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Abstract
A large amount of scientific knowledge is repre-
sented within mixed forms of natural language
texts and mathematical formulae. Therefore,
a collaboration of natural language processing
and formula analyses, so-called mathematical
language processing, is necessary to enable
computers to understand and retrieve informa-
tion from the documents. However, as we will
show in this project, a mathematical notation
can change its meaning even within the scope
of a single paragraph. This flexibility makes it
difficult to extract the exact meaning of a math-
ematical formula. In this project, we will pro-
pose a new task direction for grounding mathe-
matical formulae. Particularly, we are address-
ing the widespread misconception of various
research projects in mathematical information
retrieval, which presume that mathematical no-
tations have a fixed meaning within a single
document. We manually annotated a long sci-
entific paper to illustrate the task concept. Our
high inter-annotator agreement shows that the
task is well understood for humans. Our results
indicate that it is worthwhile to grow the tech-
niques for the proposed task to contribute to
the further progress of mathematical language
processing.

1 Introduction

In modern research, scientific progress is often
solely shared in digital form. Especially in techni-
cal research fields, such as in Science, Technology,
Engineering, and Mathematics (STEM), it is a cru-
cial aspect to access data and new results in a quick
and uniform way. Nevertheless, mathematical for-
mulae, which transport essential information in
scientific documents, often remain semantically
unutilized in large databases such as Digital Library
of Mathematical Functions (DLMF)1 (Lozier, 2003)
and the pre-print archive arXiv.org2 (hereafter re-

1https://dlmf.nist.gov/
2https://arxiv.org/

ferred to as arXiv). By applying Math Information
Retrieval (MathIR) techniques based on natural
language processing (NLP), we are able to utilize
this extra knowledge of mathematical formulae to
build scientific knowledge bases (KBs) (Koprucki
and Tabelow, 2016), improve mathematical search
engines (Aizawa et al., 2013; Davila and Zanibbi,
2017; Ohashi et al., 2016), or even convert entire
scientific papers into executable formats (Kohlhase
and Iancu, 2014).

Formulae often express key ideas in scientific
documents. Consequently, working with STEM
documents requires to grasp the meaning and in-
tention of the respective formulae. In other words,
grounding of formulae is crucial for processing
STEM documents and developing its applications.
However, the grounding is not a trivial process
because of the flexibility of mathematical notation
and the impreciseness of natural languages. First,
generally, formulae in documents are not indepen-
dent content that can be understood separately from
surrounding texts. For this reason, some initiative
projects, e.g., the mathematical language process-
ing (MLP) project (Pagel and Schubotz, 2014), the
Mathcat project (Kristianto et al., 2014), and the
Part-of-Math (POM) tagger (Youssef, 2017), have
been undertaken to integrate NLP techniques into
formula analysis. We also follow this MLP direc-
tion. Second, there is a necessity of disambiguation
of mathematical notation because a letter or symbol
in formulae is not used in a constant single meaning
in a document (Greiner-Petter et al., 2020a,b). The
usage of notation is highly-flexible and, as we will
show in this paper, a notation can be used for several
meanings even in a paragraph. This notation flexi-
bility is not a problem for tasks that targeting short
fragments of text, e.g., the ARQMath task (Man-
souri et al., 2020; Zanibbi et al., 2020) for question
posts from a question answering website. However,
it is necessary to perform the grounding in consider-

https://dlmf.nist.gov/
https://arxiv.org/
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ation of the flexibility for processing longer STEM
literature.

It is difficult to perform such a grounding in
the scopes of existing tasks or MLP tools because
many of the tools and approaches are not capable of
carrying multiple meanings for a single symbol in
a document (Greiner-Petter et al., 2020b; Kristianto
et al., 2014; Krstovski and Blei, 2018; Yasunaga and
Lafferty, 2019; Schubotz et al., 2016). Therefore,
we will propose a new task direction of grounding
of formulae (Figure 1) in order to take the flexibility
into account. In short, the grounding is procedures
to identify smallest groups of letters and symbols in
formulae, i.e., math words, that independently refer
to a mathematical concept and associate the math
words with a corresponding text description or an
entry in an external KB. For example in Figure 1,
the first and the third y are parts of math words
y(·) (where · represents an arbitrary argument) and
associated with a description of a function while
the second y is an independent math word and
associated with a description for an output vector.
In our grounding, instead of directly associating
each math word to a text description, we put an
intermediate procedure: making groups each of
which consists of math words referring to an identi-
cal mathematical concept. For instance in Figure 1,
the first and the third y belong to a group because
they both refer to the same function, while the sec-
ond one is in another group because it refers to a
vector. It is notable that the grounding is similar to
some established tasks, namely coreference reso-
lution (Sukthanker et al., 2020) and named entity
recognition (Bunescu and Pasca, 2006).

In this work, we checked the feasibility of the
proposing task direction for the grounding. For this
purpose, we made a long annotated scientific paper
in which all formulae are annotated with math word
spans and text descriptions of the corresponding
mathematical concepts. The math words in the
annotated paper which refer to the same mathemat-
ical concept are tied together in a group. We did
the annotation for an entire paper rather than small
fragments of texts to disclose the flexibility of math
word usage. Through the analysis of our annotated
paper, we revealed that the meanings of math words
can be changed even within the scope of a single
paragraph in actual STEM literature. In addition,
we did the annotation by multiple human annotators
and calculated the inner-annotator agreements so
that to confirm that our task design can be well-

understood, at least for human beings, and can be
performed without individual differences.

2 Related Work

A few tasks that are similar to our grounding of
formulae have been proposed in the community
of MathIR. The NTCIR project run several shared
tasks in the past (Aizawa et al., 2013, 2014; Zanibbi
et al., 2016). The task designs of these shared
tasks focuses on applications, namely searching and
question-answering, while our grounding focuses
rather basic parts and is regarded as preprocess for
numerous MLP tasks including formulae search-
ing, question-answering, and conversions to formal
languages. Notably, the NTCIR-10 MathIR Test
Collection (Aizawa et al., 2013), which is a spe-
cific dataset for their shared task, contains textual
descriptions for formulae components, and thus
the data are similar to our annotated paper. The
dataset includes 10 papers chosen from the arXM-
Liv dataset using a manually annotated description
for each formula element. For instance, in the
dataset, a formula log(𝑥) is annotated with a de-
scription like “a function that computes the natural
logarithm of the value 𝑥”. Though their purpose is
close to ours, we annotated not only descriptions
but also a few pieces of additional information,
i.e., affix types and group information (what con-
cept the word refer to). In the terms of linguistics,
these two can be regarded respectively as word
spans and coreference information. Additionally,
we did the annotation for a longer document than
their target papers with coherency. We were es-
pecially interested in longer documents so that we
can analyze how diverse meanings of mathematical
concepts can be.

The variable typing task (Stathopoulos et al.,
2018) is also closely relevant to our goal. Their task
is simply associating mathematical type (technical
terms referring to mathematical concepts) to each
variable in STEM documents. For example, for a
sentence

Let 𝑃 be a parabolic subgroup of GL(𝑛) with
Levi decomposition 𝑃 = 𝑀𝑁 , where 𝑁 is the
unipotent radical. (Stathopoulos et al., 2018)

they assigned the “parabolic subgroup” and “unipo-
tent radical” respectively to variables 𝑃 and 𝑁 as
their mathematical types. Based on arXMLiv, they
introduced their own dataset, which includes 33,524
labeled variables in 7,803 sentences. Their work re-
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The result of running the ma-
chine learning algorithm can
be expressed as a function y(x)
which takes a new digit image
x as input and that generates an
output vector y, encoded in the
same way as the target vectors.
The precise form of the function
y(x) is determined during the
training phase. (p. 2, PRML)

Mathematical concepts

• function y(·)
• output vector y

Figure 1: The grounding of formulae. It is a 3-step procedure: (1) detecting the span of math words—𝑦(·) is
a word for the first and third y, and the sole y is a word for the second y in the above quote (where · can be
arbitrary argument), (2) making groups based on the corresponding mathematical description—the first and third y
are elements of a group because they both refer to the same function, while the second one is an element of another
group because it refers to a vector, (3) associating each group to text description or external knowledge.

sembles ours, but with three major differences. First,
they annotated only mathematical types, which are
partial components of mathematical concepts. Sec-
ond, they targeted only those variables appearing as
a single token in natural language texts, but we an-
notated all identifiers including those appearing in
complex formulae. Third, they randomly selected
sentences in the documents in arXMLiv to create
their dataset. They did not attempt to annotate all
variables in a full paper.

The POM Tagger (Youssef, 2017) is an initia-
tive for token-level analyses of formulae in doc-
uments. The tagger plays the role of formulae
akin to Part-of-Speech (POS) taggers in NLP. The
tagger is intended to function with multiple scans.
The function for the first scan was already imple-
mented. The first scan recognizes lexical math
terms (e.g., indexes, functions, left-delimiter, etc.)
in formulae. For this tagging process, Youssef built
a KB with more than 2,800 entries of symbols (to-
kens), each of which is associated with typical usage
(role and category) and additional information of
several kinds, such as the mathematical domain in
which the term is used. In the planned following
scans (second and third), the tagger will perform
disambiguations of various types and extract further
semantic information using NLP techniques. Our
work is expected to be useful to implement and
improve those features.

3 Grounding of Formulae

In order to describe the grounding of formulae
precisely, we introduce a few linguistic terms for
formulae, roughly borrowing from morphology in
natural languages (Nida, 1949):

• A math morpheme (also known as token) is the
smallest unit in formulae. In terms of Presen-
tation MathML (Ausbrooks et al., 2014), this
corresponds to an element, i.e., a tag. A mor-
pheme can be a single letter or symbol (e.g., 𝑥,
𝜃, ′, ×, =, and

∑
) or strings consisting of a

few letters (e.g., log and argmax). All charac-
ters (both letters and symbols) that appear in
formulae must belong to a math morpheme.

• A math word is a minimal group of morphemes
that refer to a mathematical concept indepen-
dently. Math words consist of one or more
morphemes, typically one or a few morphemes.
For instance, 𝑥, 𝑥 ′, def

= , and log(·) are words.
Every word has a base morpheme, which
reflects a core meaning of the word, and op-
tionally has one or more affixes. That is to say,
in a word 𝑥 ′, 𝑥 is the base morpheme; ′ is a
suffix, which is a type of affix.

Every math word has a corresponding mathemat-
ical concept such as the sign function, the set of all
natural numbers, and (real) intervals. In the actual
data and applications, the math words are associ-
ated with textual descriptions. Those descriptions
can be taken either from the surrounding text of the
formulae or from an external KB. Though some
combinations of words, notably an entire formula,
also refer to a mathematical concept, we stick to the
scope of math words for the grounding. The process
of combining the math words and interpreting the
constituted concepts will be a subsequent task to
our grounding. It is also notable that the concept
of math word is close to mathematical objects of
interests (MOIs) (Greiner-Petter et al., 2020a), sub
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expressions in formulae that can be identified as
‘important’ components, but not exactly the same.
While MOIs can contain other MOIs, math words
are minimal groups of morphemes that can refer
to mathematical concepts, so they naturally cannot
contain other math words.

With the terms we introduced in the above, we
can describe the proposing grounding of formulae
as the following 3-step procedure that simulates
the processes of understanding formulae by human
beings (Figure 1):

1. Identifying spans of math words, a minimal
group of math morphemes that refer to a math-
ematical concept. This step is necessary be-
cause the morphemes are not always used
singly. For instance, in a text “A variable 𝑥”,
two morphemes 𝑥 and ˆ do not independently
refer to mathematical concepts but refer to a
variable as a group.

2. Grouping the math words based on the corre-
sponding mathematical descriptions. As we
mentioned, a notation can be used in several
meanings in the scope of a single paragraph.
With this step, we will obtain the groups each
of which consists of math words appearances
used in the same meaning. In the example of
Figure 1, the first and the third y belongs to
a group, each math word of which refers to
a function, while the second y is in another
group, each of which refers to a vector.

3. Associating the groups with text descriptions
or external knowledge. It will be easier to
associate all the groups to text descriptions in
the same document, but in the actual literature,
notations can be used without any description.
For instance, 𝜋 is often used for Archimedes’
constant without explicit description. Thus,
external knowledge will be required in addition
to text descriptions in each document.

Although the grounding is a fundamental step
for MLP, the processes, even merely recognizing
the word spans, are not easy for computers because
of various linguistic phenomena in formulae. The
following paragraphs show the two most important
phenomena: both make the grounding highly chal-
lenging. In short, because of these phenomena,
the grounding demands disambiguation of math
words. For disambiguation, integration of NLP
and analyses for formulae are inescapable. More

phenomena are discussed in detail elsewhere in
the literature (Ganesalingam, 2013; Kohlhase and
Iancu, 2014). All quotes presented in this sec-
tion are from a textbook Pattern Recognition and
Machine Learning (PRML) (Bishop, 2006).

Integration of Formulae and Texts Formulae in
scientific documents are generally deeply integrated
into narrative texts and inseparable from natural
languages. For instance, in the following sentence,
the equation is the passive subject in the grammar
of English.

For the case of a single real-value variable 𝑥, the Gaussian
distribution is defined by

N(𝑥 | 𝜇, 𝜎2) = 1
(2𝜋𝜎2)1/2 exp

{
− 1

2𝜎2 (𝑥 − 𝜇)2
}

which is governed by two parameters: 𝜇, called the mean,
and 𝜎2, called the variance. (p. 24, PRML)

From the viewpoint of the formula, meanings of
some math words (𝑥, 𝜇, and 𝜎2) are described in
the surrounding natural language texts. Moreover,
natural language texts or their fragments can appear
in formulae, as shown in the following:

Given this definition of likelihood, we can state Beyes’
theorem in words

posterior ∝ likelihood × prior

where all of these quantities are viewed as functions of w.
(p. 22, PRML)

The natural language parts of the above are just
nouns, but they can be sentences, e.g., {𝑛 ∈ N |
𝑛 is even}.

Because of this integration phenomenon, the
grounding cannot be done merely by analyzing
formulae. For faithful grounding, one must look
into natural language texts to observe information
such as the contexts to which formulae belong
and to definitions, descriptions, or assumptions for
identifiers in formulae.

Ambiguity Various ambiguities arise in formu-
lae. Token-level analyses are responsible for dis-
ambiguation (Wang et al., 2016; Youssef, 2017).
Different from natural languages, the meanings of
words in formulae invariably depend on the context.
It is common in STEM documents that a notation
has multiple meanings even in a single document.
For example, in Figure 1, a letter y is used in two
meanings. Herein, in the first appearance, y is a
function, but it is a vector in the second appearance.
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We human beings can see that y is used in different
meanings in these two appearances by the apposi-
tion nouns (in this example, the words “function”
and “vector” immediately before the formulae) and
the usages of the notations. In the first formula, the
morpheme y is not used alone, but with affixes; it
constitutes a word y(·). However, the second y is
used as a single word with no affixes. There are also
syntactic ambiguities in formulae. For instance, a
formula 𝑓 (𝑎 + 𝑏) can be interpreted in two ways:
it means 𝑓 × (𝑎 + 𝑏) if 𝑓 is a variable, or applying
the value of 𝑎 + 𝑏 to a function 𝑓 . Ambiguities of
these types can be resolved by disambiguating the
meanings of math words (the meanings of 𝑓 and
the parentheses in this case).

4 Manual Annotation for the Grounding

We performed manual annotation for the proposed
grounding task so that to show the feasibility of
the task with sufficient reproducibility. Moreover,
language resources are indispensable to automate
the task to contribute to the development of MLP
tools. The annotated document for this work should
play an initiative role to develop larger language re-
sources for developing and evaluating the grounding
technology. Collections of natural languages and
corresponding formal expressions are not enough
for this purpose, because it does not directly provide
token-level information for each formula in natural
language texts. It is still difficult to extract such
information from simple parallel translations.

In order to reveal the flexibility of the math word
usage, we annotated an entire long paper rather
than small fragments of multiple texts. As we
described, the grounding can be regarded as a three-
step process. Corresponding to the first two steps of
the grounding, the reference data should also have
two types of information for each math morpheme in
documents: (1) which word the morpheme belongs
to and (2) which mathematical concept the word
is referring to. We annotated these two pieces
of information coherently for all formulae in a
document. We also annotated text description by
an annotator for each group, that is the information
corresponding to the result of Step 3, but it is not
literally extracted from the paper itself nor from
external knowledge bases. These textual description
are rather for the convenience for the annotators.

The classification-based annotation made it possi-
ble to evaluate the quality of annotated data. More-
over, the annotation is expected to be beneficial for

Table 1: Basic statistics of the paper (Simeone, 2018).

#words in texts 10,616 #<mi> tags 937
#sections 7 #inline math 331
#pages (in PDF) 20 #display math 23

numerous future applications. First, by studying
the appearance pattern of mathematical concepts
corresponding to formula words in a document, one
can obtain linguistic statistics for formulae. For in-
stance, it can help us to infer the form of the scopes
for variables in documents. Secondly, the anno-
tated information for each mathematical concept
group can be extended easily in accordance with
applications. We annotated referential descriptions
for each math word as well, but these descriptions
can be improved at any point.

4.1 Targets
We took the original XHTML documents from
the arXMLiv:08.2018 dataset (Ginev, 2018). The
XHTML documents in the dataset were gen-
erated automatically by converting LATEX docu-
ment sources of scientific papers from arXiv with
LATEXML3 (Ginev et al., 2011; Miller, 2018). In
the dataset, we selected a paper A Very Brief Intro-
duction to Machine Learning With Applications to
Communication Systems4 (Simeone, 2018) for our
annotation because it has suitable numbers of words
and formulae. This paper works with the topic with
which the authors are familiar. In addition, the
paper is easy to read and includes a reasonable
number of formulae (Table 1). We annotated the
group information to all identifiers in the paper.
The analysis for the annotation are described in
Section 5.

As the first attempt for performing such an an-
notation, we narrowed down a target to identifiers,
which are one type of math morpheme. An identi-
fier is a letter (e.g., 𝑥, y, and 𝜃) or a string consisting
of a few letters (e.g., sin and log) commonly rep-
resenting variables, functions, and constants in
formulae. We chose identifiers as targets because
they are the most major class in standard formulae.
In Presentation MathML, an identifier is placed in
a <mi> tag, where mi stands for “math identifier”.

4.2 Annotation Procedure
Before manual annotation, we preprocessed the tar-
get XHTML. First, several inappropriate MathML

3https://dlmf.nist.gov/LaTeXML/
4https://arxiv.org/abs/1808.02342

https://dlmf.nist.gov/LaTeXML/
https://arxiv.org/abs/1808.02342
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markups that were originally from unsuitable LATEX
markups by the author of the target paper were fixed
to the right markups. This fixing was achieved
by simple rule-based replacements, e.g., replacing
<mtext>E</mtext> (\text{E} in the original
LATEX source by the author) to <mi>E</mi> (which
corresponds to \mathrm{E} in LATEX). Since our
targets are only the <mi> tags for this time, this
replacement was useful to annotate all the tokens
that should be grounding manually. For the tar-
get document, we defined seven replacement rules.
Secondly, lists of two types for annotation were
generated by extracting information from the target
XHTML file. The first one is a list of identifiers. It
had entries for all letters and strings (case-sensitive
and typeface-sensitive) with blank description fields.
This list played the role of a dictionary. In other
words, it was an extremely detailed “index to no-
tations” (Table 2). The second list was a simple
list of all identifiers’ appearances in the document:
the list of ids for all <mi> tags in the XHTML file.
We took this dictionary-based approach to clearly
show the groups of math words which are used in
the same meaning.

The annotation process was done by manually
modifying these two lists. When reading the target
paper, the annotator added items to the entries when
an identifier is defined or used in a new meaning.
As presented in Table 2, each item was given a few
fields: a description for the identifier usage, types
of affixes in the corresponding words. Then, the
annotator associates each identifier’s appearance
to the corresponding item in the dictionary within
the list of identifiers (Figure 2). This task was
accomplished efficiently with a GUI application we
developed. We associate all identifiers in the docu-
ment to the items even if the identifier morphemes
appeared in a word as an affix.

Our language resource and all programs devel-
oped for this project are available with annotation
via our repository5.

5 Analysis on the Annotated Paper

5.1 Agreements and Mismatch Analyses
To verify our annotations, three persons annotated
the same target article independently, and the agree-
ments were calculated. First, Annotator 1 per-
formed the whole process of the annotation (Sec-
tion 4.2). The annotator created both a dictionary

5https://sigmathling.kwarc.info/resources/
grounding-dataset/

and the annotation file, which is a list of identi-
fier appearances associated with the corresponding
items in the dictionary. Then the dictionary, that
includes all possible mathematical concepts that
can be referred to in the paper, was sent to the other
two annotators (Annotator 2 is a coauthor of this
work. Annotator 3 is not). They performed the
step of annotation that associates each identifier’s
appearance to a dictionary item. They needed about
a day to complete the annotation. We shared the
common dictionary this time for the ease of annota-
tion work, but all annotators should create their own
dictionaries in future work. Table 3 presents results
of our experiment. With the given dictionary, the
inter-annotator agreements were 96.48% (between
Annotator 1 and Annotator 2) and 87.94% (between
Annotator 1 and Annotator 3). Of 937 appearances,
132 (14.09%) are identifiers, each of which has
a single candidate item. These are included in
these agreements. In addition, mismatches of affix
types between annotators are important because
the numbers of such affix type mismatches reflect
disagreements on the math word spans. A few
examples are explained below. Therefore, we also
counted affix mismatches. The numbers are pre-
sented in the second column of Table 3.

The two affix type mismatches by Annotator 2
were simply mistakes. The other 31 mismatches
were all attributable to a single disagreement on
the mathematical concept for D in the document.
In the target paper, the identifier D refers training
datasets for the learning tasks they are discussing,
but the assumptions for the dataset (e.g., whether
or not the data points follow a true distribution)
differ among sections. For example, in §3.1, D is
introduced for the first time as:

we are given a training set D of 𝑁 training points (𝑥𝑛, 𝑡𝑛),
with 𝑛 = 1, . . . , 𝑁 , where the variables 𝑥𝑛 are the inputs
(Simeone, 2018)

Moreover, some times, there is no clear declara-
tion about the assumption, e.g.,

Under this assumption, the data set D is not necessary, . . .
(Simeone, 2018)

and it engenders disagreement. Because the mean-
ings of some identifiers depend on the meanings of
others, mismatches might have cascading effects.
Results show that we obtained 31 mismatches from
a single disagreement of the referring to mathemat-
ical concept of a math word.

The agreement of Annotator 3 was lower than

https://sigmathling.kwarc.info/resources/grounding-dataset/
https://sigmathling.kwarc.info/resources/grounding-dataset/
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Table 2: Excerpt from the dictionary. In the actual dictionary file, all identifiers appear in the descriptions are also
associated to the corresponding items in the same dictionary.

Identifier Description Affixes
𝑡 (italic) an output of a regression or classification problem in general (NONE)

an output of a regression problem, generated by 𝑝(𝑥, 𝑡) (NONE)
𝑛-th output in the training set D subscript
a predicator which takes an input 𝑥 and return a predicated value over, parentheses

.

.

.

t (roman) a random variable for a test output for regression problem (NONE)
.
.
.

the generalization loss

the true joint distribution itself

the output of predicator �̂� for an input 𝑥

the average with the condition

a random variable for a test input for a regression problem

a random variable for a test output for a regression problem

a true joint distribution in general, without any specific definition

a given loss function

Figure 2: Example of annotated mathematical concepts in a bit complex formula. Due to the space limitation, only
the descriptions for some of the identifiers are shown, but all of the identifiers are annotated with mathematical
concepts in the actual data. The same letter in the same color is associated with the same mathematical concept.

Table 3: Performances of the annotators. The sec-
ond column shows the inter-annotator agreements (com-
pared to the golden data created by Annotator 1). The
third column shows the number and ratio of identifiers
annotated with an item that has different affix types (pat-
terns) out of all disagreements.

Agreements Affixes mismatches
Annotator 2 904/937 (96.48%) 2/33 (6.06%)
Annotator 3 824/937 (87.94%) 60/113 (53.10%)

that of Annotator 2. Closer examination of the
113 mismatches reveals many duplications of the
mismatch patterns. For example, the annotator
marked a word 𝑝(· | ·, ·), which refers to “a pa-
rameterized predictive distributions” in the correct
annotation as 𝑝(· | ·), which refers to “a parameter-
ized true distribution” 19 times. By excluding such
duplications, we found that the 113 mismatches
can be categorized into 40 patterns, of which 25
patterns were affix type mismatches. Most of them
can be distinguished easily by their appearance
(e.g., annotating 𝑝(· | ·, ·) as 𝑝(· | ·)). Apparently,
many of these cases are mistakes or are the result of
a misunderstanding of the concept of the affix types

for Annotator 3. In the remaining 15 patterns, 10
are exactly the same mismatches made by Annota-
tor 2. This finding indicates that choosing the most
suitable mathematical description as an identifier
D was the most difficult for the document.

5.2 Analyses on the Annotation and Notable
Phenomena in the Target Document

The dictionary we created for the target document
consists of 104 items within 40 entries. We counted
items for each entry (identifier) in the dictionary
(Figure 3). Herein, 18 entries out of 40 have two or
more items. This finding indicates that about half of
the identifiers in the documents have ambiguities on
their meanings and the readers must disambiguate
to perform the grounding of formulae. The entry
with the greatest number of items in the document
was 𝑡 in regular font. Concretely, it has 13 meanings
in the single document (see Table 2).

Figure 4 portrays a plot of the positions of iden-
tifier appearances and annotated items in the dictio-
nary. Biases are readily apparent in the plot. The
trends of referred mathematical concepts, which are
sort of scopes, differ from section to section. For
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Figure 3: Number of items for each entry in the dictio-
nary. In the paper, identifier 𝑡, 𝑥, 𝑝 are used for 13, 10,
9 meanings respectively.

example, the scope of identifier 𝑥 changed clearly
at the beginnings of §3.2, §3.5, §3.6, and §5.1 in
the target document. Moreover, some identifiers
are used in the same meaning independent of such
trends. The scope for 𝑡 cannot be seen so clearly
compared to 𝑥. The mathematical concepts referred
by identifier D, which is the most arguable one in
the document, switch back and forth several times.
Overall, as we mentioned, the usage of a notation is
not constant in the paper but in fact so flexible that
the meaning can change even in a single paragraph.

Incidentally, the target document includes several
noteworthy sentences (Simeone, 2018). In the
beginning of the article, the author of the paper
states the following:

Throughout, we use Roman font to denote random variables
and the corresponding letter in regular font for realizations.
(Simeone, 2018)

This is a meta-declaration about the font usage in
formulae throughout the article. The annotators
had to keep this declaration in mind to distinguish
differences between variables in Roman font and in
regular font.

6 Future Work

We made a long annotated paper and show that the
flexibility of the mathematical notation is high in
actual STEM literature. Moreover, we could check
the feasibility of our task direction of the grounding
of formulae. The number of annotated papers for the
grounding needs to be increased because a single
paper is naturally biased. However, the entirely

manual annotation costs too much to enhance the
size of the resource in the same way. Therefore,
we will work on partial automation of the process
first. With the combination of the partial automatic
method of the grounding and manual annotation by
humans, we will be able to efficiently enlarge the
resource. Furthermore, we will develop an entirely
automated grounding method, including the third
step, i.e., the part of associating the groups with
text descriptions or external knowledge, for various
MLP applications.
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