@inproceedings{pfeiffer-etal-2021-adapterfusion,
title = "{A}dapter{F}usion: Non-Destructive Task Composition for Transfer Learning",
author = {Pfeiffer, Jonas and
Kamath, Aishwarya and
R{\"u}ckl{\'e}, Andreas and
Cho, Kyunghyun and
Gurevych, Iryna},
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.39/",
doi = "10.18653/v1/2021.eacl-main.39",
pages = "487--503",
abstract = "Sequential fine-tuning and multi-task learning are methods aiming to incorporate knowledge from multiple tasks; however, they suffer from catastrophic forgetting and difficulties in dataset balancing. To address these shortcomings, we propose AdapterFusion, a new two stage learning algorithm that leverages knowledge from multiple tasks. First, in the knowledge extraction stage we learn task specific parameters called adapters, that encapsulate the task-specific information. We then combine the adapters in a separate knowledge composition step. We show that by separating the two stages, i.e., knowledge extraction and knowledge composition, the classifier can effectively exploit the representations learned from multiple tasks in a non-destructive manner. We empirically evaluate AdapterFusion on 16 diverse NLU tasks, and find that it effectively combines various types of knowledge at different layers of the model. We show that our approach outperforms traditional strategies such as full fine-tuning as well as multi-task learning. Our code and adapters are available at AdapterHub.ml."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pfeiffer-etal-2021-adapterfusion">
<titleInfo>
<title>AdapterFusion: Non-Destructive Task Composition for Transfer Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonas</namePart>
<namePart type="family">Pfeiffer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aishwarya</namePart>
<namePart type="family">Kamath</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Rücklé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sequential fine-tuning and multi-task learning are methods aiming to incorporate knowledge from multiple tasks; however, they suffer from catastrophic forgetting and difficulties in dataset balancing. To address these shortcomings, we propose AdapterFusion, a new two stage learning algorithm that leverages knowledge from multiple tasks. First, in the knowledge extraction stage we learn task specific parameters called adapters, that encapsulate the task-specific information. We then combine the adapters in a separate knowledge composition step. We show that by separating the two stages, i.e., knowledge extraction and knowledge composition, the classifier can effectively exploit the representations learned from multiple tasks in a non-destructive manner. We empirically evaluate AdapterFusion on 16 diverse NLU tasks, and find that it effectively combines various types of knowledge at different layers of the model. We show that our approach outperforms traditional strategies such as full fine-tuning as well as multi-task learning. Our code and adapters are available at AdapterHub.ml.</abstract>
<identifier type="citekey">pfeiffer-etal-2021-adapterfusion</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.39</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.39/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>487</start>
<end>503</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AdapterFusion: Non-Destructive Task Composition for Transfer Learning
%A Pfeiffer, Jonas
%A Kamath, Aishwarya
%A Rücklé, Andreas
%A Cho, Kyunghyun
%A Gurevych, Iryna
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F pfeiffer-etal-2021-adapterfusion
%X Sequential fine-tuning and multi-task learning are methods aiming to incorporate knowledge from multiple tasks; however, they suffer from catastrophic forgetting and difficulties in dataset balancing. To address these shortcomings, we propose AdapterFusion, a new two stage learning algorithm that leverages knowledge from multiple tasks. First, in the knowledge extraction stage we learn task specific parameters called adapters, that encapsulate the task-specific information. We then combine the adapters in a separate knowledge composition step. We show that by separating the two stages, i.e., knowledge extraction and knowledge composition, the classifier can effectively exploit the representations learned from multiple tasks in a non-destructive manner. We empirically evaluate AdapterFusion on 16 diverse NLU tasks, and find that it effectively combines various types of knowledge at different layers of the model. We show that our approach outperforms traditional strategies such as full fine-tuning as well as multi-task learning. Our code and adapters are available at AdapterHub.ml.
%R 10.18653/v1/2021.eacl-main.39
%U https://aclanthology.org/2021.eacl-main.39/
%U https://doi.org/10.18653/v1/2021.eacl-main.39
%P 487-503
Markdown (Informal)
[AdapterFusion: Non-Destructive Task Composition for Transfer Learning](https://aclanthology.org/2021.eacl-main.39/) (Pfeiffer et al., EACL 2021)
ACL
- Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. 2021. AdapterFusion: Non-Destructive Task Composition for Transfer Learning. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 487–503, Online. Association for Computational Linguistics.