Towards Transparent and Explainable Attention Models

Akash Kumar Mohankumar, Preksha Nema, Sharan Narasimhan, Mitesh M. Khapra, Balaji Vasan Srinivasan, Balaraman Ravindran


Abstract
Recent studies on interpretability of attention distributions have led to notions of faithful and plausible explanations for a model’s predictions. Attention distributions can be considered a faithful explanation if a higher attention weight implies a greater impact on the model’s prediction. They can be considered a plausible explanation if they provide a human-understandable justification for the model’s predictions. In this work, we first explain why current attention mechanisms in LSTM based encoders can neither provide a faithful nor a plausible explanation of the model’s predictions. We observe that in LSTM based encoders the hidden representations at different time-steps are very similar to each other (high conicity) and attention weights in these situations do not carry much meaning because even a random permutation of the attention weights does not affect the model’s predictions. Based on experiments on a wide variety of tasks and datasets, we observe attention distributions often attribute the model’s predictions to unimportant words such as punctuation and fail to offer a plausible explanation for the predictions. To make attention mechanisms more faithful and plausible, we propose a modified LSTM cell with a diversity-driven training objective that ensures that the hidden representations learned at different time steps are diverse. We show that the resulting attention distributions offer more transparency as they (i) provide a more precise importance ranking of the hidden states (ii) are better indicative of words important for the model’s predictions (iii) correlate better with gradient-based attribution methods. Human evaluations indicate that the attention distributions learned by our model offer a plausible explanation of the model’s predictions. Our code has been made publicly available at https://github.com/akashkm99/Interpretable-Attention
Anthology ID:
2020.acl-main.387
Volume:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Month:
July
Year:
2020
Address:
Online
Editors:
Dan Jurafsky, Joyce Chai, Natalie Schluter, Joel Tetreault
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4206–4216
Language:
URL:
https://aclanthology.org/2020.acl-main.387
DOI:
10.18653/v1/2020.acl-main.387
Bibkey:
Cite (ACL):
Akash Kumar Mohankumar, Preksha Nema, Sharan Narasimhan, Mitesh M. Khapra, Balaji Vasan Srinivasan, and Balaraman Ravindran. 2020. Towards Transparent and Explainable Attention Models. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4206–4216, Online. Association for Computational Linguistics.
Cite (Informal):
Towards Transparent and Explainable Attention Models (Mohankumar et al., ACL 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.acl-main.387.pdf
Video:
 http://slideslive.com/38929301
Code
 akashkm99/Interpretable-Attention +  additional community code
Data
GLUEIMDb Movie ReviewsSNLISST