different environments instead of
getting high performance by only learning to navi-
gate through several easy environments. We show
the results for 11 environments in validation un-
seen set in Table 8. Our CLEAR approach (‘+both’
as in Table 2 in the main paper) outperforms the
baseline model (‘ResNet’ as in Table 2 in the main
paper) in most of the environments. Moreover, the
weighted standard deviation (weighted by # Data
in Table 8) of our CLEAR approach is lower than
the baseline model. Specifically, the standard devi-
ation of nDTW score for our CLEAR approach is
9.24 while the standard deviation of nDTW score
for the baseline model is 10.01, suggesting that
our CLEAR approach decreases the performance
variance between different environments.

I Analysis: Word Representation from
Cross-Lingual Representation

The visual semantics are injected during learning
the cross-lingual language representation by maxi-
mizing the similarity between full instruction sen-
tences (representation of ‘CLS’ token). However,
it’s unclear that whether the word-level representa-
tion also learned such visual information. In this
section, we investigate whether the learning en-
codes spatially close words/objects closer to each
other. As shown in Table 9, we check the top-5
close words to ‘kitchen’, and ‘fire’ from a vocabu-
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Environment # Data ResNet CLEAR
SR SPL NDTW SDTW SR SPL NDTW SDTW

1206 32.4 26.7 49.8 26.5 35.9 30.2 50.0 28.0
2177 27.0 23.8 41.3 22.3 28.6 26.0 47.5 24.4
567 38.1 34.3 56.9 31.8 48.0 44.8 64.4 40.4
1692 38.3 34.8 56.1 33.2 39.5 36.0 57.6 33.4
153 57.5 54.7 72.1 53.1 64.1 60.0 74.5 57.3
1404 42.7 38.7 58.3 37.8 41.3 39.1 61.1 36.6
900 52.0 49.5 67.9 46.3 45.7 44.2 65.9 41.0
2223 40.8 36.9 57.7 35.5 44.0 39.2 60.3 38.2

18 38.9 32.7 59.4 34.0 50.0 45.1 70.8 47.1
1152 42.4 38.6 54.6 36.1 38.1 35.2 55.1 33.3
2160 18.1 16.4 34.6 14.7 15.9 13.1 37.1 13.1

Table 8: The results of our CLEAR method and ResNet baseline on different environments in validation unseen set.
# Data means the number of instruction-path pairs for each environment.

Figure 4: The attention weights for the grounded instruction for our CLEAR model, ResNet based baseline model,
and ground truth from RxR dataset.

lary of 2754 English tokens. We see that our cross-
lingual representation puts words that appear spa-
tially near each other close (e.g. ‘kitchen’ and ‘is-
land’/‘dinning’, ‘fire’ and ‘chair’/‘fireplace’) while
m-BERT representation fails (e.g. ‘kitchen’ and
‘room’/‘house’, ‘fire’ and ‘family’/‘study’).

J Analysis: Alignment between
Instructions and Environments

The Room-Across-Room dataset provides ground-
truth alignment between instructions and naviga-
tion paths. To demonstrate that our CLEAR ap-
proach learns a good alignment between instruc-
tions and paths, we not only compare our CLEAR
approach with the baseline approach, but also com-
pare it with the ground truth alignment provided
in the RxR dataset. The attention weights for
grounded instruction for CLEAR, Baseline, and

Ground Truth are shown in Figure 4. We observe
that our CLEAR model successfully attends to
sub-instructions “turn right", “move towards the
open door to your right and exit the room through
the door", “slightly turn left", “move towards and
stand in front of the sofa" sequentially. Although
the baseline model also successfully executes the
first two sub-instructions “turn right" and “move
towards the open door", yet the baseline agent gets
lost in the later navigation. Furthermore, the align-
ment learned by our CLEAR approach matches
better with the ground truth alignment provided in
the RxR dataset.

K Analysis: Filtering out Low Quality
Path Pairs

We investigate whether filtering out low-quality
path pairs during visual representation learning
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Word Top-5

kitchen ‘island’, ‘counter’, ‘maker’, ‘din’,
‘##iding’
‘living’, ‘counter’, ‘room’, ‘table’,
‘house’

fire ‘##place’, ‘over’, ‘place’, ‘chair’,
‘##fas’
‘display’, ‘study’, ‘family’, ‘living’,
‘coffee’

Table 9: Top-5 closest tokens for ‘Kitchen’ and ‘fire’.
Top-row: tokens picked by our cross-lingual representa-
tion. Bottom-row: tokens picked by multi-lingual BERT
baseline.

Similarity SR↑ SPL↑ NDTW↑ SDTW↑
0.00 35.6 32.5 53.7 30.5
0.90 36.2 32.2 51.9 30.7
0.95 38.6 34.3 53.3 33.0
0.98 38.6 34.3 52.9 32.9
0.99 37.8 33.5 52.6 32.0
1.00 30.9 28.0 49.7 26.1

Table 10: Performance in validation unseen environ-
ment when filtering out different percentages of data in
training our visual representation. 0.90 means filter out
data with similarity score less than 0.90.

could further improve the performance. Since our
identified path pairs are retrieved based on the sim-
ilarity between instructions, we hypothesize that
the path pair is aligned better if having a higher
instruction similarity score. Thus, we experiment
with filtering out instruction pairs that have a cosine
similarity score less than 0.90, 0.95, 0.98, and 0.99,
and then train the visual representation with fil-
tered data and object-matching constraints. The
proportion of filtered-out data is 1%, 6%, 28%
and 58% respectively. We also experiment with
filtering out 0% and 100%. Filtering out 0% of
the data is the same to our proposed environment-
agnostic visual representation (‘+visual’ in Table 2)
and filtering out 100% of the data is analogous to
randomly initialize the visual encoder3. We then
train our environment-agnostic representation (in
Sec. 3.2) based on the remaining data and show
its performance on the validation unseen environ-
ments. As shown in Table 10, though the success
rate improves when filtering out some path pairs

3Note that filtering out 100% of the data is not the same as
the baseline model (‘ResNet’ in Table 2). The baseline model
does not have the visual encoder we introduced in Sec. 3.2

with lower quality, not filtering out any path pairs
achieve the highest nDTW score. This demon-
strates that using object-matching constraints with-
out filtering out path pairs with low instruction
similarity is enough for learning a good visual rep-
resentation. Furthermore, we see a significant per-
formance drop when not fine-tuning the visual rep-
resentation on any data, which indicates that train-
ing the visual encoder with semantically-aligned
path pairs is important for agent performance.

L Analysis: Correspondence between
Instruction Similarity and Path Pair
Alignment

In this section, we show that instruction pairs that
have high similarity have similar BLEU score and
ROUGE score to the instruction pairs that corre-
sponding to the same path. Specifically, the BLEU-
1 and ROUGE-L score for instruction pairs that
have high similarity are 0.42 and 0.320, and the
BLEU-1 and ROUGE-L score for the instruction
pairs that corresponding to the same path are 0.41
and 0.323. Randomly picking gets 0.37 BLEU-1
score and 0.295 ROUGE-L score. These results
indicate that high similarity instruction pairs may
be of competitive quality as the instruction pairs
that corresponding to the same path, and can be
used to pick the semantically-aligned path pairs.
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