@inproceedings{wu-hao-2020-cross,
title = "Cross-sentence Pre-trained Model for Interactive {QA} matching",
author = "Wu, Jinmeng and
Hao, Yanbin",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.666/",
pages = "5417--5424",
language = "eng",
ISBN = "979-10-95546-34-4",
abstract = "Semantic matching measures the dependencies between query and answer representations, it is an important criterion for evaluating whether the matching is successful. In fact, such matching does not examine each sentence individually, context information outside a sentence should be considered equally important to the syntactic context inside a sentence. We proposed a new QA matching model, built upon a cross-sentence context-aware architecture. An interactive attention mechanism with a pre-trained language model is proposed to automatically select salient positional answer representations that contribute more significantly to the answer relevance of a given question. In addition to the context information captured at each word position, we incorporate a new quantity of context information jump to facilitate the attention weight formulation. This reflects the amount of new information brought by the next word and is computed by modeling the joint probability between two adjacent word states. The proposed method is compared to multiple state-of-the-art ones evaluated using the TREC library, WikiQA, and the Yahoo! community question datasets. Experimental results show that the proposed method outperforms satisfactorily the competing ones."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-hao-2020-cross">
<titleInfo>
<title>Cross-sentence Pre-trained Model for Interactive QA matching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jinmeng</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanbin</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Semantic matching measures the dependencies between query and answer representations, it is an important criterion for evaluating whether the matching is successful. In fact, such matching does not examine each sentence individually, context information outside a sentence should be considered equally important to the syntactic context inside a sentence. We proposed a new QA matching model, built upon a cross-sentence context-aware architecture. An interactive attention mechanism with a pre-trained language model is proposed to automatically select salient positional answer representations that contribute more significantly to the answer relevance of a given question. In addition to the context information captured at each word position, we incorporate a new quantity of context information jump to facilitate the attention weight formulation. This reflects the amount of new information brought by the next word and is computed by modeling the joint probability between two adjacent word states. The proposed method is compared to multiple state-of-the-art ones evaluated using the TREC library, WikiQA, and the Yahoo! community question datasets. Experimental results show that the proposed method outperforms satisfactorily the competing ones.</abstract>
<identifier type="citekey">wu-hao-2020-cross</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.666/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>5417</start>
<end>5424</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-sentence Pre-trained Model for Interactive QA matching
%A Wu, Jinmeng
%A Hao, Yanbin
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G eng
%F wu-hao-2020-cross
%X Semantic matching measures the dependencies between query and answer representations, it is an important criterion for evaluating whether the matching is successful. In fact, such matching does not examine each sentence individually, context information outside a sentence should be considered equally important to the syntactic context inside a sentence. We proposed a new QA matching model, built upon a cross-sentence context-aware architecture. An interactive attention mechanism with a pre-trained language model is proposed to automatically select salient positional answer representations that contribute more significantly to the answer relevance of a given question. In addition to the context information captured at each word position, we incorporate a new quantity of context information jump to facilitate the attention weight formulation. This reflects the amount of new information brought by the next word and is computed by modeling the joint probability between two adjacent word states. The proposed method is compared to multiple state-of-the-art ones evaluated using the TREC library, WikiQA, and the Yahoo! community question datasets. Experimental results show that the proposed method outperforms satisfactorily the competing ones.
%U https://aclanthology.org/2020.lrec-1.666/
%P 5417-5424
Markdown (Informal)
[Cross-sentence Pre-trained Model for Interactive QA matching](https://aclanthology.org/2020.lrec-1.666/) (Wu & Hao, LREC 2020)
ACL