@inproceedings{khan-etal-2022-watclaimcheck,
title = "{W}at{C}laim{C}heck: A new Dataset for Claim Entailment and Inference",
author = "Khan, Kashif and
Wang, Ruizhe and
Poupart, Pascal",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.92/",
doi = "10.18653/v1/2022.acl-long.92",
pages = "1293--1304",
abstract = "We contribute a new dataset for the task of automated fact checking and an evaluation of state of the art algorithms. The dataset includes claims (from speeches, interviews, social media and news articles), review articles published by professional fact checkers and premise articles used by those professional fact checkers to support their review and verify the veracity of the claims. An important challenge in the use of premise articles is the identification of relevant passages that will help to infer the veracity of a claim. We show that transferring a dense passage retrieval model trained with review articles improves the retrieval quality of passages in premise articles. We report results for the prediction of claim veracity by inference from premise articles."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khan-etal-2022-watclaimcheck">
<titleInfo>
<title>WatClaimCheck: A new Dataset for Claim Entailment and Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kashif</namePart>
<namePart type="family">Khan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruizhe</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pascal</namePart>
<namePart type="family">Poupart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We contribute a new dataset for the task of automated fact checking and an evaluation of state of the art algorithms. The dataset includes claims (from speeches, interviews, social media and news articles), review articles published by professional fact checkers and premise articles used by those professional fact checkers to support their review and verify the veracity of the claims. An important challenge in the use of premise articles is the identification of relevant passages that will help to infer the veracity of a claim. We show that transferring a dense passage retrieval model trained with review articles improves the retrieval quality of passages in premise articles. We report results for the prediction of claim veracity by inference from premise articles.</abstract>
<identifier type="citekey">khan-etal-2022-watclaimcheck</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.92</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.92/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1293</start>
<end>1304</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T WatClaimCheck: A new Dataset for Claim Entailment and Inference
%A Khan, Kashif
%A Wang, Ruizhe
%A Poupart, Pascal
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F khan-etal-2022-watclaimcheck
%X We contribute a new dataset for the task of automated fact checking and an evaluation of state of the art algorithms. The dataset includes claims (from speeches, interviews, social media and news articles), review articles published by professional fact checkers and premise articles used by those professional fact checkers to support their review and verify the veracity of the claims. An important challenge in the use of premise articles is the identification of relevant passages that will help to infer the veracity of a claim. We show that transferring a dense passage retrieval model trained with review articles improves the retrieval quality of passages in premise articles. We report results for the prediction of claim veracity by inference from premise articles.
%R 10.18653/v1/2022.acl-long.92
%U https://aclanthology.org/2022.acl-long.92/
%U https://doi.org/10.18653/v1/2022.acl-long.92
%P 1293-1304
Markdown (Informal)
[WatClaimCheck: A new Dataset for Claim Entailment and Inference](https://aclanthology.org/2022.acl-long.92/) (Khan et al., ACL 2022)
ACL