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Abstract

In recent times, machine translation models
can learn to perform implicit bridging between
language pairs never seen explicitly during
training and showing that transfer learning
helps for languages with constrained resources.
This work investigates the low resource ma-
chine translation via transfer learning from
multilingual pre-trained models i.e. mBART-
50 and mT5-base in the pretext of Indo-Aryan
(Assamese and Bengali) and Tibeto-Burman
(Manipuri) languages via finetuning as a down-
stream task. Assamese and Manipuri were ab-
sent in the pretraining of both mBART-50 and
the mT5 models. However, the experimen-
tal results attest that the finetuning from these
pre-trained models surpasses the multilingual
model trained from scratch.

1 Introduction

Recent years have witnessed the growing advances
in the field of neural machine translation (NMT)
specifically for the resource rich languages. How-
ever, NMT requires enormous amount of parallel
data in order to have a decent translation system.
On the other hand, the low resource languages
lacks sufficient amount of parallel data, thus mak-
ing the translation system far from the produc-
tion level. Meanwhile, monolingual data is read-
ily available as compared to the parallel data and
many works have been done to exploit it, most
notably in a semi-supervised approach for data
augmentation using self-training (Ueffing, 2006;
Zhang and Zong, 2016; He et al., 2020) and back-
translation (Sennrich et al., 2013; Edunov et al.,
2018). However, these approaches are prone to
generate erroneous translations due to the noisy
synthetic data and often requires an iterative refine-
ment procedure which is both resource intensive
(Hoang et al., 2018) and time consuming process.
Unsupervised machine translation (Lample et al.,

2018; Artetxe et al., 2018; Lample and Conneau,
2019) on the other hand uses only the monolingual
data and do not require any parallel data which
appears to be intimidating for a low resource sce-
nario. Additionally, the initial cross-lingual map-
ping between the two monolingual data requires
a maximal amount of vocabulary overlaps which
is crucial for a stronger cross-lingual mapping be-
tween the source and the target monolingual vector
spaces. However, the vocabulary overlaps is max-
imised only when the two languages are closely re-
lated thus making the unsupervised machine trans-
lation approach unsuitable for the distant language
pairs even if they have large amount of mono-
lingual data (Kim et al., 2020). Moreover, con-
ventional unsupervised systems utilises iterative
back-translation for the refinement purpose, thus
the unsupervised methods are imposed with the
issues of the back-translation (noisy translations
and resource intensive). Multilingual neural ma-
chine translation (MNMT) (Johnson et al., 2017;
Fan et al., 2021) on the other hand supports the
translation among multiple languages which has
shown to be beneficial for low resource machine
translation via the transfer of cross-linguistic infor-
mation from the higher resource languages (Aha-
roni et al., 2019; Dabre et al., 2020). This can
be facilitated by transferring the trained parame-
ters from a parent model to a child model (Zoph
et al., 2016; Nguyen and Chiang, 2017; Kocmi
and Bojar, 2018) or through a bridge or pivot lan-
guage (Dabre et al., 2015; Utiyama and Isahara,
2007; More et al., 2015). However, MNMT can
be further simplified by converting it into a sin-
gle bilingual NMT by jointly training (Firat et al.,
2016; Johnson et al., 2017) all the languages. Fur-
thermore, the jointly trained MNMT system is ex-
tended with 50 or more languages in a massively
multilingual (Aharoni et al., 2019; Fan et al., 2021;
Xue et al., 2021) scenario which has shown to im-
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prove the low resource machine translation (Dabre
et al., 2020) in the presence of the higher resource
languages with the advantage of training a single
NMT model instead of training separate bilingual
models. However, training these massively mul-
tilingual models from scratch for every new lan-
guages is not feasible both in terms of time and the
resource and has negative impact to the environ-
ment for training such enormous models which can
be coped up via transfer learning where the down-
stream translation task can be simply finetuned
from a large pre-trained model (Liu et al., 2020;
Tang et al., 2020; Conneau et al., 2020; Kakwani
et al., 2020; Khanuja et al., 2021; Xue et al., 2021;
Dabre et al., 2021). Primitive transfer learning in
the NLP flourished with the pretrained word em-
bedding vectors (Mikolov et al., 2013; Pennington
et al., 2014), followed by the pretrained encoder
(Devlin et al., 2019) or decoders or pretraining the
full seq2seq model (Liu et al., 2020). These multi-
lingual pretrained models such as the mBART (Liu
et al., 2020) and the mT5 (Xue et al., 2021) has
shown to benefit the low resource machine transla-
tion during the downstream finetuning step. Addi-
tionally, these pretrained models can be extended
to even new languages (Tang et al., 2020) which
was absent during the pretraining process by sim-
ply resuming the training with the new language
data with the pretrained model checkpoint as a fine-
tuning step and sometimes increasing the BLEU
score also.

In our premise, we make use of the mBART-
50 (Tang et al., 2020) and the mT5-base (Xue
et al., 2021) pretrained models for the English (en)
to {Assamese (asm), Bengali (bn) and Manipuri
(mni)} translation in a one-to-many multilingual
setup. All the three languages apart from English
are the scheduled languages of India where As-
samese and Bengali belong to the Indo-Aryan lan-
guage family while Manipuri is a Tibeto-Burman
language and very few works have been reported
in this language most notably (Singh and Bandy-
opadhyay, 2010; Singh, 2013; Singh and Singh,
2020; Singh et al., 2021; Singh and Singh, 2021;
Sanayai Meetei et al., 2020; Rahul et al., 2021;
Laitonjam and Ranbir Singh, 2021). Additionally,
only the Bengali language is present during the
pretraining of both mBART-50 and the mT5-base
models while Assamese and Manipuri were absent
during the pretraining phase. Hence, the finetun-
ing process involves the transfer learning to totally

unseen languages and this work investigates the ef-
fect of these pretrained models to the low resource
translation task for these unseen languages. We
also evaluate our performance on the WAT-2021
MultiIndicMT 1 test set for English to Bengali and
Flores-101 test set (Goyal et al., 2021) for the En-
glish to (Bengali and Assamese)

2 Multilingual Neural Machine
Translation

Multilingual NMT facilitates the translation be-
tween multiple languages via pivot based (Dabre
et al., 2015), transfer learning (Zoph et al., 2016) or
through a jointly trained single NMT model (John-
son et al., 2017). In this work, we utilise the jointly
trained single multilingual NMT model. Addition-
ally, this single MNMT can be further divided into
three types according to the mapping of the source
and the target languages, Many-to-one (m2o). In
this setting, the model is trained to translate multi-
ple source languages into a single target language.
One-to-many (o2m). This MNMT model trans-
lates from a single source language to multiple tar-
get languages and many-to-many (m2m). Here,
translation between many source and many target
languages is possible. Moreover, as there are sev-
eral target languages in the o2m and m2m, a target
language tag is typically prepended at the begin-
ning of the source sentence to specify the predicted
target language. Given K sentence pairs and L lan-
guage pairs the training objective of an MNMT
model is to maximise the log-likelihood over the
whole parallel pairs {x(l,k), y(l,k)}l∈(1,...,L)k∈(1,...,Kl)

as:

Lθ =
1

K

L∑
l=1

Kl∑
k=1

log p(y(l,k)|x(l,k); θ), (1)

where the total parallel sentences K =
∑L

l=1Kl.

3 Multilingual Pretrained Model

3.1 mBART

The mBART model which follows the sequence-
to-sequence (Seq2Seq) pre-training scheme of the
BART model and pre-trained on large scale mono-
lingual corpora in 25 languages is used in our work.
There are two types of noises used to produce the
corrected text by removing the text spans and re-
placing them with a mask token and secondly by

1http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual
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permuting the order of the sentences within each in-
stance. The large-scale pre-training on multiple di-
verse languages has shown to be helpful at building
low-resource NMT systems by being fine-tuned to
the target language pair (Dabre et al., 2021; Xue
et al., 2021). This also has shown to possess a pow-
erful generalization ability to languages that do not
appear in the pre-training corpora.

3.2 mT5

mT5 is a massively multilingual pretrained model
variant of Text-to-Text Transfer Transformer (T5)
(Raffel et al., 2020). The T5 is trained on a multi-
task scenario which is governed by the pre-training
on a masked language modeling “span-corruption”
objective, in which consecutive input token spans
are replaced with a mask token and the model is
trained to reconstruct the masked-out tokens.

4 Experimental Setup

4.1 Dataset

The experimentation uses the parallel data from
CVIT-PIB (PIB) (Philip et al., 2021) and PMIndia
(PMI) (Haddow and Kirefu, 2020) dataset. The As-
samese (asm) and Manipuri (mni) data is curated
from PMIndia while Bengali (bn) data is taken
from both CVIT-PIB and PMIndia dataset. For
the development, a small subset of 1000 sentences
from the PMI is used for the mni and asm, while
WAT-2021 is used for the bn side.

The WAT-2021 test set is in-domain with the
PMI and PIB data which are mostly news domain
and we also investigate the domain adaptability of
these pretrained models on a general domain test
set FLORES-101. For this, the en-{asm, bn} trans-
lations are finetuned in a multilingual way with the
FLORES development data.

4.2 Dataset Preprocessing

The text preprocessing step initially tokenizes the
raw texts. English side data is tokenized using the
moses-scripts2 while the Indic data are normalized
and tokenized using the IndicNLP toolkit3. Addi-
tionally, we do not perform any sort of script con-
version for the orthogonality matching as bn, asm
and mni all use the same script.

2https://github.com/moses-smt/mosesdecoder/
tree/master/scripts

3https://github.com/anoopkunchukuttan/indic_
nlp_library

Furthermore, foreign language text are identi-
fied and removed using langid4 and their dataset
is de-duplicated and ensured that the training data
excludes any instances of the development and test
sets. Following the work of (Philip et al., 2021), a
sentencepiece (Kudo and Richardson, 2018) BPE
of 3K subword merges is learnt for each language
separately over the normalized and the tokenized
text data. However, the vocabulary for en is learnt
over the combined en data. Finally, the union of
all the unique tokens is taken to make a common
dictionary.

4.3 Training setup
1. One-to-Many multilingual model trained

from scratch (O2M-S): A one-to-many mul-
tilingual NMT is trained from scratch using
transformer with 6 layers of encoders and
decoders, 4 attention heads, 512 embedding
dimension and a feedforward dimension of
1024. The encoder and decoder are shared
and optimised using adam with the betas (0.9,
0.98) with an initial learning rate of 0.0005
which is scheduled using inverse square root
with 4000 warmup updates. The training is
done using fairseq (Ott et al., 2019) toolkit
for 100,000 update steps with a token based
batch of batchsize 4000.

2. mBART+O2M: We finetune the mBART-50
model in a one-to-many multilingual setup
for the en to (asm, bn and mni) translation.
Furthermore, the fairseq toolkit is used and
in particular the multi-simple-epoch task of
the fairseq to finetune from mBART-50 pre-
trained model. The system is an mbart-large
architecture and uses the default parameters
as in this setup5 and finetuned for 80,000 up-
date steps.

3. mT5+O2M: The mT5-base model is used for
the finetuning using the simpletransformers li-
brary6 with the default setup and finetuned for
80,000 update steps.

Furthermore, all the systems are finetuned for an-
other 15,000 update steps upon the FLORES de-
velopment set after resetting the training optimiz-
ers for the domain adaptation as all the systems are

4https://github.com/saffsd/langid.py
5https://github.com/pytorch/fairseq/tree/

main/examples/multilingual
6https://github.com/ThilinaRajapakse/

simpletransformers

https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/saffsd/langid.py
https://github.com/pytorch/fairseq/tree/main/examples/multilingual
https://github.com/pytorch/fairseq/tree/main/examples/multilingual
https://github.com/ThilinaRajapakse/simpletransformers
https://github.com/ThilinaRajapakse/simpletransformers
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trained only on the PMI and PIB data which is a
news domain whereas the FLORES-101 test set is
a general domain data.

4.4 Comparison with Other Works
This work is compared with the following work
evaluated upon the WAT-2021 and FLORES-101
test sets:

1. Ramesh et al. (2021): A multilingual model
trained on the largest publicly available paral-
lel corpora.

2. IndicBART (Dabre et al., 2021): A multilin-
gual pretrained model trained on 11 Indic lan-
guages trained using mBART objective.

4.5 Evaluation Metrics
1. Automatic Evaluation: The automatic eval-

uation is done using BLEU which is reported
over the geometric mean of the 4-gram pre-
cision or BLEU-4, ranging from 0-100, with
100 being the highest. The hypothesis for the
en to {asm, bn, mni} translation evaluation
is detokenized and then retokenized using the
IndicNLP tokenizer and then evaluated with-
out using any tokenizer in SacreBLEU7.

2. Human Evaluation: Human evaluation is
carried out by considering the fluency and ad-
equacy of the translated output. In this pre-
text, three human translators fluent in English-
Manipuri, English-Assamese and English-
Bengali are assigned to separately rate each
sentence from 1-5 for the fluency and the ad-
equacy criteria. Finally, the sentence wise
scores are averaged to get the corpus level
score for both the criteria.

5 Experimental Results

Table 1 reports the automatic evaluation scores of
the systems based on the BLEU score for the en to
{asm, bn and mni} one-to-many translations. Both
the pretrained models outperforms the multilingual
system trained from the scratch (O2M-S) across all
the translation directions suggesting a successful
transfer of information from the pretrained models
to the downstream finetuning task.

Additionally, the significant improvement in
BLEU score after the finetuning is observed for
both the asm and mni languages which were ab-
sent during the pretraining step revealing that these

7BLEU+case.mixed+numrefs.1+smooth.exp+tok.none+version.1.5.1

multilingual pretrained models are language inde-
pendent up to an extent and can be extended to
any new languages irrespective of their relatedness
from the pretrained languages and thus ideal for a
low resource machine translation.

System asm bn mni
O2M-S 11 16.2 19.5
mBART+O2M 15.9 19.8 26.3
mT5+O2M 15.4 18.6 29.2

Table 1: BLEU score evaluated using PMI test set for
the en to (asm, bn, mni) translation.

5.1 Comparison With Other Works

Table 2 reports the BLEU score of the trained sys-
tems i.e. O2M-S, mBART+O2M and mT5 which
is compared with Ramesh et al. (2021) and In-
dicBART (Dabre et al., 2021) evaluated upon the
WAT-2021 and PMI test sets. O2M-S performs the
worst amongst all the systems for both the test sets
across all the translation directions. For the WAT-
2021 test set, mT5+O2M has the best performance
followed by Ramesh et al. (2021). Ramesh et al.
(2021) is trained using the largest available training
data for the Indian languages thus giving an extra
edge. On the other hand FLORES test is a general
domain data thus making the task more challeng-
ing as our systems are trained using only the news
domain from PMI and PIB which is reflected in
the low BLEU scores of our trained systems for
the FLORES test set.

However, IndicBART trained their systems us-
ing Samanantar dataset (Ramesh et al., 2021)
thus making their system more adaptive to
the FLORES domain and surpassing both the
mBART+O2M and mT5+O2M models with a

System
Test Set

WAT-2021 FLORES
bn asm bn

Ramesh et al.
(2021)

16.0 - -

IndicBART 11.1 - 30.7
O2M-S 10.7 1.2 2.3
mBART+O2M 14.7 3.5 5.6
mT5+O2M 16.2 2.3 4.8

Table 2: BLEU score of the systems for the en to (asm
and bn) evaluated on WAT-2021 and FLORES TEST
set.
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Systems asm bn
mBART+O2M w/o FT 2.9 4.6

+5K steps FT 3.1 5.2
+10K steps FT 3.4 5.5
+15K steps FT 3.5 5.6

mT5+O2M w/o FT 0.1 3.3
+5K steps FT 0.3 3.9
+10K steps FT 1.3 4.2
+15K steps FT 1.8 4.8

Table 3: Effect of the BLEU score on the finetuning steps (FT) which is finetuned using FLORES development set
for the en to (asm and bn) directions.

whooping 30.7 BLEU score in comparison to the
5.6 and 4.8 BLEU scores for the mBART+O2M
and mT5+O2M respectively. Additionally, for
the WAT-2021 en-bn task, IndicBART performed
poorly even though they pretrain an mBART
model from the Indic languages and finetune upon
it. Furthermore, the low performance of In-
dicBART on WAT-2021 test reveals two possi-
bilities, i) the finetuning of IndicBART involved
more number of languages than our setting, which
in turn induced a negative transfer (Dabre et al.,
2020) due to the incompatibility of the languages
involved thus the degradation in the performance,
ii) transfer learning from a massively multilingual
pretrained model followed by the multilingual fine-
tuning as in our case is more beneficial than trans-
fer learning from a limited language pretrained
model as in the case of IndicBART and we put for-
ward these as a future work.

5.2 Domain Adaptation via Few Shot
Learning

The systems in our experimentation are trained on
a narrow domain data, thus these systems choke
when evaluated on a general domain data. Hence,
the systems are further finetuned using the FLO-
RES development set for another 15,000 update
steps by resetting the optimisers. The results are
reported in Table 3.

It is observed that this domain adaptation using

incremental finetuning upon the FLORES develop-
ment set improves the BLEU score across all the
directions for both mBART+O2M and mT5+O2M
models. However, this increment is still insignif-
icant in comparison to IndicBART (Dabre et al.,
2021) as presented in Table 2.

5.3 Human Evaluation Score

Table 4 reports the human evaluation score of the
O2M-S, mBART+O2M and mT5+O2M for the
en to (asm, bn and mni) translations based on the
adequacy and fluency criteria which is evaluated
upon the PMI test set. For the en-mni transla-
tion direction presented in Table 4, the multilin-
gual finetuning over both the pretrained models
(mBART+O2M) and (mT5+O2M) is superior to
the multilingual model trained from scratch (O2M-
S) qualitatively. Additionally, in terms of the ade-
quacy score, mT5+O2M performs better than the
mBART+O2M. However, mBART+O2M gives
a competitive performance to the mT5+O2M in
terms of the fluency score.

Moreover, the human evaluation scores corre-
lates well with the automatic scores as reported
in Table 1 suggesting the effectiveness of the
transfer learning for this unseen language dur-
ing the pretraining time. On the other hand,
mBART+O2M has higher human evaluation
scores than mT5+O2M for the en-asm and en-
bn translations as reported in Table 4. However,

Models en-mni en-asm en-bn
Adequacy Fluency Adequacy Fluency Adequacy Fluency

O2M-S 3.25 3.07 2.91 3.17 2.75 2.823
mBART+O2M 4.15 4.31 3.82 3.782 3.9122 3.782

mT5+O2M 4.42 4.37 3.801 3.775 3.8622 3.688

Table 4: Human evaluation score evaluated on PMI test set based on the adequacy and fluency criteria.
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Source-1 In particular, he mentioned the Buddha and the Ramayana.
Ref বċুা অমসংু রামায়নবু মহা¢া অক¢না পনিখ।
TT buddhaa amasung raamaayanbu mahakna akaknanaa pankhi.
Gloss the buddha and the ramayan he particularly mentioned.
O2M-S মহা¢া পনিখ মদিুদ মহা¢া বċু অমসংু রামাধন বċুগী মতাংদা পনিখ।
TT mahakna pankhi madudi mahakna buddha amasung raamaadhan buddhagi matanga

pankhi.
Gloss he mentioned that he the buddha and the ramadan buddha’s about mentioned.
ET He mentioned that he mentioned about the Buddha and the Ramadan Buddha.
mBART+O2M মŠওইনা মহা¢া বċু অমসংু রামায়ণগী মতাংদা পনিখ।
TT maruoina mahakna buddha amasung raamaayanagi mataangda pankhi.
Gloss importantly he the buddha and the ramayan’s about mentioned.
ET Importantly he mentioned about the Buddha and the Ramayan.
mT5+O2M অক¢না মহা¢া বċু অমসংু রামায়নগী মতাংদা পনিখ।
TT akaknanaa mahakna buddha amasung raamaayangi mataandga pankhi.
Gloss in particular he the buddha and the raamaayana about mentioned.
ET In particular he about mentioned about the buddha and the raamaayana.
Source-2 The Officer Trainees belong to 17 Civil Services, and 3 Services from the Royal Bhutan

Civil Service.
Ref ওিফসর ƶýনীিশং অদদুা িসিবল সিবƸসকী ১৭ অমসংু ƶরােয়ল ভুতান িসিবল সিবƸসকী অƢম

য়াওির।
TT ophisar trenishing aduda sibil sarbiski 17 amasung royel bhutan sibil sarbiski ahum

yaori.
Gloss officer trainees in civil services 17 and royal bhutan civil service’s three belong to.
O2M-S ওিফসর ১৭, িসিবল সিবƸসিশং, িসিভল সিবƸসিশং অমসংু ƶরােয়ল সিবƸসিশং অিস ভুতানগী

িসিভল সিবƸসিশংদগীিন।
TT ophisar 17, sibil sarbis-shing, sibhil sarbis-shing amasung royel sarbis-shing asi

bhutangi sibhil sarbis-shingdagini.
Gloss officer 17, civil services, civil services and royal services is bhutan’s civil services from.
ET 17 officers, Civil Services, Civil Services and the Royal Services are from Bhutan’s

Civil Services.
mBART+O2M ওিফসর ƶýনীিশং অিস িসিবল সিবƸস ১৭ অমসংু ƶরােয়ল ভুতান িসিবল সিবƸসতগী সিবƸস

৩িন।
TT ophisar trenishing asi sibil sarbis 17 amasung royel bhutan sibil sarbis-tagi sarbis 3ni.
Gloss officer trainees these civil service 17 and royal bhutan civil service from service is 3.
ET These officer trainees are from 17 Civil Services and 3 Services from the Royal Bhutan

Civil Service.
mT5+O2M ওিফসর ƶýনীিশং অদদুা িসিবল সিবƸসকী ১৭ অমসংু ƶরােয়ল ভুতান িসিবল সিবƸসকী সিবƸস

অƢম য়াওির।
TT ophisar trenishing aduda sibil sarbiski 17 amasung royel bhutan sibil sarbiski sarbis

ahum yaori.
Gloss officer trainees in civil services 17 and royal bhutan civil service’s service three belong

to.
ET The Officer Trainees belong to 17 Civil Services and 3 Services from the Royal Bhutan

Civil Service.
Source-3 PMSSY has two components
Ref িপ. এম. এস. এস. ৱাই .গী মশা অিন Ʒল
TT pi. em. ess. ess. yai. gi masa ani lei
Gloss PMSSY’s components two has
O2M-S PMSSYগী কেŕােনě অিন Ʒল
TT PMSSYgi kamponent ạni lei
Gloss PMSSY’s components two has
ET PMSSY has two components
mBART+O2M PMSSYগী কেŕােনě অিন Ʒল
TT PMSSYgi kamponent ạni lei
Gloss PMSSY’s components two has
ET PMSSY has two components
mT5+O2M িপ এম এস এস এস এস এস হায়বিসগী কেŕােনě অিন Ʒল
TT pi em ess ess ess ess ess haibasigi kamponent ani lei
Gloss PMSSSSS so called component two has
ET The so called PMSSSSS has two components

Table 5: Sample en-mni translations by the MT systems



70

mT5+O2M gives a competitive score in terms of
fluency for the en-asm. Based on the quantitative
and qualitative findings from Table 1 and Table 4
respectively, mT5+O2M is beneficial for the en-
mni translation while for the en to (asm and bn),
mBART+O2M is found to be effective and we
plan to explore these discrepancies in our future
work.

6 Qualitative and Error Analysis

6.1 Qualitative Analysis

A qualitative analysis in the form of sample input
and output is also presented in Table 5 in addition
to the qualitative scores reported in Section 5.3 to
compare the translation qualities of the O2M-S,
mBART+O2M and mT5 for the en to mni transla-
tion of the PMI test set. In doing so, we randomly
select three en test sentences (Source-1, Source-2
and Source-3) and present the respective translated
outputs by the systems. Table 5 contains the fol-
lowing abbreviations: The Roman transliterated
mni sentence is denoted by TT, Gloss is the en
word-for-word translation, and the en translation
for the mni sentence is ET.

In the first source sentence (Source-1), O2M-
S the phrase “mahakna pankhi” (he mentioned)
twice thus degrading the fluency and the term
“raamaayan has been wrongly generated as
‘‘raamaadhan” (ramadan) which in turn detoriates
the adequacy. Similarly, there are several in-
stances where O2M-S has generated erroneous
words. On the other hand, mBART+O2M and
mT5+O2M made a better translation as compared
to the O2M-S in terms of both adequacy and flu-
ency. However, mBART+O2M translated the
source word In particular to “maruoina” (impor-
tantly) while mT5+O2M translated into the accu-
rate word “akaknanaa” (in particular). Although,
the word order has been displaced even after gener-
ating the correct word hence the automatic scores
which depends upon the exact word overlapping
gets penalised. The second (Source-2) and the
third source (Source-3) sentences are challenging
ones. The Source-2 has complex contextual depen-
dencies which is evident with the struggle to estab-
lish the correct dependency relations in the trans-
lations of the O2M-S and mBART+O2M while,
mT5+O2M is the only system which can success-
fully establish the meaning of the source sentence
along with a fluent translation. Apart from this,
the Source-2 contains numerical values 17 and 3

which is successfully translated by all the three sys-
tems.

Another challenging instance is the presence
of abbreviations in the source sentence and the
valid English terms which exists as in the tar-
get language. This phenomenon is illustrated in
Source-3 translation where all the three systems
generated the source word components as “kam-
ponent” (component) instead of “masa” (branch;
part; component). Thus, even though the O2M-S
and mBART+O2M generated the correct transla-
tion due to token mismatch between the reference
and the translations, the BLEU score is penalised.
In the same Source-3 sentence, the abbreviation of
PMSSY is directly copied in the outputs of O2M-S
and mBART+O2M which exists as “pi. em. ess.
ess. yai.” (PMSSY) in the reference thus degrad-
ing the BLEU score. mT5+O2M on the other hand
generated the extra three extra S in the abbrevia-
tions and excluded Y.

6.2 Error Analysis
The error analysis of the systems are conducted
based on the sentence length. Figure 1A dis-
plays the distribution of the difference between the
length of the translated output from the reference
sentence length of the three systems. Here, the
value of “0” at the X-axis signifies that the trans-
lated output and the reference sentence are of equal
length. In this regard, mBART+O2M has the
highest count for “0” length difference than both
the mT5+O2M and O2M-S systems across all the
translation directions, thus providing the heuristics
that the reference and the outputs match word by
word which contradicts the superior automatic and
human evaluation scores of the mT5+O2M than
the other two systems for en to mni translation.

Additionally, for the en-asm direction in Fig-
ure 1A(i) O2M-S and mT5+O2M have simi-
lar counts for the “0” difference. Furthermore,
mT5+O2M tends to generate more shorter length
sentences than the reference sentence in compar-
ison to the other two systems for all directions,
while O2M-S generates more longer sentences.
Hence, mBART+O2M produces more equivalent
length to that of the reference than the other two
systems.

Figure 1B depicts the change in the BLEU score
with the varying sentence length. For this, the test
sentences are grouped together in buckets based on
the sentence length of the reference sentences. For
the en-mni direction in Figure 1B(iii), mT5+O2M
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A: Sentence count distribution of hypothesis B: BLEU scores of the systems
length difference from reference bucketed on test sentence length
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Figure 1: Error analysis of the systems based on the sentence length.

supersedes the other two systems across all the
sentence length, followed by the mBART+O2M.
Meanwhile, mBART+O2M is robust to longer
sentence length for the en-asm (Figure 1B(i)) and
similar trend exists in the en-bn direction (Fig-
ure 1B(ii)) although, O2M+S and mT5+O2M has
higher BLEU scores than mBART+O2M for sen-
tences longer than 60 tokens.

7 Conclusion

In this work, we report the findings of the in-
vestigation of low resource machine translation
via transfer learning from multilingual pretrained
models i.e. mBART-50 and mT5-base in the pre-
text of Indo-Aryan (Assamese and Bengali) and

Tibeto-Burman (Manipuri) languages. It is found
that the transfer learning from these pretrained
multilingual models outperforms the one-to-many
model trained from the scratch across all the trans-
lation directions in all the test sets thus suggesting
the strong transfer of interliguistic information to
the downstream finetuning tasks even for the lan-
guages absent during the pretraining step. Further-
more, the superiority of finetuning from these pre-
trained models than the IndicBART for the English
to Bengali translation using the WAT-2021 test set
suggests that a stronger transfer learning is possi-
ble even without linguistic relatedness during the
pretraining step or due to the negative transfer of
information between the incompatible languages
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during the multilingual finetuning of IndicBART.
Finally, we plan to explore more on the negative
transfer and the linguistic relatedness avenue in fu-
ture focusing on Indian languages.
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