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1. INTRODUCTION

We have accesss to many collections of time-stamped documents. For example,
email messages have a header giving the time and date they were sent and new
articles typically come annotated with the date they were written or published.
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Despite the existence of such collections, traditional information retrieval sys-
tems often do not exploit temporal information. By remaining temporally ag-
nostic, strictly content-based systems fail to recognize subtopic or ambiguous
structures in the query results, which may be reflected in the temporal dis-
tribution of documents that the query retrieves. Consider the example of the
query “iraq war” submitted to a news corpus. A strictly content-based system
will return a ranked list with documents discussing the 1991 and 2003 con-
flicts, without distinguishing them. Ideally, we would like the system to detect
that two temporal clusters of documents exist in the retrieved set of documents.
Temporally biased queries occur frequently in both standard collections and the
on web [Li and Croft 2003; Diaz and Jones 2004].

If we can understand the temporal behavior of a query, we can automate the
decision of whether to elicit relevance feedback, or modify an information re-
trieval system in other ways. We may also be able to use the temporal properties
of the query result-set to diagnose the quality of the retrieval.

We propose distinguishing three temporal classes of queries. The first query
type describes queries which are atemporal, taking place at any time. For
these queries, the ideal relevance metric would be content based. The sec-
ond query type describes queries which are temporally unambiguous, taking
place at a specific period in time. For these queries, the ideal relevance met-
ric would combine content and temporal information. The third query type
describes those which are temporally ambiguous: taking place during one of
several possible episodes. For this query type the ideal relevance metric would
involve identifying the episodes, finding characteristic, or earliest documents
within each episode, and possibly eliciting relevance feedback over the temporal
domain.

In addition, we investigate the role of time when the system is ignorant of the
true class or temporal distribution of a query. To this end, we consider the task of
precision prediction. A key missing component in information retrieval systems
is self-diagnostic tests to establish whether the current system can provide
reasonable results for a given query on a document collection. In a language
modeling retrieval system, content-based methods exist for predicting system
performance given a query [Cronen-Townsend et al. 2002]. We expand on this
work by adding time to the content features. We show that adding temporal
features to a regression increases the predictive power.

This article is structured as follows: We begin in Section 2 by describing a
probabilistic framework for reasoning about the temporal dimension of a query.
These representations can be considered as the temporal analogs of query lan-
guage models. We have found it helpful to extend temporal profiles by exam-
ining certain features of them. Our feature set is described in Section 3. Our
dataset is described in Section 4. Given our feature-based representation, we
can begin to classify queries into temporal types, to help identify those which
would be good candidates for interactive disambiguation. We do this by first
defining a set of temporal query classes in Section 5. In Section 6, we describe
how we hand-labeled queries with the temporal classes atemporal, temporally
ambiguous and temporally unambiguous. Then, using the features described in
Section 3, we demonstrate the successful classification of queries in Section 7.
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In Section 8, we describe the regression and classification algorithms we use
for precision prediction. In Section 8.4, we show that we can improve the pre-
diction of a query’s average precision by taking into account temporal features.
We conclude by describing a system for eliciting user feedback for temporally
summarizing and disambiguating queries in Section 9.

The precision prediction experiments in this article expand results reported
in Diaz and Jones [2004]. The temporal classification experiments (Section 7)
and timeline visualizations (Section 9) have not previously been published.

2. TEMPORAL PROFILES

Our goal is to model the period of time relevant to a given query. For example,
for the query “elections” our model would ideally give greatest weight to the
days on which the most important elections occur, and smaller but non-zero
weight to the days preceding elections, when political speeches may be made,
and following elections, when votes may be tallied.

We have a document collection with time-stamps at our disposal. We use news
stories from TREC corpora. Each document is annotated with a time-stamp as
part of its header, corresponding to the date the document was published. We
use the creation date of the document as a proxy for the date of the events
referred to in the document. This is a reasonable assumption for news stories.
When the time-stamps are unavailable, or for other types of text data, it may be
useful to analyze the text in the document for date references [Mani and Wilson
2000]. For example, the content of the documents may contain text referring to
relative dates such as “yesterday” or “next month”, or absolute dates such as
“September 11th, 2001”. Using these dates we could refine our estimate of the
day the document is most relevant. For this work, however, we restricted our
attention to the date of publication of the document.

Given the document collection with time-stamps, one way to build the model
would be to count documents containing the query words, assigning weight to
each day on the basis of that count. In Figure 1, we see a simple frequency-based
model for the queries “elections” and “iraq war” in a corpus of documents from
1986 through 2004.1

We notice several things about this model. First, for a day with no documents
containing a query word, the frequency is zero. However, no documents may ap-
pear on a given topic, due to holidays, other news events gaining precedence,
or vagaries about publication times near midnight, or across different time-
zones. It may still be reasonable to assume that a day is relevant to a query,
if adjacent days are relevant to the query. For this reason we smooth across
adjacent days, as we will describe in more detail in Section 2.3. Secondly, this
frequency-based model gives weight to days with documents containing the
term, regardless of how relevant those documents are. For example, we may
suspect that documents in 1991 and 2003 are more relevant to the query “iraq
war” than documents containing one or more of the terms in the mid-90s, but
the document frequency model does not capture this. In Section 2.1, we describe

1This corpus collects documents from Tipster disks 1-5 (LDC93T3A), the English Gigaword

(LDC2003T05), and HARD 2004(LDC2005T28).

ACM Transactions on Information Systems, Vol. 25, No. 3, Article 14, Publication date: July 2007.



4 • R. Jones and F. Diaz

Fig. 1. Number of documents per day, for the queries “elections” and “iraq war” in a collection con-

sisting of documents from 1986 through 2004. Histograms generated using the top 1000 retrieved

documents.

a way of incorporating document relevance into the model. Finally, we should
take into account the overall rate of documents occurring on a given day. We do
this by smoothing with the background model, as described in Section 2.2.

2.1 Document Relevance Based Timeline

In a language modeling retrieval context [Croft and Lafferty 2003], we rank the
documents in the collection according to their likelihood of having generated
the query:

P (Q |D) =
∏
w∈V

P (w|D)qw . (1)

Here, Q is the current query, D is the current document, V is the entire vo-
cabulary of words in the collection and qw is the number of times the word w
occurs in the query. A thorough review the language modeling approach can be
found in other literature [Croft and Lafferty 2003].

We are interested in describing the temporal nature of a query using a prob-
ability distribution over days. We refer to this distribution as a temporal profile
of the query. Formally, we would like to estimate the distribution P (t|Q) where
t is the day relevant to the searcher. Since this information is not present in
the query, we encode the probability of the searcher selecting a specific date if
the search engine provided such a capability.

We adopt a relevance modeling solution to this estimation problem [Lavrenko
and Croft 2001]. That is, we want to look at the temporal information each of the
top N documents provide and weight this information according to the docu-
ment’s probability of relevance, P (Q |D). Thus we look at the first R documents
retrieved, as a proxy for the set of relevant documents, and weight each by the
estimated relevance. A schematic of this approach is shown in Figure 2. The
formula for retrieving the top R documents was given in Formula 1.

Our temporal query model is initially defined as

P̃ (t|Q) =
∑
D∈R

P̃ (t|D)
P (Q |D)∑

D′∈R P (Q |D′)
(2)
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Fig. 2. We retrieve the R top-ranked documents for a query q, then place them along a timeline

according to the timestamp, to generate the initial temporal for q.

where R is the set of top N documents. Our granularity is on the day scale; that
is, the value of t is a single day. The first factor in this summation represents the
temporal information we have about the document. We represent the temporal
information of the document as a distribution over dates. Recalling P (Q |D) is
the document retrieval score, we note that the second factor in this summation
is merely the normalized retrieval score.

In our experiments, the temporal information about a document is extracted
from the document timestamp. Because each document contains a unique
timestamp, our model reduces to a dirac delta on the day of timestamp,

P̃ (t|D) =
{

1 if t is equal to the document date, tD

0 otherwise
(3)

In Figure 3(a) we see the timelines built using document relevance. We see
that for the query “iraq war” the documents in 1991 appear to be more relevant
than the documents in the mid-1990s, leading to greater probability mass in
that part of the temporal profile.

2.2 Smoothing by Using Background Temporal Model

The overall distribution of documents in our collection, the background model,
provides useful information about the general characteristics of term frequency
and document frequency over dates, independent of the query we are modelling.
Using this background model we can improve our improve our probability es-
timates using background smoothing. Background smoothing plays two roles.
First, background smoothing handles potential irregularities in the collection
distribution over time. For example, certain dates may have a large number of
articles compared to others. Second, background smoothing replaces zero prob-
ability events with a very small probability, allowing us to assign a very small
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Fig. 3. Probability of relevance of each day, for the queries “elections” (left) and “iraq war” (right)

on documents from 1986 through 2004.

likelihood of a topic being discussed on days where we have no explicit evidence.
We use the distribution of the collection over time as a background model. This
collection temporal model is defined by

P̃ (t|C) = 1

|C|
∑
D∈C

P̃ (t|D), (4)

where C is the set of all documents in the collection.
Our estimate can then be linearly interpolated with this reference model

such that

P ′(t|Q) = λP̃ (t|Q) + (1 − λ)P̃ (t|C) (5)

where λ is a smoothing parameter that we set to 0.9 after initial experiments.
We see in Figure 3(b) that background smoothing effectively adds non-zero mass
to all days in the distribution.

2.3 Smoothing Across Adjacent Days

Since our model is discrete at the level of a single day, and news stories on a
single topic may occur over a period of several days, we smooth our estimate
of the model for a single day with the model for adjacent days. These kinds of
smoothing techniques have been explored in the field of time series analysis. We
use simple moving average smoothing. The smoothed estimate for a particular
day is defined according to the previous p days,

P (t|Q) = 1

φ

φ−1∑
i=0

P ′(t − i|Q). (6)
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Fig. 4. Comparing the profiles for “poaching” and “hostage taking” we see that “hostage taking”

appears to be relatively more episodic. For reference, we also show the profile generated from the

entire document collection.

In our experiments, the period, φ, is always 14, smoothing the probability for
a day with the 14 preceding days, but not subsequent days. This type of ret-
rospective smoothing is common in fields such as market analysis where only
historic information is available. Improvements could be made by smoothing
with days both before and after the reference day or preferentially weighting
the reference day. In general, the selection of φ should depend on the tempo-
ral granularity of the topic. For example, some topics will span only a few days
while others span several months. We assume that, for the most part, the topics
we consider occur at a granularity consistent with our smoothing parameter.

The distribution P (t|Q) in Eq. 6 is our final estimate of the temporal profile.
In Figure 3(c), we see the final smoothed models for the queries “election” and
“iraq war”.

3. FEATURES OF TEMPORAL PROFILES

In Section 2, we described the estimation of temporal profiles. Figure 4 de-
picts the temporal profiles for the queries “poaching” and “hostage taking” over
the AP88-89 corpus. The profile for “hostage taking” appears relatively more
episodic, with each episode presumably corresponding to a single real-world
hostage taking event. “Poaching” appears relatively more uniform. In this sec-
tion, we will define a set of features for discriminating between temporal pro-
files. These features will be used both for characterizing the temporal type of a
query’s profile, in Section 7, as well to predict the precision of queries, in Section
8.4. While not exhaustive, this set of features captures, in our opinion, the most
important temporal aspects of temporal profiles.

Each feature has a different numerical range. After generating the features,
we normalize them by shifting the minimum to zero and scaling by the range,
to give features which lie between zero and one. In the descriptions of features,
we will refer both to the raw feature values, and these normalized values.

3.1 Kullback–Leibler Divergence from the Collection Distribution

In language model based information retrieval, a query’s “clarity” is rank-
correlated with the effectiveness of the query at retrieving a precise topic

ACM Transactions on Information Systems, Vol. 25, No. 3, Article 14, Publication date: July 2007.



8 • R. Jones and F. Diaz

[Cronen-Townsend et al. 2002]. This content clarity measure assumes that
the distribution of words in documents retrieved for a good query will be dis-
tinct from the background distribution. The clarity measure is defined as the
Kullback–Leibler (KL) divergence between the query language model P (w|Q)
and the collection language model. Formally, the clarity score is defined as,

DKL(P (w|Q), P (w|C)) =
∑
w∈V

P (w|Q) log

(
P (w|Q)

P (w|C)

)
. (7)

A larger KL divergence indicates a clearer query. We will refer to this clarity
measure as content clarity.

We propose an analog to content clarity for the temporal domain, by measur-
ing the difference between the distribution over time of documents retrieved in
response to a query, and the distribution over time of documents in the collec-
tion as a whole. This can be quantified by taking the KL divergence between
the collection temporal model and the query temporal model. That is,

DKL(P (t|Q), P (t|C)) =
T∑

t=1

P (t|Q) log

(
P (t|Q)

P (t|C)

)
. (8)

We will refer to this feature as temporal KL divergence, or temporalKL. The
spiky nature of our example query, “hostage taking” (Figure 11) is clearly cap-
tured by this feature which has the value 0.57, which normalizes to 0.126 with
respect to our collection. At the same time, the relatively a-temporal query,
“poaching”, exhibits a much lower KL divergence, with a KL of 0.247, which
normalizes to 0.000 with respect to our collection.

Note that although temporalKL captures the deviation of documents re-
trieved for a query from the general distribution of documents over time, it
may not allow us to distinguish between queries corresponding to events tak-
ing place at a single time, (such as “turkish earthquake 1999”) and temporally
ambiguous queries (such as “iraq war”).

3.2 Autocorrelation

While the KL divergence gives us a test of similarity to the temporal background
model (P (t|C)), it does not provide a measure of the randomness of the query
time series. To test this, we use the first-order autocorrelation of the time series,

r1 =
T−1∑
t=1

(P (t|Q) − 1
T )(P (t + 1|Q) − 1

T )∑T
t=1(P (t|Q) − 1

T )2
. (9)

The autocorrelation of a uniform distribution is r1 = 0. When queries contain
a strong inter-day dependencies, the autocorrelation value will be high, sug-
gesting a structure to the time series. For example, autocorrelation is high in
cases where a high P (t|Q) tends to predict a high P (t +1|Q); likewise with low
values. Such behavior indicates that there is predictability to the time series.

In Figure 11, the bursty episodes indicative of hostage events contribute to a
higher autocorrelation of 0.938, which normalizes to 0.719 with respect to our
collection. Similarly, the relative uniformity of the “poaching” query leads to a
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smaller autocorrelation of 0.921, which normalizes to 0.611 with respect to our
collection.

3.3 Statistics of the Rank Order of P(t |Q)

Another way to capture the dynamics of the time series is to consider how much
of the probability distribution is contained in the peaks, and how much in the
low-probability regions. In order to do this, we can measure the kurtosis of
the time series, which is high for distributions with a sharp peak, and lower
for distributions with less extreme values. In order to focus on the peaks as a
single concept, we consider the rank order of the time series. In these cases, we
reorder the days in decreasing P (t|Q). We then construct a distribution over
ranks where, for rank ρ, P (ρ|Q) is defined as the value of P (t|Q) for the day
at that rank. We now consider statistical properties of P (ρ|Q). Specifically, we
look at the kurtosis of the rank order. The kurtosis is defined by,

kurtosis = μ4

μ2
2

=
∑

P (ρ|Q)(ρi − μ)4

[
∑

P (ρ|Q)(ρi − μ)2]2
, (10)

where μi is the ith central moment and μ is the mean. The kurtosis measures
the “peakedness” of the curve.

As with temporalKL, the peaked nature of Figure 11 is represented in this
feature. However, in this case, we inspect the rank ordered distribution, pro-
viding us a measure based on a smoothed representation of the peaks.

3.4 Burst Model

An alternative measure for temporal structure follows from Kleinberg’s burst
model [Kleinberg 2002]. Because several new features will be derived from this
model, we present a brief overview of the relevant aspects. The burst model
assumes that a hidden state machine generates some number of documents
each day.2 The actual number of documents produced is dependent on the state
of the machine on that particular day. In our case, we would assume that there
are two states: idle and event. We present a diagram of this model in Figure 5.
In the idle state, documents are produced in batches so that, if the machine
never leaves the event state, it generates documents uniformly across the time
span. In the event state, the machine generates significantly more documents
than in the idle state. These generation probabilities are analogous to a hidden
Markov model’s output probabilities. We hand-tuned the model parameters to
a scaling parameter of s = 2 and the state-change parameter γ = 1.1.

A second important aspect of the burst model deals with the probability of
transition between states. In our situation, this probability can be viewed as the
“momentum” for the machine staying in a state. In Figure 5, such probabilities
would be associated with the arrows. These probabilities are analogous to a
hidden Markov model’s transition probabilities.

2In particular, we use Kleinberg’s B2
s automaton.
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Fig. 5. Two-state model used for generating burst features. The idle state generates documents

in a manner consistent with a uniform distribution over time. The event state generates many

more documents per day than the idle state. Further parameters control the probability of moving

between the states. This property controls the smoothness of the transitions between states. The

burst model can be considered as a hand-tuned hidden Markov model.

Fig. 6. The top frame shows the distribution of retrieved documents over the time span of the

collection (one rectangle=one document). Documents highlighted in red provide evidence of an event

or “burst”. The bottom frame shows a model of the burstiness of the distribution. The burst model

considers each day in the time span as either being relevant to a burst (such a day is in the “event”

state) or not relevant to a burst (such a day is in the “idle” state). The highlighted sequence of states

represents a model of the transition between event and idle states over the course of the time span.

We should note here that we are dealing with the original document sample
(the top N retrieved documents) used to estimate the temporal profile, not any
estimated model, P (t|Q), described in Section 2. That is, we look at the actual
number of documents occurring on a day as opposed to a probability.

As mentioned, the burst model can be compared to a hidden Markov model.
The major difference is that the burst model specifies all of the parameters usu-
ally learned in a hidden Markov model (i.e., there is no “learning” in the burst
model). While we could certainly imagine training an HMM for our task, we
were interested in gross features of a potentially inaccurate model as opposed
to finding the true event and idle state decoding.

We are interested in the state transition sequence most likely responsible for
the document distribution. As with HMMs, we can use dynamic programming to
efficiently calculate the values for all such sequences. We consider the sequence
with the highest value to be the most likely sequence. Figure 6 shows a decoding
for a toy example.

ACM Transactions on Information Systems, Vol. 25, No. 3, Article 14, Publication date: July 2007.
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Fig. 7. Number of episodes. This feature of the burst decoding counts the number of sequences of

days that the model predicts are in the burst state. In this example, we detect 2 episodes.

Fig. 8. Average time in the idle state.This feature of the burst decoding average number of days

that the decoding is in the idle state before entering the event state. In this example, we detect

three sequences of idle state days of lengths 3, 5 and 3. On average, then, we spend 3.67 days in

the idle state.

Since we hypothesize that the eventfulness of a topic will be a good feature,
we consider three measure of temporal structure from the decoding sequence.
The first feature merely counts the number of episodes in the decoding. We
refer to a sequence where the machine is only in the event state as an episode.
A graphical depiction of this feature is presented in Figure 7. The second feature
measure the average amount of time in the idle state. That is, we take the all
of the sequences where the machine is only in the idle state and compute the
average length. The average length of time the machine is in the idle state
gives a measure of the overall significance of the topic over the time span in
the collection. A graphical depiction of this feature is presented in Figure 8.
The third feature measures the quality of the decoding by inspecting how much
we prefer the given decoding over one which does not include transitions into
the event state. That is, we compare the given decoding to one in which there
are no transitions into the event state. Kleinberg refers to this as the weight of
a burst. We expect the burst weight to show the “intensity” of the time profile
when relevant documents are found. This may reflect queries corresponding
to high-intensity situations which are distinct from the background model. A
graphical depiction of this feature is presented in Figure 9.

The burst model for the profile for “poaching” (Figure 10) spends most of the
time in the idle state and has few transitions into the event state. Meanwhile,
the model for “hostage taking” (Figure 11) transitions 5 times and spends, on
average, half as much time in the idle state. Combined with the intensity mea-
sure, these features point to a more temporally structured query.

4. DATA

We worked with two types of data in this work: news articles and web search
query logs. In this section we describe these datasets.

ACM Transactions on Information Systems, Vol. 25, No. 3, Article 14, Publication date: July 2007.
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Fig. 9. Burst weight savings. For each sequence of days predicted to be in the event state, we

compare the confidence in the prediction of an event sequence to the confidence in the prediction

of an idle sequence. The differences between these confidences are then averaged to obtain our

feature value. In this example, we have two event sequences whose confidence we will compare to

an idle sequence for the same days (depicted in grey).

Fig. 10. Temporal profile and raw and normalized feature values for the query “Poaching” over

the AP88-89 collection. We normalized feature values by shifting and scaling them to lie between

zero and one. This query had the minimum score for both temporal KL and number of transitions

into the event state, and so the scores for both of these features are zero after normalization.

Fig. 11. Temporal profile and raw and normalized feature values for the query “Hostage Taking”

over the AP88-89 collection. We normalized feature values by shifting and scaling them to lie

between zero and one.

4.1 TREC Corpora

We use standard TREC corpora for document-level experiments [Voorhees and
Harman 2001]. The TREC corpora often consist of newswire articles contain-
ing time and date stamps. However, these standard collections often contain
properties undesirable for our experiments. For examples, there are often large
subcollections of documents missing temporal information. Others have highly
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nonuniform temporal distributions of documents. While these issues suggest
interesting research questions, we decided to focus on temporally uniform col-
lection with no missing temporal data.

We chose three news collections for our experiments. We used the Associ-
ated Press collection from Tipster disks 1 and 2 (AP), the Wall Street Journal
Collection also from Tipster disks 1 and 2 (WSJ), and the combined New York
Times, Associated Press, Xinhua News Service collections from the AQUAINT
disk (AQUAINT). Unless otherwise noted, the Lemur language modeling toolkit
was used for text retrieval [Allan et al. 2003]. Query likelihood ranking was per-
formed and document models were smoothed using Jelinek–Mercer smoothing
( λ = 0.6). All documents and queries were stopped using the SMART stopword
list and stemmed using the Krovetz stemmer [Salton 1971; Krovetz 1993]. Dates
were extracted from document identifiers.

Both the AP and WSJ collections have roughly 100 TREC queries associated
with them. Because the queries were constructed with respect to the larger
collections, we often found queries with few relevant documents in our AP and
WSJ collections. Therefore, we only used queries with more than 15 relevant
documents in our collections.

4.2 Weblog Corpus

In addition to the TREC experiments, we were interested in the use of temporal
profiles for classifying web search logs. In these experiments, we use a web
search log from an ISP for March 2003–June 2003. The logs represent a time-
stamped record of all of the search sessions by users during this period. Here, a
session refers to a set of queries issued by a single user segmented when a gap
of 10 minutes occurs between queries. For example, if a user issued the queries
“salsa”, then “salsa dancing”, and finally “salsa new york” without 10 minute
gap between queries, then the pseudo-document here is the concatenation of
these strings date-stamped with the day on which they occurred. Because this
corpus consisted of a huge number of very short documents, a simple relevance
ranking based on Jaccard distance was used [Manning and Schütze 1999]. We
manually constructed a set of queries was derived for the search log corpus, with
24 queries in each of the three classes. The queries were constructed without
reference to the documents retrieved. These queries are publicly available.3 All
queries were stemmed and stopwords were removed.

5. TEMPORAL CLASSES

We construct the temporal profile of a query by examining the distribution of the
documents it retrieves across the timespan of the corpus. Figure 11 shows the
temporal profile for the query “hostage taking”. We gave details of how the tem-
poral profiles are constructed in Section 2. Note that the profile contains several
spikes, which may correspond to bursts of documents appearing at particular
times in the span of the collection. The fact that there are multiple bursts sug-
gest that there may be multiple real-world events generating the documents,
which means there is some ambiguity in the query about which real-world event

3http://www.cs.cmu.edu/∼rosie/data/2006TOIS/.
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Fig. 12. Temporal profiles of two atemporal queries in two collections. On the left, the temporal

profile of the query “poaching” (TREC Topic 77) estimated from the AP 1988 and 1989 collection. On

the right, the temporal profile of the query “deer” estimated from a web search session log for March

2003–June 2003. Notice how the retrieved documents are more or less evenly distributed across the

collection timespan. In both graphs, the background collection distribution is plotted as a reference.

is referred to. In this section, we define three temporal classes of a query by dis-
tinguishing three common patterns of document profiles retrieved in response
to queries. We describe these classes below.

5.1 Atemporal Queries

Atemporal queries are relatively time-invariant with respect to the document
collection. For example, the query “opinions about the death penalty” focuses
on a topic which is not sensitive to time. Atemporal queries correspond to a
topic which is ongoing. While the details of documents relevant to the query
may change over time, we expect their distribution in time to be similar to the
overall distribution of documents. When overall document volume increases,
we expect the volume of documents relevant to atemporal queries to increase
too. Figure 12 shows the time-relevance profile of two queries, “poaching” and
“deer”, in two collections. These are topics of perennial interest, and thus no
structure can be seen in the profiles.

5.2 Temporally Unambiguous Queries

Temporally unambiguous queries are relatively distinct with respect to the time
dimension. For example, the query “turkish earthquake 1999” refers to a spe-
cific span in time. Figure 13 shows the profiles for two queries, “earthquake in
armenia” and “matrix”. This profile suggests that the query refers to a specific
point or period in time. Note that a query is only temporally unambiguous with
respect to a specific collection. For example, if our web search log were extended
both forward and backward in time, several peaks in interest would exist (plac-
ing in into our third class). Similar behavior would exist if there were another
earthquake in Armenia in our collection. In addition, these examples demon-
strate the difference between unanticipated events such as natural disasters
and anticipated events such as a movie release. While not investigated in this
work, detecting these subclasses also might be useful.
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Fig. 13. Temporal profiles of two temporally unambiguous queries, “earthquake in armenia”

and “matrix”. In both cases, the retrieved set of documents seem to refer to a single event in

the collection. The temporal profile on the left also shows the behavior or an unexpected event

(a natural disaster). On the other hand, the temporal profile on the right depicts an anticipated

event (a movie release).

Fig. 14. Temporal profiles of two temporally ambiguous queries, “hostage taking” and “nba bas-

ketball playoffs”. The behavior of the profiles in both cases lies somewhere between the temporally

unambiguous and atemporal queries. While the temporally unambiguous queries contain a unique

peak, these profiles consist of multiple, shorter peaks. The existence of these peaks represents

possible sub-events of the query’s topic not found in atemporal profiles.

5.3 Temporally Ambiguous Queries

Lastly, temporally ambiguous queries refer to the combination of several events
and hence might be considered ambiguous if the user is looking for information
about a specific event. For example, the query “iraq war” may refer to either
the conflict in 1992 or the conflict in 2003. Figure 14 shows the profiles of
two queries, “hostage taking” and “NBA basketball playoffs”. Here, the profiles
have a less distinct temporal profile than the temporally unambiguous queries
but are nonetheless distributed quite differently from the temporal profile of
the entire collection. An interesting example not shown here is the subclass of
periodic queries.
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6. MANUAL CLASSIFICATION OF QUERIES INTO TEMPORAL CLASSES

In this section, we describe how we constructed labeled training and test sets
for the temporal classes described in Section 5. We also show how these classes
correlate with average precision where we have relevance judgments available.

6.1 Manual Classification of TREC ad-hoc Queries

Attempting to work with a standard set of queries, we used the TREC ad hoc
query sets. Since none of the queries in these sets were annotated with temporal
classes, they had to be hand-classified. We classified more than 50 queries using
the TREC topic descriptions. Annotators were not provided temporal profiles.
Specifically, annotators were asked to judge, based on the topic, description, and
narrative fields, whether a query was requesting multiple events, a single event,
or had no preference. The annotators labeled 18 common queries, and agreed on
13/18 of the common queries, for 72% agreement. On inspecting the documents
retrieved for the queries, we were better able to discern events underlying the
queries, and relabeled the queries on which the annotators disagreed. This
suggests that the topic, description and narrative field may not be sufficient to
identify how time-dependent a query is. A system for automatically identifying
when a query is temporally ambiguous may therefore be useful since users may
not be able to make this judgment themselves without inspecting documents.

Interestingly, we found that TREC ad hoc queries belonged only to the atem-
poral and temporally ambiguous classes; that is, queries either did not refer
to a specific event or referred to a set of events. Each of the AP and WSJ col-
lections had 51 associated queries (though not exactly the same 51 queries,
since we limited queries to those with 15 or more relevant documents in the
given collection). In the AP collection, 28 of these queries were atemporal; the
remaining 23 were temporally ambiguous. In the WSJ collection, 34 of these
were atemporal; the remaining 17 were temporally ambiguous. Examples of
classifications are the query “Airbus Subsidies” (TREC query 51) which was
manually classified as temporally ambiguous, and the query “U.S. Economics”
(TREC query 57) which was manually classified as atemporal.

This data provides us with a set of TREC queries for which relevance judge-
ments are available, classified into our temporal classes. We will examine the
average precision of these queries in Section 6.4. We give results of classifying
into these two classes in Section 7.2.

6.2 Augmented Query Set with Manually Constructed Temporally Unambiguous
Queries for the TREC Collection

In Section 5, we described three temporal classes, but we found only two of them
in the TREC ad hoc queries. We augmented the set of annotated TREC queries
with a collection of new, temporally unambiguous queries. This augmenting set
was generated from a list of natural disasters, deaths, and other single-event
queries from the time period of the corpora. An example of one of the temporally
unambiguous queries we added is “Dalai Lama wins Nobel Peace Prize”. The
addition of this query set gives us queries for all three classes defined over
the TREC ad hoc collection. We do not have relevance judgments for the third
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Table I. Average and Standard Deviation of Average Precision, Broken Down by Query

Temporal Class

AP WSJ

Class n x̄ s n x̄ s
temporally ambiguous 23 0.31 0.25 17 0.32 0.37

atemporal 28 0.29 0.38 34 0.27 0.41

In our datasets, atemporal queries have lower average precision on average, and a greater standard deviation

in their average precision. This may be because the temporally ambiguous queries we used deliberately

sought documents from a range of time periods.

class, temporally unambiguous queries, but we can perform retrieval with these
queries, and use the resulting profiles for three-way classification experiments.
We report results for classifying into these three classes in Section 7.3.

6.3 Novelty Queries Classified by Temporal Type

Another source of TREC queries is based on the AQUAINT news corpus which
covers the years 1996 through 2000. The TREC 2003 Novelty track developed
a set of 50 queries for this corpus which were classified as either “opinion” or
“event” queries by NIST labelers. The definitions used for these types were:

—Event topics are about a particular event that occurred within the time period
of the collection. Relevant information pertains specifically to the event.

—Opinion topics are about different opinions and points of view on an issue.
Relevant information takes the form of opinions on the issue reported or
expressed in the articles.

On inspection, the classes “opinion” and “event” corresponded well with our
classes “atemporal” and “temporally unambiguous”, respectively.4

We performed two-way classification experiments with these queries as well.
We report results classifying into these two classes with novelty queries in
Section 7.1.

6.4 Average Precision across Temporal Classes

Table I shows average precision scores, averaged across the queries in the two
temporal classes for which we had relevance judgments: temporally ambigu-
ous and atemporal queries. We find that in our datasets, atemporal queries
have lower average precision on average, and a greater standard deviation in
their average precision. This may be because the temporally ambiguous queries
deliberately sought documents from a range of time periods. We would expect
quite different results for relevance judgements from users unaware of the tem-
poral ambiguity in their query, and expecting documents referring to a single
incident.

4Since our definitions did not take into account the time period of the collection, the TREC Novelty

event queries are a subset of our “temporally unambiguous” queries.
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7. AUTOMATIC CLASSIFICATION OF QUERIES INTO TEMPORAL TYPES

In this section, we describe experiments on automatic classification of queries
into the three classes atemporal, temporally unambiguous, and temporally am-
biguous, on the basis of the time profiles of retrieved documents. The general
approach we employ here is to use supervised machine learning. We take a
sample of pre-classified queries, use a machine learning algorithm to learn a
rule that can be used to classify them, then apply that rule on a set of held-out
queries, and measure the rule’s accuracy.

We used the machine learning algorithm of decision tree induction, imple-
mented by the Weka Toolkit [Witten and Frank 1999], to learn a classifier and
to perform classification. The decision tree induction algorithm, introduced by
Quinlan [1993] greedily chooses features to add to the tree, based on their
discriminative power on the training sample. When no more discriminative
questions can be found, the majority class of the examples satisfying all of the
conditions is given, for each branching path in the tree. When using the learned
decision tree to classify new examples, the classification program starts from
the base of the tree, and check whether the test example satisfies the stated
condition. Each answer leads to a different branch in the tree, while when we
reach a leaf of the tree we assign the class that is represented there.

There are two baseline systems. The first baseline system classifies queries
with the majority class in the training set. That is, if the majority of the train-
ing set queries were of a particular class, this baseline would always predict
that class. The second baseline attempts to learn a classification based only
on the content clarity [Cronen-Townsend et al. 2002] of the query. Content
clarity experimentally is able to distinguish between topically unambiguous
and ambiguous queries. Nevertheless, content clarity provides a surprisingly
strong baseline. Because content clarity is also one of our features, this base-
line should demonstrate the contribution of the content clarity feature in the
composite system. Note that for the web search-log corpus, content clarity does
not have a clear analog because we are not using a language model retrieval
system. Therefore, it was removed from our feature set for these experiments.

In order to address small query sets, all our classification experiments use
ten-fold stratified cross-validation.

7.1 Results Automatically Classifying Novelty Queries: Temporally Unambiguous
and Atemporal

In our first task, we look at distinguishing between temporally unambiguous
and atemporal queries. These are the extrema of the temporal query types we
are modeling, and distinguishing between these two classes may be the easiest
of the problems we wish to address. The TREC Novelty queries match these
two types, and have a corresponding corpus of relevance-labeled documents, as
described in Section 6.3. The majority baseline is 56%, since 56% (28 out of 50)
of the novelty queries are in the class temporally ambiguous. The remaining 22
or 44% are in the class atemporal.

Table II shows the accuracy of the trained decision tree compared to the base-
lines. With accuracy of 62%, content clarity gives a 10% relative improvement
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Table II. Accuracy of A Decision Tree Trained

to Distinguish Atemporal From Temporally
Unambiguous Queries, Using the TREC

Novelty Collection

Accuracy

majority class .56

content clarity .62

temporal features .68

temporal features+content clarity .70

Table III. Accuracy of A Decision Tree Trained to

Distinguish Atemporal from Temporally Ambiguous
Queries. Experiments were Performed Separately on

the TREC AP and WSJ Collections

AP WSJ

majority class .54 .66

content clarity .54 .66

temporal features .71 .68

temporal features+content clarity .73 .73

over the majority-class baseline. It seems that content clarity provides some
indication of the temporal ambiguity of a query. Without temporal information,
it is surprising that content clarity says anything about distinguishing these
query classes. It is clear, though, that there are important aspects not measured
in the feature. Using temporal features alone, we get a relative improvement
of 21% over the majority baseline and 9% relative improvement using content
clarity aline. This improvement over content clarity suggests that temporal
features better capture aspects of the topics. Content and temporal features
can be exploited simultaneously to give an accuracy of 70%, a 25% relative
improvement over the majority baseline.

7.2 Ad hoc Queries: Temporally Ambiguous and Atemporal

As described in Section 8, TREC ad hoc queries naturally fell into the two classes
temporally ambiguous and atemporal. Table III shows results for the automatic
classification experiments. We see that while it is always the case that temporal
features are necessary to differentiate between these two classes, it is less clear
that they are sufficient; the improvement over the baseline is slight for WSJ.
Inspecting the queries falsely classified as temporally ambiguous, we noticed
queries whose temporal characteristics were more subtle. For example, queries
such as “reform of the us welfare system” or “what backing does the national
rifle association have” were misclassified. These are less a collection of events
than manifestations of popular or political interest. Looking at the temporal
profiles of these queries confirms this. The temporal profiles of these queries
rise and fall in the news according to popular or political opinion. We believe
that event-driven topics are better candidates for disambiguation than topics
whose temporal characteristics are indirectly the result of popular opinion. This
raises an interesting area of future work addressing the distinction between
these types of topics.
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Table IV. Accuracy for Decisions Trees Trained to Distinguish

Between All Classes on Both TREC Collections and a Web

Search Log

AP WSJ Search Log

majority class .38 .37 .27

content clarity .40 .45 —

temporal features .65 .45 .75

temporal features+content clarity .65 .43 —

The set of queries for the TREC collections are augmented by queries

constructed to be temporally unambiguous.

Fig. 15. Decision tree learned to classify queries in the web search log dataset (Table IV). Numbers

under the leaf nodes represent number of class instances correctly labeled. Each class has 24

instances. Most of the temporally unambiguous and atemporal queries are correctly classified

using only features of the burst model (burst weight and number of state transitions).

7.3 Temporally Unambiguous, Temporally Ambiguous, and Atemporal Queries

For our final classification experiments, we turn to the complete task of distin-
guishing between all three temporal categories of queries. We performed these
experiments over the augmented TREC ad hoc queries, and the web log queries,
using the labels we described in Section 6.

We see in Table IV that we can make substantial improvements from the
majority-class baseline for all collections. What is interesting is that much bet-
ter performance was achieved on the web search log data. There are several
explanations for this behavior. First, web searching behavior for the selected
temporally unambiguous queries is dramatically divergent. This is apparent
when we inspect the decision tree learned for the web search log set (Figure 15).
Almost all of the temporally unambiguous queries are correctly classified by the
conjunction of very large burst path cost savings (weight) and having fewer than
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two state transitions. The type of profile exhibiting this behavior will have one
high peak. Second, the web search behavior for the selected atemporal queries
is dramatically uniform. Again, inspecting the decision tree, we notice that a
large majority of the atemporal queries are correctly classified by low burst
path cost savings. It is the significantly better performance in these two classes
that explains the better overall performance. The performance on temporally
ambiguous queries is comparable with the other corpora.

Thus we find that we are able to classify queries into the three temporal
classes with much better accuracy than the baseline. This gives us a way of
triaging queries for different kinds of treatment. For example, we may wish to
provide a timeline for disambiguation for temporally ambiguous queries, while
for temporally unambiguous queries we may like to highlight the date of the
event peak.

This kind of triage will be most useful when we can also identify which
queries have high-quality or low-quality results using our default retrieval
methods. In the next section, we will examine predicting a query’s precision
using content clarity and the temporal features of the retrieved set.

8. PREDICTING A QUERY’S AVERAGE PRECISION

Cronen-Townsend et al. [2002] showed that content clarity correlates with av-
erage precision, when using the Spearman rank-correlation test. This allows an
information retrieval system to rank a set of queries by the likely quality of re-
sults. Low quality queries can be improved by further processing by requesting
feedback from the user. However, clarity does not permit the system to predict
the likely precision of any individual query, beyond a binary classification. In
this section, we analyze the Spearman rank correlation of temporal features
with average precision. We also build models to predict the average precision
of queries using a combination of temporal and content features, that is, using
the temporal features we described in Section 3 along with content clarity as a
feature describing the content. While any relationship between these features
and average precision may be nonlinear, we first perform linear regression.
This will allow us to compare the importance of features by examining their
coefficients. We then use our measures of temporal clarity along with content
clarity as input features to a neural network for predicting average precision.

For all experiments described in this section, we normalize the input features
to lie between zero and one, by shifting and scaling the values. We now define
a training and test collection, as well as performance measures. For these re-
trieval experiments, we use the TREC collection of news documents and queries
described in Section 4.

8.1 Spearman Rank Correlation

The Spearman rank correlation coefficient allows us to examine the relationship
between predictor and predicted variables, without assuming any particular
structure to that relationship. For example, with the Spearman rank correla-
tion coefficient, we can measure whether increases in content clarity lead to
increases in average precision, without assuming that these are, for example,
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Table V. Spearman Rank Correlation Coefficient for

Correlation with Average Precision, for Content Clarity, and

Our Proposed Temporal Features, for AP and WSJ.

Statistically Significant Rank-Correlations are Shown in Bold

Along with Their Significance Levels

AP WSJ

Feature R2 Prob R2 R2 Prob R2

autocorrelation 0.36 0.01 −0.05 0.72

burstAverageIdleTime 0.10 0.50 −0.02 0.87

burstWeightSavings 0.28 0.05 0.05 0.73

contentClarity 0.54 5.0e-05 0.50 2.0e-04
kurtosis 0.14 0.32 0.22 0.12

temporalKL 0.01 0.94 0.14 0.31

linear increases. Positive correlation using the Spearman rank correlation test
tells us that there is a relationship between the variables. However, it does
not tell us how to predict one variable from the other. The Spearman rank cor-
relation is also not defined over multiple variables simultaneously. Thus, we
cannot use it to find whether we can improve our understanding of the average
precision of a query by combining predictor variables.

8.2 Linear Regression

Linear regression allows us to combine multiple predictor variables, to pre-
dict linear changes in the average precision. That is, we are finding a linear
relationship between our predictor variables and average precision. The coeffi-
cients of the variables show us their relative importance in predicting average
precision, though two variables which are correlated may wind up with lower
coefficients. For this reason, we will also show the coefficients for each variable
when used in isolation for predicting average precision. Since linear regression
looks for linear relationships between variables, it is a stronger test with strong
assumptions about the relationship between variables. We are less likely to find
statistically significant correlations with linear regression than with Spearman
rank correlation, particularly when the underlying relationship is nonlinear.

8.3 Neural Networks

Neural networks allow us to model nonlinear relationships between combi-
nations of predictor variables. The hidden layers allow the representation of
subcombinations of features, which may aid with prediction. A neural network
outputs a prediction of average precision for any input, and we can then com-
pare the prediction with the actual average precision for a query. We measure
the difference between actual and predicted average precision.

8.4 Results of Spearman Rank Correlation of Features with Average Precision

Table V shows the Spearman rank correlation with average precision for each
feature in isolation. We see that the correlation of content clarity with average
precision is much higher than all other features, and that this correlation is sta-
tistically significant. This reproduces the results obtained by Cronen-Townsend
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Table VI. Correlation from Linear Regression: Average Precision

is the Dependent Variable

AP WSJ

Independent Variables Train Test Train Test

content clarity 0.33 0.21 0.41 0.36

temporal features 0.40 0.15 0.38 0.17

content + temporal features 0.71 0.52 0.75 0.60

Independent variables are content clarity, and our measures of temporal clar-

ity. Test correlation was found by cross-validation, by fitting the line using

training data, then measuring correlation with held-out test data. For the

row labeled “content + temporal features” we use all our temporal features,

as well as content clarity as inputs to the linear regression.

et al. [2002]. For our temporal features, the correlation is much lower, and for
most features the measure of correlation is not statistically significant. This
means that most of the temporal features are not predictive of average query
precision, when used in isolation. However, note that a combination of these
features may be predictive of average query precision. For the AP dataset, au-
tocorrelation was positively correlated with the rank of average query precision
at the 0.01 level, and burst weight savings was correlated at the 0.05 level. That
means these two features may contribute to an improved predictive model of
average precision, when combined with each other and content clarity, if they
are not redundantly correlated with one another.

8.5 Results of Linear Regression of Features against Average Precision

Table VI shows the correlation using linear regression lines between average
precision and measures of query clarity. Test correlation was found by cross-
validation, by fitting the line using training data, then measuring correlation
with held-out test data. Note that for both AP and WSJ, the combination of
content and temporal measures shows a much stronger correlation with aver-
age precision than content clarity or temporal features alone. This means that
our measures of temporal clarity contribute to the understanding of the likely
effectiveness of a query with respect to a corpus. Note also that the correlation
scores remain high when tested using cross-validation.

The variables with strong predictive power are shown in Table VII with
their coefficients for predicting average precision. The coefficients shown are
with ridge regression, which performs normalization and removes potentially
irrelevant features. This led to the best predictive results. To estimate the stan-
dard deviation of the coefficients, we performed pairs bootstrapping for 10,000
iterations, without normalization. Thus, these standard deviations give an up-
per bound on the uncertainty of the estimates of coefficient strength. Note that
while some of the features are unstable, we obtain high correlation scores, even
on a held-out set of data not used for fitting the regression lines.

Interestingly, the magnitude of the coefficient for content clarity is not the
largest. We find that temporalKL has a negative coefficient. This shows that
queries with temporal profiles very different from the background model are
likely to have low average precision. This suggests that queries which retrieve
documents from an unusual subset of days in the collection are likely to perform
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Table VII. Coefficients of Individual Features in Linear

Ridge Regression for Predicting Average Precision for

AP and WSJ Data. Also Shown is the Sample Standard

Deviation Over 10,000 Iterations of Bootstrapping

Pairs Linear Regression, Without Normalization

AP WSJ

Feature Coeff s2 Coeff s2

autocorrelation 0.43 0.22 −0.24 0.19

burstAverageIdleTime — 0.19 0.70 6.58

burstNumTransitions 0.19 0.19 1.0 8.23

contentClarity 0.97 0.34 0.96 0.13

kurtosis 0.28 0.31 — 0.21

temporalKL −1.3 0.45 −0.83 0.26

poorly. These may be good candidates for a relevance feedback interface that
highlights the days on which retrieved documents appeared, and allows the
user to select the appropriate timeframe. We discuss a possible interface of this
form in Section 9.

How do we explain the predictive performance of temporalKL, which does
not predict average precision when used in isolation, but which has a negative
coefficient in conjunction with the other features? We can infer that it explains
some parts of average precision which are not explained by the other features,
but only when we know the values of the other features.

8.6 Results of Neural Networks to Predict Average Precision

Neural networks can be used to learn nonlinear functions. We used the Weka
implementation of neural networks [Witten and Frank 1999]. Our target func-
tion is average precision. In all cases, we used one hidden layer. In the case of
content clarity only as an input feature, we used a single node in the hidden
layer. In all other cases we used three nodes in the single hidden layer. All input
features are connected to all nodes in the hidden layer. We used a learning rate
of 0.3 and momentum of 0.2, 10% validation set and 500 training epochs, with
early termination of training if the accuracy on the validation set grew worse
over 20 epochs. We used 80% of the data for training, 10% for validation, and
10% for testing.

As a baseline, we guessed the mean average precision over all queries. The
mean average precision was 0.28 over all queries on WSJ, and 0.30 over all
queries on AP. When we use this value for average precision for every query
in the test set, we can calculate how much each query deviates from this level
of average precision, and calculate root-mean squared error (error in terms
of difference between predicted and actual query average precision), and root
relative squared error (error in terms of a percentage of the actual average
precision of a query). With these baseline average precision values, predicted
average precision was on average 0.20 from the true value (root mean squared
error), with 100% root relative squared error, as shown in the first row of
Table VIII. By using the other features as input to a neural network, we hope
to gain predictions of average precision for each query which are more reliable
than guessing these baselines.
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Table VIII. Error in Predicting Average Precision Using a Neural net with 1

Hidden Layer

AP WSJ

Features RMSE RRSE RMSE RRSE

baseline 0.20 100% 0.22 100%

NN: content clarity 0.53 101% 0.18 87%

NN: temporal features 0.31 98% 0.27 131%

NN: content + temporal features 0.27 88% 0.13 63%
LR: content + temporal features 0.23 92% 0.18 82%

RMSE is root mean squared error of the predicted value on a held-out test set. RRSE is root

relative squared error on the held-out test set. In the final row we show these measures

on the model built with linear regression. We see that neural networks performed better

at prediction than linear regression, so we gain predictive power from the nonlinear

transformations.

We see in Table VIII that content clarity in isolation reduced the root relative
squared error for WSJ to 87%, and that temporal features in isolation do not
reduce the root relative squared error. However, the final row of Table VIII
shows that using the combination of temporal and content clarity with a neural
net, we can reduce both the root mean squared error and the root relative
squared error from the default. This means that we are able to predict average
precision with greater accuracy than the default, and greater accuracy than
using content clarity alone. In the final row, we show these measures on the
model built with linear regression. We see that neural networks performed
better at prediction than linear regression, so we gain predictive power from
the nonlinear transformations.

8.7 Summary of Precision Prediction

In this section, we showed that temporal features can aid in predicting the av-
erage precision of a query’s retrieval results. This means that we identify poorly
performing query and elicit further processing, such as relevance feedback and
temporal disambiguation.

9. VISUALIZATION

In this section, we move on to the question: How should we treat temporally am-
biguous queries through user interaction? If we wish to perform query-specific
relevance feedback based on the temporal properties of a query, we need a way
of showing the user the distribution of relevant documents over time. The vi-
sualization technique we will describe here is applicable to all types of queries,
but most useful for temporally ambiguous queries.

We will assume that the component events of a query are nonoverlapping
so we only need to consider segmenting the information into an annotated
timeline. This task was divided into three parts: determine the time-spans
corresponding to events, construct a language model for each event, and use
the event language models to build event summaries.

9.1 Detecting Events

Recall that Kleinberg’s burst model, described in Section 3.4, models the rate of
document production for the documents retrieved for a query. This is modeled
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as a combination of two rates: a low rate of document production, in which
documents are generated from the idle state, and a higher rate of document
production, when documents are generated from the event state.

The time-spans of an event can then be extracted from the state sequence
decoding of the burst model. We combine unbroken chains of event states into
a single event. For example, if January 3, 1992 and January 4, 1992 both are
both predicted to be in the “event” state, then we treat both the dates as days
in the same event.

9.2 Constructing Event Language Models

Event language models can easily be constructed by using the documents which
lie within the time-spans as evidence for the event language model. So, if the
burst model decoding indicated that an event occurred during a particular two-
week range, the subset of the original top N documents retrieved for the query,
which lie within this time-span, would be used to make the event language
model. Formally,

P̂ (w|E) = 1

|E|
∑
D∈E

P (w|D), (11)

where E is the subset of top N documents within the particular timespan.
Equation (11) calculates the maximum likelihood estimate for this distribution.
Subsequent references to P (w|E) represent the maximum likelihood model
smoothed using Jelinek–Mercer smoothing with a weightof 0.2 for the back-
ground model.

9.3 Building Event Summaries

Given these event language models, then, we can think of two ways of pre-
senting summaries of their information to the user. First, we can inspect the
distribution of terms in P (w|E). Presenting a list of terms in order of decreasing
probability might result in many corpus-wide high-probability terms being dis-
played. Therefore, we look at the pointwise KL divergence measure of per-term
contribution to Eq. 7 [Tomokiyo and Hurst 2003]. Specifically, the pointwise KL
divergence is defined as,

δ(p||q) = p(w) log
p(w)

q(w)
, (12)

where p is our event model and q is some reference distribution over words. This
gives us a measure of the distinguishing quality of each word in the event model
with respect to the reference model. Using the collection language model as our
reference distribution may result in a good summary of the query as a whole
but may not serve to distinguish between the events in the topic. Therefore, we
use the query model, P (w|Q), as our reference model q; this model is estimated
out of the top N documents as,

P (w|Q) =
∑
D∈R

P (w|D)
P (Q |D)∑

D′∈R P (Q |D′)
, (13)
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Fig. 16. Non-extracted Summaries: The AQUAINT corpus was used to visualize the temporal

profile of the query “Israel–Palestine”. Kleinberg’s burst model is used to detect event boundaries.

Event language models are built from documents within these ranges. Summaries consist of the

terms with the highest point Kullback–Leibler divergence with respect to the collection language

model.

where R is the set of top N documents and there is a uniform prior over the
documents.Therefore, the terms in our event model are ranked according to
δ(P (w|E)||P (w|Q)). We refer to the top five terms from this list as the nonex-
tractive summary.

Figure 16 shows the nonextractive summary for the query “Israel–Palestine”.
We notice that the words chosen hint at the nature of the events, though we
cannot tell for example, who is blaming who. Increasing the size of the extracted
terms from unigrams to bigrams or trigrams could lead to more informative
extracted summaries.

Another way to generate summaries from the event models is to consider
sentences from the set of in-event documents. Let sentence likelihood refer to
the sentence level analog of document likelihood such that,

P (s|E) =
∏
w∈V

P (w|E)sw , (14)

where sw refers to the number of times word, w, occurs in the sentence. If S is
the set of all sentences in these documents, we can calculate the likelihood of
each sentence and pick the most likely sentence. Formally, the event summary
is the sentence, s∗, with the highest likelihood,

s∗ = argmax
s ∈ S

P (s|E)

= argmax
s ∈ S

∏
w∈V

P (w|E)sw . (15)

We are interested in relatively high precision and useful summaries so we
restrict S to the set of document titles. We refer to the most likely title as the
extractive summary of an event. Figure 17 shows the extractive summary for
the query “Israel–Palestine”. We notice that a sentence makes the summary
easier to interpret. However, we cannot be sure that some of the properties of
the event are missing from the single sentence chosen.

10. RELATED WORK

In terms of classifying queries into temporal classes, Swan and Jensen [2000]
performed retrieval with 10 queries from the TDT2 corpus. They perform
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Fig. 17. Extracted Summaries: Using the same query and event models as in Figure 16, summaries

are the in-event document titles with the highest likelihood of having been produced by the event

language model.

feature discovery with the matching documents, and characterize the queries
into types, based on the number of features found by TimeMines. They de-
scribe those queries for which TimeMines found many features as having many
subtopics. They suggest that queries for which few or no features were discov-
ered can be described as topics which are fairly static. Our work differs in that
we categorized the temporal-category of queries before performing retrieval and
feature extraction, and showed that we can use the features to predict those
categories.

Li and Croft [2003] proposed the inclusion of temporal evidence into the doc-
ument prior of a language modeling retrieval system. The authors first man-
ually triaged TREC queries into temporal classes based on the distribution
of known relevant documents. Queries in particular classes were then given
different document priors. Their work demonstrates how to incorporate tempo-
ral information if we know which temporal class a query belongs to. However,
the authors do not address the problem of automatically detecting which class
queries belong to.

In terms of precision prediction, Cronen-Townsend et al. [2002] introduced
content clarity as a content-based method for predicting system performance
given a query. We expand on this work by adding time to the content features. He
and Ounis [2004] investigated alternative content-based measures, and found
that the retrieval step is not imperative, as statistics from the corpus as a whole
can predict as well as those from a retrieved set. There has also been work on
query-based event extraction [Chieu and Lee 2004].

In terms of visualization, Swan and Jensen [2000] extract noun-phrases and
named entities from documents, and find correlations between phrases and
timespans using a χ2 test. They select the top phrases according to the χ2

statistic, and show that these correlate with significant events in the news.
They also present an interface for visualizing the top stories in a corpus based on
the features discovered. This is essentially a data mining task, in that they find
features only for a subset of the documents, and not for specified documents. We
generalize this approach to the ad hoc retrieval scenario and conduct analysis
with respect to the searcher’s query.

Chieu and Lee [2004] evaluated sentence-based temporal summarization
methods. In this work, temporal information is extracted from the natural
language of the sentence and timelines are constructed based on sentence rel-
evance and number of relevant sentences on that date. Timelines are then
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evaluated according to user satisfaction. Our work focuses on evaluating tem-
poral profiles for auxiliary tasks such as classification and prediction.

11. DISCUSSION

Temporal profiles provide a method for predicting relevant dates for a partic-
ular query. Learning algorithms can successfully exploit information encoded
in these profiles to improve tasks such precision prediction and query triage.
Despite these positive results, we believe there are several areas left to explore.

We constructed and evaluated temporal profiles using collections where doc-
uments were uniformly distributed over time. In practice, collections often con-
tain nonuniform document distributions. Future work should be cautious about
applying our estimation technique without first testing the uniformity of the
document distribution. Adapting the estimation technique for nonuniform dis-
tribution remains an open problem.

We found that the quality of retrieval results is correlated with the distribu-
tion in time of the documents retrieved. Since we found that we can identify tem-
porally ambiguous queries, these are good candidates for disambiguation with
a small time series interface. We proposed a candidate interface in Section 9.
We propose that a small time series be shown both to summarize the results,
and to allow the user to provide temporal relevance feedback if desired. Users
frequently select spelling suggestions and related query options in search en-
gines, since these assist the searching process [Anick 2003]. Adding a temporal
summary and feedback mechanism when the time component is significant
should lead to increased satisfaction of information needs.

The definition of the temporal classes were guided by our intuition about
what types of queries would be helpful for disambiguation or pseudo-feedback.
One way to evaluate these categories would be to simulate the effects of these
decisions. For example, if our classifier predicted a temporally unambiguous
query, we might prefer documents in that time period without feedback. In the
case of temporally ambiguous queries, we might request disambiguation using
the interface from Section 9.

In order to understand the human issues with temporal feedback, we need
to conduct user studies. We can do this in two ways. With small groups of users
in laboratory settings, we can evaluate task completion and survey users about
their level of satisfaction. We can also evaluate it with large groups of users
by implementing and deploying the feedback mechanism in a search engine.
We can then measure click-through-rate and session length. If the interface
appears useful to web searchers, we may see click-through on the page which is
higher than in a control group. If the feedback is effective, we may see greater
interaction with results, with lower rates of search abandonment, and longer
dwell times on result pages. We expect the temporal interface to be a good com-
plement to similar, content-based disambiguation interfaces such as document
and terminological feedback.

Finally, our temporal profiles use document time stamps to estimate P (t|D).
Oftentimes document also contain a variety of temporal information in the
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content. When automatically detected, these dates can provide additional evi-
dence for use when estimating our temporal profiles.

12. CONCLUSIONS

We have demonstrated that temporal information can successfully be lever-
aged for several retrieval tasks. For example, we showed that the temporal
estimation procedure outlined in Section 2 generated a representation useful
for precision prediction, temporal classification, and visualization. In all cases,
temporal information improves performance over merely looking at the topical
aspects of documents.

More importantly, our work presents an instance of a more general class
of metadata ambiguity problems. That is, in addition to the temporal domain,
this work can be extended into other metadata such as geography, language,
and familiarity. As metadata are increasingly attached to documents, the in-
corporation of metadata into content-based systems will become an important
research area for the information retrieval community.
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