@inproceedings{akbartajari-etal-2022-empirical,
title = "An Empirical Study on the Transferability of Transformer Modules in Parameter-efficient Fine-tuning",
author = "AkbarTajari, Mohammad and
Rajaee, Sara and
Pilehvar, Mohammad Taher",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.726/",
doi = "10.18653/v1/2022.emnlp-main.726",
pages = "10617--10625",
abstract = "Parameter-efficient fine-tuning has garnered lots of attention in recent studies.On this subject, we investigate the capability of different transformer modules in transferring knowledge from a pre-trained model to a downstream task. Our empirical results suggest that every transformer module is a winning ticket such that fine-tuning the specific module while the rest of the network is frozen achieves a comparable performance to the full fine-tuning case. Among different modules in LMs, LayerNorms exhibit a significant capacity for transfer learning to the extent that with only 0.003{\%} updateable parameters in the layer-wise analysis, they can show acceptable performance on various target tasks.We argue that the performance of LayerNorms could be attributed to their high-magnitude weights compared to other components in a pre-trained model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akbartajari-etal-2022-empirical">
<titleInfo>
<title>An Empirical Study on the Transferability of Transformer Modules in Parameter-efficient Fine-tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="family">AkbarTajari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rajaee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Parameter-efficient fine-tuning has garnered lots of attention in recent studies.On this subject, we investigate the capability of different transformer modules in transferring knowledge from a pre-trained model to a downstream task. Our empirical results suggest that every transformer module is a winning ticket such that fine-tuning the specific module while the rest of the network is frozen achieves a comparable performance to the full fine-tuning case. Among different modules in LMs, LayerNorms exhibit a significant capacity for transfer learning to the extent that with only 0.003% updateable parameters in the layer-wise analysis, they can show acceptable performance on various target tasks.We argue that the performance of LayerNorms could be attributed to their high-magnitude weights compared to other components in a pre-trained model.</abstract>
<identifier type="citekey">akbartajari-etal-2022-empirical</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.726</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.726/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>10617</start>
<end>10625</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Empirical Study on the Transferability of Transformer Modules in Parameter-efficient Fine-tuning
%A AkbarTajari, Mohammad
%A Rajaee, Sara
%A Pilehvar, Mohammad Taher
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F akbartajari-etal-2022-empirical
%X Parameter-efficient fine-tuning has garnered lots of attention in recent studies.On this subject, we investigate the capability of different transformer modules in transferring knowledge from a pre-trained model to a downstream task. Our empirical results suggest that every transformer module is a winning ticket such that fine-tuning the specific module while the rest of the network is frozen achieves a comparable performance to the full fine-tuning case. Among different modules in LMs, LayerNorms exhibit a significant capacity for transfer learning to the extent that with only 0.003% updateable parameters in the layer-wise analysis, they can show acceptable performance on various target tasks.We argue that the performance of LayerNorms could be attributed to their high-magnitude weights compared to other components in a pre-trained model.
%R 10.18653/v1/2022.emnlp-main.726
%U https://aclanthology.org/2022.emnlp-main.726/
%U https://doi.org/10.18653/v1/2022.emnlp-main.726
%P 10617-10625
Markdown (Informal)
[An Empirical Study on the Transferability of Transformer Modules in Parameter-efficient Fine-tuning](https://aclanthology.org/2022.emnlp-main.726/) (AkbarTajari et al., EMNLP 2022)
ACL