@inproceedings{singh-etal-2020-lt3,
title = "{LT}3 at {S}em{E}val-2020 Task 8: Multi-Modal Multi-Task Learning for Memotion Analysis",
author = "Singh, Pranaydeep and
Bauwelinck, Nina and
Lefever, Els",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.153/",
doi = "10.18653/v1/2020.semeval-1.153",
pages = "1155--1162",
abstract = "Internet memes have become a very popular mode of expression on social media networks today. Their multi-modal nature, caused by a mixture of text and image, makes them a very challenging research object for automatic analysis. In this paper, we describe our contribution to the SemEval-2020 Memotion Analysis Task. We propose a Multi-Modal Multi-Task learning system, which incorporates {\textquotedblleft}memebeddings{\textquotedblright}, viz. joint text and vision features, to learn and optimize for all three Memotion subtasks simultaneously. The experimental results show that the proposed system constantly outperforms the competition`s baseline, and the system setup with continual learning (where tasks are trained sequentially) obtains the best classification F1-scores."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2020-lt3">
<titleInfo>
<title>LT3 at SemEval-2020 Task 8: Multi-Modal Multi-Task Learning for Memotion Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pranaydeep</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Bauwelinck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Els</namePart>
<namePart type="family">Lefever</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Internet memes have become a very popular mode of expression on social media networks today. Their multi-modal nature, caused by a mixture of text and image, makes them a very challenging research object for automatic analysis. In this paper, we describe our contribution to the SemEval-2020 Memotion Analysis Task. We propose a Multi-Modal Multi-Task learning system, which incorporates “memebeddings”, viz. joint text and vision features, to learn and optimize for all three Memotion subtasks simultaneously. The experimental results show that the proposed system constantly outperforms the competition‘s baseline, and the system setup with continual learning (where tasks are trained sequentially) obtains the best classification F1-scores.</abstract>
<identifier type="citekey">singh-etal-2020-lt3</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.153</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.153/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1155</start>
<end>1162</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LT3 at SemEval-2020 Task 8: Multi-Modal Multi-Task Learning for Memotion Analysis
%A Singh, Pranaydeep
%A Bauwelinck, Nina
%A Lefever, Els
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F singh-etal-2020-lt3
%X Internet memes have become a very popular mode of expression on social media networks today. Their multi-modal nature, caused by a mixture of text and image, makes them a very challenging research object for automatic analysis. In this paper, we describe our contribution to the SemEval-2020 Memotion Analysis Task. We propose a Multi-Modal Multi-Task learning system, which incorporates “memebeddings”, viz. joint text and vision features, to learn and optimize for all three Memotion subtasks simultaneously. The experimental results show that the proposed system constantly outperforms the competition‘s baseline, and the system setup with continual learning (where tasks are trained sequentially) obtains the best classification F1-scores.
%R 10.18653/v1/2020.semeval-1.153
%U https://aclanthology.org/2020.semeval-1.153/
%U https://doi.org/10.18653/v1/2020.semeval-1.153
%P 1155-1162
Markdown (Informal)
[LT3 at SemEval-2020 Task 8: Multi-Modal Multi-Task Learning for Memotion Analysis](https://aclanthology.org/2020.semeval-1.153/) (Singh et al., SemEval 2020)
ACL