Scaling Parallel Rule-based Reasoning

Martin Peters!, Christopher Brink!, Sabine Sachweh!, and Albert Ziindorf?

! University of Applied Sciences Dortmund, Germany,
Department of Computer Science
{martin.peters || christopher.brink || sabine.sachweh}@fh-dortmund.de
University of Kassel, Germany, Software Engineering Research Group,
Department of Computer Science and Electrical Engineering
zuendorf@cs.uni-kassel.de

Abstract. Using semantic technologies the materialization of implicit
given facts that can be derived from a dataset is an important task per-
formed by a reasoner. With respect to the answering time for queries and
the growing amount of available data, scaleable solutions that are able to
process large datasets are needed. In previous work we described a rule-
based reasoner implementation that uses massively parallel hardware to
derive new facts based on a given set of rules. This implementation was
limited by the size of processable input data as well as on the number
of used parallel hardware devices. In this paper we introduce further
concepts for a workload partitioning and distribution to overcome this
limitations. Based on the introduced concepts, additional levels of paral-
lelization can be proposed that benefit from the use of multiple parallel
devices. Furthermore, we introduce a concept to reduce the amount of
invalid triple derivations like duplicates. We evaluate our concepts by
applying different rulesets to the real-world DBPedia dataset as well as
to the synthetic Lehigh University benchmark ontology (LUBM) with
up to 1.1 billion triples. The evaluation shows that our implementation
scales in a linear way and outperforms current state of the art reasoner
with respect to the throughput achieved on a single computing node.

Keywords: #eswc2014Peters, scaleable reasoning, rule-based reason-
ing, GPU, parallel, RETE algorithm

1 Introduction

In order to enable the semantic web and other semantic applications, the deriva-
tion of new facts based on a given dataset is one key feature that is provided
by the use of reasoners. Query answering and the provision of a complete set of
information often is a performance critical task. This gets even more important
with respect to the growing amount of available information, that often needs
to be processed. Thus, fast and scaleable reasoning is essential for the success
of many semantic applications. In [1] we described first results of a rule-based
and highly parallel reasoner running on massively parallel hardware like GPUs.
Unlike many other parallel reasoner implementations (e.g. [2], [3], [4]), our ap-
proach is based on the RETE algorithm [5] and does not rely on a cluster-based

approach like MapReduce implementations. The use of RETE allows us to easily
load different rulesets and apply them to input data. Thus, our forward chaining
reasoner is not dependent on a specific ruleset like RDFS or pD* [6] and can
be used for inference based on any application specific semantics that can be
expressed using rules.

In this paper we introduce new concepts of workload partitioning as well as
new levels of parallelization. Both aspects allow us to perform a scaleable and
efficient reasoning using parallel hardware even on large ontologies that do not
fit into the on-board memory of a GPU. In particular, we introduce a workload
partitioning for each of the different steps of the RETE algorithm. This workload
partitioning on the one hand allows us to introduce a further parallelization on
the host side (that part of the application, that does not run on massively parallel
hardware), and on the other hand easily allows to distribute the workload over
multiple GPUs and thus to scale the hardware in a horizontal way.

In the next section we start with an introduction to the parallel implemen-
tation of the RETE algorithm for semantic reasoning before we introduce the
workload partitioning schemes. Based on the partitioning schemes new levels of
parallelization are proposed (new levels because they can be applied in addition
to the already introduced parallel matching algorithm described in [1]). Further-
more, a strategy for reducing the derivation of invalid triples like duplicates is
presented in section 3. Section 4 will evaluate our approach and show different
aspects of scaleability, effectiveness of parallelization and performance of the rea-
soner. For this purpose we reason about datasets with up to 1.1 billion triples
using different rulesets. Finally we discuss our findings with respect to related
work and conclude the paper.

2 Using RETE for a Rule-based Reasoner Implementation

The RETE algorithm is a pattern matching algorithm and was introduced by
Charles L. Forgy [5]. The algorithm is based on a network of nodes, which are
derived by the given set of rules. The network consists of alpha and beta nodes,
where an alpha node has no parents and represents exactly one rule-term. Thus,
for each unique rule-term of a given ruleset an alpha node is created. A beta
node in turn always has two parents which may be alpha or beta nodes. Thus,
a beta node always represents at least two rule patterns and links two or more
single rule-terms of one rule. Assuming the rules R1 and R2 from the pD* rules
(also known as OWL-Horst) the resulting network is shown in figure 1.

(?v owl:hasValue ?w) (?v owl:onProperty 7p) (Tu 7p ?w) — (?u rdf:type 7v) (R1)

(?v owl:hasValue ?w) (?v owl:onProperty ?p) (?u rdf:type 7v) — (?u ?p 7w) (R2)

Finally, the node 52 represents the complete rule R1 and the node 3 the rule
R2. To apply the ruleset to a set of input triples (each consisting of a subject,
predicate and object (s, p, 0)), basically three steps are necessary. The first one
is the alpha-matching and means to match every input triple against every alpha
node. Because a1 is completely unbound (all of the three rule-term elements are

ad

(?u rdf:type ?v)

a2 a3
(?v owl:hasValue ?w) (?v owl:onProperty ?p)
alpha nodes

beta-nodes
depth 1

beta-nodes
depth 2

Fig. 1. RETE network for rules R1 and R2

variables) every triple will match. To match the condition of o2, the predicate of
a triple needs to be owl:hasValue. Other alpha nodes are treated accordingly. For
each node a list of matching triples (working memory) is created. Basically this
list consists of references to the corresponding triples. The working memories of
the alpha-nodes are the starting point for the second step of the RETE algorithm,
the beta-matching.

During beta-matching, each match of the first parent node is combined with
each match of the second parent node to see, if both matches together satisfy
the conditions of the beta node. For example for 81 the matches of a2 and a3
need to share the subject (?v) to be a match of 51. After the matches of the
beta nodes of the depth 1 (see figure 1) are computed, the matches of the next
level of beta-nodes can be computed, too. Once the matches of all beta nodes are
determined, the working memories of the final nodes of a rule can be used to fire
the rules and derive new facts, which is the third step of the RETE algorithm.
The final node of a rule is that node, that represents the complete rule body like
mentioned before. Thus, the working memory of 52 is used to fire R1 and the
working memory of 83 is used to fire R2. The new derived triples then need to
be propagated through the network until no new triples are derived.

2.1 Parallelizing the RETE algorithm

Addressing massively parallel hardware like GPUs the main challenge is to par-
tition the workload in a way that it can be computed by millions of threads
in parallel. Looking at the RETE algorithm we have to consider the three dif-
ferent steps of alpha-matching, beta-matching and rule-firing that need to be
parallelized. The concepts for a parallel alpha- and beta-matching were already
introduced in [1]. The main idea for an efficient alpha-matching is to match
every triple against all of the alpha nodes and not the other way round. This
means that the number of threads that are submitted to the parallel hardware
is equal to the number of input triples. The resulting list then is transformed to
the working memories of the individual alpha-nodes.

The beta-matching is based on a similar concept. To compute the matches
of one beta-node, the amount of threads is created on a parallel hardware that

corresponds to the number of matches of one of the parent nodes. Each of the
created threads holds a reference to exactly one match of the corresponding
parent node and iterates through all of the matches of the second parent node.
Assuming that o2 in figure 1 has 500 matches and a3 has 300 matches, a total of
500 threads is created where each thread iterates through all of the 300 matches
of a3. For more details regarding the alpha- and beta-matching as well as an
efficient matching implementation on the GPU we refer to [1].

Rule firing in [1] was performed in a serial way, which means that a single
thread iterated through all matches of the final node of a rule and created the
resulting triples. However, this easily can be performed in parallel, too, by sub-
mitting a thread for each match of a final node to the parallel hardware and
derive the triples. Note that a thread on massively parallel hardware is much
more lightweight than for example in a Java application and thus the overhead
is accordingly small. The resulting triples finally need to be checked against
duplicates and can be propagated through the RETE network, too.

2.2 Introducing Workload Partitioning

Like the evaluation in [1] showed, the introduced concept for a parallel RETE
implementation running on massively parallel hardware performed very well re-
garding the performance. Nevertheless, the concept was limited by the size of the
input data that could be processed. To address this issue for the alpha-matching,
the workload can easily be partitioned into smaller chunks that can be processed
independently and thus can be sized to an adequate size with respect to the tar-
get device. Note that in parallel programming the device always refers to the
parallel hardware like a GPU. Figure 2 illustrates the partitioning in prepara-
tion of an alpha step for n input triples that need to be matched against p alpha
nodes.

n/3 n/3 n/3

n triples triples triples triples

alpha N
nodes

Fig. 2. Workload partitioning for alpha-matching

For beta-matching and rule-firing this partitioning is not applicable because
the working memories of the nodes in the RETE network, that are used for
both steps, consist of references to triples of the internal triple store. To perform
the matching or rule-firing, these references need to be resolved because the
corresponding triples are needed for further processing (like the matching). Thus,
the complete set of available triples needs to be loaded to the main memory of
the GPU. Accordingly the maximum size of the processable input data depends

on the memory size of the device. To overcome this issue, we introduce a triple-
match with the following definition:

Definition 1. A triple-match m = (s,p,0,7) is a quadruple with s=subject,
p=predicate, o=object of a triple and r=triple reference (unique number, that is
used for identification in the internal triple store).

According to this definition, a triple-match not only holds the reference r to
the corresponding triple, but also the triple itself. By using this data structure
for computations on parallel devices instead of the pure working memory of
a node we eliminate the need to transfer the complete set of available triples
to the device. However, working memories that are needed for example for a
beta-match processing need to be transferred to a list of triple-matches before
execution. Because the triple-match holds the triple itself as well as the reference,
the resulting data of an alpha- or beta-matching can still consists only of the
triple references.

Another benefit on using triple-matches during a beta-match is that it allows
us to perform a similar workload partitioning like for the alpha-matching. Be-
cause during beta-matching all matches of one parent node (nparent.1 matches)
are matched against all matches of the other parent node (mpgrent2 matches),
n and m (see figure 3) both might become very large. Thus, not only a partition
in one dimension is desirable, but also in two dimensions.

n/3 n/3 n/3
Nparent_1 matches matches matches
matches m/3

matches

Mparent_2 m/3
matches matches

m/3
matches

Fig. 3. Workload partitioning for beta-matching

As illustrated in figure 3 the complete workload can be divided into smaller
chunks, where the size of the chunks can be chosen with respect to the used
device considering for example the amount of available memory. This allows to
separately submit each chunk for processing to the device and reading back the
results.

For rule-firing the use of triple-matches also allows to partition the workload.
Therefore, the matches of a final node can be split up into chunks of an adequate
size, transferred into triple-matches and being processed on the device. The

resulting triples that are transferred back from the device to the host finally can
be submitted to the triple-store of the reasoner where they need to be checked
against duplicates.

2.3 Workload Distribution

The introduced workload partitioning not only allows to process large datasets
in small chunks, it also enables us to introduce new levels of parallelization and
finally to distribute the workload over multiple devices. Considering the example
from figure 1, it can be seen that the beta-matching of all beta nodes of one depth
can be performed independently and thus simultaneously. That is because a beta-
matching in a depth of d always relies on the results of nodes with a depth < d.
Based on this understanding the first level of additional parallelization can be
introduced by computing beta-matches of all beta-nodes of one depth in parallel.
A further level of parallelization is possible through the workload partitioning,
where each single partition of one beta-node can be processed in parallel, too.

Np2_parent_1 Np3_parent-1
matches matches

Mp2_parent_2 Mpa3_parent_2
matches matches

Fig. 4. Further levels of parallelization for beta-matching

Figure 4 illustrates the two levels of parallelization by showing the partitioned
workload for 82 and 3 from the example RETE-network. Besides the fact that
both nodes can compute their matches independently of one another, the created
chunks can be computed in parallel, too. Finally this leads to the following
number of possible parallel computations of one depth:

B

Uz m; 1

; chunkwidth; * chunkheight; (1)
Note that B denotes to the number of beta-nodes in one depth and chunkwidth
and chunkheight are constants defining the size of a chunk, which can be chosen
with respect to the target device and size of n; and m;. We further assume that
n; always divides by chunkwidth and m; by chunkheight.

Applying this additional parallelization allows to easily use multiple mas-
sively parallel devices like GPUs. While one GPU can only perform one task

(for example process one chunk) at a time, the total workload can be distributed
over multiple devices. This way the reasoner can be parallelized on the host side
(the host defines the execution environment like a java application from where
a parallel device is accessed) as well as on the device side. This concept can also
be applied to the rule-firing, where each rule can be processed independently of
one another and thus can be processed in parallel, too. A further level of par-
allelization is achieved by the workload partitioning, which has been mentioned
before.

3 Reduction of Invalid Triples

As already stated out in [1], rule-firing can be the most time consuming task
during the reasoning process, depending on the used rules and dataset. One
reason for this is the huge amount of duplicates as well as triples holding a
literal as a subject, that get inferred during rule-firing. Such triples need to be
identified and rejected by the triple store of the reasoner before the new triples
are stored. While the check of a literal-subject can for example be performed
by a direct lookup using an array holding a boolean value for every unique
triple element (s, p, o), the identification of duplicates is often performed using
a HashMap. Nevertheless, both methods of triple validation have the drawback
that they are performed after the triples have been created. Thus, the triples
first need to be derived before they can be validated.

The issue of a high rate of invalid triples is particularly noticeable computing
the complete RDF'S closure, where most of the triples are derived by the following
rules:

(?z ?p 7y) — (?p rdf:type rdf:Property) (R3)
(?x ?p 7y) — (?x rdf:type rdfs:Resource) (R4)
(?z ?p 7y) — (?y rdf:type rdfs:Resource) (R5)

What can be seen on looking at these rules is, that all existing triples will match
the condition of the rules. That means that the number of output triples that
finally need to be validated is equal to the number of input triples for the rule-
firing of these rules. However, many of the derived triples will be duplicates
because for R4 for example, all triples which share one subject will produce the
same output triple. The same applies to R3 and R5 except that the output triple
only depends on the predicate or object of the input triples.

With the proposed concept of triple-matches, which are also used for rule-
firing on parallel hardware, we can use these findings to introduce a simple
reduction of duplicates by an evaluation during the triple-match creation. When
preparing the triple-matches for rule-firing of a specific rule, the rule header is
also known and can be evaluated to the condition that there is only one variable
term like 7z in the header. On the other side it is known, which triple element
(subject, predicate or object) of the input triples will be placed to the variable
of the rule header. For R4 for example the subject of the input triple would be
placed to the subject of the resulting triple, too. Thus, a HashMap can be created
which stores all occurrences of subjects during triple-match creation. Based on

this HashMap a check can reveal if the subject already exists in the Map and
thus the triple-match would result in a duplicate. If so, the triple-match can be
rejected.

This does not only reduce the amount of triples that need to be validated
before they are stored to the triple store, it also reduces the amount of triple-
matches that need to be created and processed on the device. A similar concept
can be applied to rules where the subject of the rule-header is a variable. In
this case, the element that would be placed to the subject of the resulting triple
can be checked if it is a literal or not. Only in the later case, the triple-match
needs to be created. Nevertheless, these concepts provide a cheap way in terms of
computation time to reduce the amount of invalid triples. They do not completely
avoid the derivation of invalid triples and thus a final check before storing is still
necessary.

4 Evaluation

Our evaluation has three goals: First of all we want to show the impact of
the introduced concepts to avoid invalid triple derivations. Secondly we want
to analyze the effect of the new levels of parallelization as well as workload
distribution by using multiple GPUs. Finally we want to test the scaleability of
our approach for datasets with up to one billion triples.

4.1 Implementation

For evaluation purpose of the proposed concepts we extended our implementa-
tion of the reasoner presented in [1]. The reasoner is written in Java and uses
OpenCL? to perform highly parallel processing tasks on heterogenous devices
like multicore CPUs or GPUs. The jocl-Library* is used for OpenCL Java bind-
ings. The internal triple store is implemented as a singleton and manages the
parsed triples as well as derived triples. Lists and HashMaps are used to store the
data and to allow a fast lookup, for example to check against duplicates. The new
levels of parallelization that were introduced in section 2 are implemented using
multithreading in Java. Each thread that is responsible to compute one chunk, for
example during beta-matching, prepares all needed data like the triple-matches
and submits a task to a synchronous queue. For every available GPU in the
execution environment of the reasoner a worker-thread is created, that polls for
new tasks on the queue and executes it on the corresponding parallel device.
This way it can be guaranteed that each processing task has exclusive rights to
the device during execution. We also optimize the idle time of the devices by
ensuring that each task that is submitted to the queue has already prepared
all needed data. By using the concept of worker-threads that are responsible to
access the available devices, the application dynamically adapts to the number
of existing parallel devices and thus fully exploits the hardware.

3 OpenCL: open standard for parallel programming of heterogeneous systems,
http://www.khronos.org/opencl/
4 http://www.jocl.org/

4.2 Test Environment and Datasets

To evaluate the proposed concepts, we use three different rulesets with vary-
ing complexity that are often implemented by other reasoners, too. The pdf [7]
ruleset is a simplified version of the RDFS vocabulary and consists of all RDFS
rules with at least two rule terms. This ruleset is often used for a time efficient
reasoning, because the results of the omitted rules could be provided by the
reasoner on the fly if required. The second ruleset is the complete RDFS ruleset
like it is defined by the W3C®. Finally we use the pD* [6] ruleset (also know as
OWL-Horst) which incorporates RDFS and D entailment and has some basic
support for OWL. For the complete set of pD* rules we refer to [2].

The used datasets are the DBPedia Ontology 3.9 [8], including the mapping-
based types and mapping-based properties, as well as the Lehigh University
benchmark (LUBM) ontology [9]. The DBPedia ontology is a lightweight ontol-
ogy containing extracted information from Wikipedia and thus is a real world
dataset. The complete datasets consists of more than 41 million triples. Never-
theless, we scaled this dataset to different sizes by using only every n’th instance
triple to get 1/2th 1/4th 1/8" 1/16'", and 1/327¢ of the dataset. The LUBM
ontology is designed for benchmarks and is a de-facto standard for performance
evaluations and comparison for RDF reasoner. A generator can be used to cre-
ate datasets representing a university scenario, where the number of generated
universities is used to size the resulting dataset. Thus, it can be used to create
artificial datasets of an arbitrary size. The LUBM datasets used for evaluation
are annotated with the corresponding number of universities that are included,
such that for example LUBM250 refers to 250 universities. Table 5 gives an
detailed overview of the used datasets.

Dataset Scale Triples Dataset Scale Triples
1/32 1,322,055 125 17,607,267
DBPedia 1/16 2,627,952 LUBM 250 35,150,241
1/8 5,238,518 500 72,090,481
1/4 10,453,153 1000 144,121,737
1/2 20,807,047 2000 289,967,483
full 41,447,376 4000 581,452,623
8000 1,164,702,737

Fig. 5. Used datasets

We perform our tests on two different machines. The first one that is used for
all tests except the scaleability test is equipped with two mid range AMD 7970
gaming GPUs, each having 3 GB of on-board memory, a 2.0 GHz Intel Xeon
processor with 6 cores and 64 GB of system memory. For the scaleability test

® http://www.w3.org/TR/rdf-mt/#RDFSRules

more system memory is needed to process the large LUBM datasets, which is
why we use a cloud server with a total of 192 GB of memory, two Tesla M2090
GPUs each having 6GB of on-board memory and a 2.4 GHz Intel Xeon processor
with 12 cores. Every test is executed five times and the average time, excluding
dictionary encoding, is given.

4.3 Invalid triples

First of all we want to analyze the impact of the proposed concepts for reduc-
ing invalid triples during triple-match creation. Therefore, we use two different
datasets with a similar size (LUBM250 =~ 35M triple, DBPedia ~ 41M triple) and
apply the RDFS ruleset. We chose the DBPedia as well as the LUBM dataset
because LUBM has a very high number of instance triples (ABox) while the
TBox is proportionally small. The DBPedia dataset in turn also has a larger
TBox and should provide more reliable results for a real world scenario. We
compare the use of a non-parallel implementation of rule-firing with a parallel
implementation using the GPU as well as a parallel implementation using the
proposed concepts for reducing invalid triple derivations.

100 + " 100 + 2.4
91.57 [atpha 92.46 O aipna
[beta [beta
D O rule-firing 0 D rule-firing
— —
E E
2 50 | 2 50 |
g g
2 g 30.03 27.33
23.01 21.39 -
10.11 10.52 10.31
5.15 5.43 5.53
0.69 O 072 0.94 0.86 0.87
0 0
serial parallel parallel with serial parallel parallel with
reduction reduction
LUBM250 DBPedia

Fig. 6. Detailed reasoning time for LUBM250 and DBPedia using serial rule-firing,
parallel rule-firing and parallel rule-firing with reduction of invalid triples

Figure 6 illustrates the processing time for the different phases of the RETE
algorithm for each of the different rule-firing strategies. First of all it can be
noted that the parallel implementation of rule-firing is about four times faster
than the serial one. This speedup is achieved only by building the resulting
triples including their hash-code on the GPU. The triples still need to be added
to the internal triple-store where they are validated against duplicates before
they get stored. By applying the concept of invalid triple reduction the triples
that were submitted to be stored could be reduced for the LUBM dataset from
about 227M to 130M which corresponds to a reduction of about 43%. For the
DBPedia dataset a reduction of 35% could be achieved (202M triple creations

instead of 312M). Nevertheless, the speedup that is accomplished for rule-firing
is only 12.75% for DBPedia and 9.76% for LUBM. This is on the one hand
because the application of the reduction strategy introduces an overhead during
triple-match creation, too. On the other hand the deduplication based on a hash-
lookup, where the hash is already computed together with the triple on the GPU,
is very effective.

4.4 Parallelization

Furthermore we want to evaluate the impact of the new introduced levels of
parallelization as well as the impact on using multiple GPUs to distribute the
workload. Therefore, we use the RDFS as well as the pD* ruleset. We chose these
two because they differ in complexity and thus can benefit in different ways from
the introduced concepts.

t (s) t (m)

[non threaded - one GPU 72 [non threaded - one GPU 109:3, ¢
[threaded - one GPU (] 100 + []threaded - one GPU W
60 + []threaded - two GPUs [Jthreaded - two GPUs
50.7
44.6
1.5
40 + 54.853.9 54
50 +
3
L9
20 + 123 57138
85, 1 13.014.6
5. 5.4 5.3 .
L. 9 1.9 71 2.
o 1 . H—"\ 1
1/32 1/16 1/ 8 1/4 1/2 full 1/32 1/16 1/ /4 1/2 full

DBPedia/RDFS DBPedia/pD*

Fig. 7. Using RDFS (left) and pD* (right) on the DBPedia datasets

Because the computation of RDFS does not rely too much on work that
needs to be performed on the GPU (all submitted tasks are of an adequate size),
figure 7 shows that RDFS benefits primarily from the new introduced level of
parallelization. This kind of parallelization allows the reasoner to perform much
more work on the host at the same time while the time that a process is waiting
to be executed on the GPU is relatively moderate. Thus, the speedup achieved
by using a second GPU is of moderate size, too. On the other side the pD* ruleset
relies much more on a high number of matches that need to be computed and thus
executed on the GPU. Accordingly, the use of a second GPU drastically speeds
up the execution time such that a doubling of the number of GPUs nearly results
in a half of the processing time. It also can be expected that additional GPUs
would further speedup the execution time as the use of additional hardware does
not introduce an overhead. Both results show, that the workload partitioning and
the concepts of further parallelization build on the partitioning are very efficient.

4.5 Scaleability

Finally we want to examine the execution time for the full materialization for
datasets with a growing number of triples. For this tests we use the pdf ruleset
as well as the RDFS ruleset because both are widely used for performance and
scaleability tests on LUBM datasets [10] [4] [11] [12] [13] and thus offer a good
comparability. Figure 8 shows the results for both rulesets applied to the LUBM
datasets from 17.6M triples to more than 1.1 billion triples.

1000 |
=
()
£
S 500 |
0 |

0 1000 2000 3000 4000 5000 6000 7000 8000
LUBM

Fig. 8. Complete materialization time for LUBM datasets with up to 1.1 billion triples

As can be seen our implementation has a good scaleability since the execution
time grows almost in a linear way with respect to the number of input triples
for both rulesets. For the LUBMS8000 dataset using the RDFS ruleset a further
overhead is caused by the fact, that the size of the working memories for some
beta-nodes exceeds 2 billion matches and we have to swap the matches to the
hard-disk. By appending all matches to a file and accessing them in a partitioned
way using a random access, we overcome the issue of the max array size in Java.

We further observe that the computation of pdf is much faster than RDFS,
which among other things can be explained by the number of inferred triples (for
example on LUBM4000 143.7M inferred triples for pdf and 238.2M for RDFS)
and the findings of figure 6 that show, that the rule-firing is still the most com-
putation intensive task for RDFS. This also illustrates the bottleneck of our
implementation for these two rulesets. While the pD* ruleset could benefit from
additional GPUs, the less computation intensive rulesets are thwarted by the in-
ternal triple-store which only allows to write new triples for a single process at a
time. Nevertheless, we reach a throughput of up to 2.7M triples/sec. for pdf and
1.4M triples/sec. for RDFS, which to our knowledge is the highest throughput
for a single machine ever published.

5 Related Work and Discussion

While many reasoner, whether they use one computing node or a cluster of
nodes, programmatically implement a specific set of rules, our implementation
is based on the RETE algorithm and thus independent of a specific ruleset. In
[13] an inference system that is able to support user-defined rules is proposed.
The implementation is based on an Oracle database and is evaluated against
LUBM datasets, too. Nevertheless, to apply RDFS to a LUBM1000 dataset a
processing time of 6:34 hours is reported, while our approach performs the same
computation in 269 seconds. Another single-node implementation, but with the
limitation of a predefined set of rules, is shown in [12]. The DynamiTE reasoner
is capable to perform stream reasoning and thus focuses on incrementally main-
taining large datasets. While our approach is not able to process RDF streams,
the pure materialization of pdf in [12] achieves a throughput of 227 triples/sec.
which is about 12 times slower than our results. In [14] an approach for reason-
ing on massively parallel hardware is presented that, in contrast to our approach
which implements a generic rule engine, implements only the pdf ruleset based
on methods that are executed in a given order to produce the results. Another
limitation of the reasoner in [14] is that only datasets, that fit into the device
memory of a single GPU (multiple GPUs are not supported) can be processed.
Both approaches were already used in [1] for a performance comparison. Further
implementations of reasoners that allow a scaleable processing of large datasets
often rely on the MapReduce framework. WebPIE [2][15] for example uses the
MapReduce implementation Hadoop and is able to perform RDFS as well as
pD* reasoning. WebPIE was evaluated against LUBM datasets with up to 100
billion triples and reached a maximum throughput of 2.1M triples/sec [15] on
64 computing nodes for pdf. The same ruleset was applied by our implementa-
tion to the LUBM dataset with a throughput of 2.7M triples/sec. on a single
machine. Nevertheless, our implementation is limited regarding the size of the
dataset by the availability of main memory on the used computing node and is
not able to handle such large datasets. Other MapReduce implementations differ
for example in the implemented semantics [3][16].

In [4] an embarrassingly parallel algorithm is introduced, that computes the
complete RDFS closure. The evaluation is performed on a cluster with up to 128
parallel processes. The largest dataset used is a LUBM10k/4 (LUBM10000 where
only every fourth instance triple was used), which is comparable to a LUBM 2500
dataset. While [4] report a computation time of 291.46 seconds without a global
deduplication, our approach performs the complete materialization on a similar
dataset using only a single node in 270 seconds and infers only unique triples.

The evaluation showed that our implementation reaches a high throughput
and offers a good scaleability for different rulesets with a limited complexity
(RDFS and pdf) on different datasets. Nevertheless, especially for pdf and RDFS
the rule-firing is still a bottleneck and consumes up to 70% of the processing
time. The introduced concept to reduce the amount of invalid triple derivation
only showed a small increase in speed. In [14] further concepts for deduplication
(and thus for reducing invalid triples) are introduced. While the global strategy

relies on the order of rules and thus is not applicable for our approach, the local
strategy performs a reduction of duplicates on the GPU. To do so, the inferred
triples are sorted such that a comparison with the neighbour-triple can reveal if
the triple is already derived during the current processing step. Finally, only the
non duplicate triples are transferred back to the host and added to the triple-
store. However, to sort and rearrange the triples on the GPU was much slower
for our implementation than to derive the triples and validate them using a
fast hash-lookup. Rather than focusing on a reduction schema on the GPU we
think that a parallel, non blocking triple-store that can be accessed by multiple
threads at the same time would be much more efficient. This is particularly the
case when using the new levels of parallelization which also allow the use of
multiple GPUs.

A further limitation of our approach exists in the need to hold all triples
for a fast access during triple-match creation in the main memory. While our
implementation may be improvable with respect to memory consumption, the
available main memory does limit the size of processable datasets. To overcome
this issue, on the one side a distributed approach using multiple nodes equipped
with massively parallel hardware might be interesting. On the other side a stream
reasoning approach could also be implemented based on the proposed concepts
of fast matching.

6 Conclusion

In this paper we introduced new concepts for a further parallelization and work-
load distribution on top of the results presented in [1], where a rule-based rea-
soner using massively parallel hardware is presented. The additional host-side
parallelization is achieved by taking advantage of the fact, that matches of nodes
of one depth in the RETE network can be computed independently. We further
introduced the concept of triple-matches, which allow to perform a partitioning
of the workload that needs to be computed for a single node. By using triple-
matches we also overcome the issue that the maximum size of datasets that can
be processed is limited by the onboard-memory of a GPU. Aside from that the
partitioning allows a simple way for workload distribution over multiple parallel
devices and thus for an additional parallelization. Furthermore, a strategy to
reduce the amount of invalid triple derivations was introduces that is able to
reduce the number of derived triples by more than 40%.

Future work will focus on different aspects. On the one side we are going
to investigate how our approach can benefit from a cluster-based approach to
distribute the workload not only to multiple devices, but to multiple computing
nodes. This will include the need to reduce the memory usage on a single node.
On the other side a faster and possibly parallel triple-store should be part of
further developments to achieve a faster rule-firing.

To conclude the paper, we have shown how to scale a rule-based reasoner
based on different concepts of workload partitioning and distribution. The pro-
posed concepts where evaluated for datasets with up to 1.1 billion triples and we

achieved a throughput of up to 2.7M triples/sec., which is significantly higher
than provided by other state of the art reasoners for a single computing node.
Thus, our system not only provides a dynamic and flexible way to apply appli-
cation specific rules to a set of input data, but also a scaleable and fast way with
respect to the current state of the art.

References

10.

11.

12.

13.

14.

15.

16.

Peters, M., Brink, C., Sachweh, S., Ziindorf, A.: Rule-based reasoning on mas-
sively parallel hardware. In: 9th International Workshop on Scalable Semantic
Web Knowledge Base Systems. (2013) 33-49

Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning
with WebPIE: calculating the closure of 100 billion triples. In: Proceedings of the
7th international conference on The Semantic Web. ESWC’10 (2010) 213-227
Liu, C., Qi, G., Wang, H., Yu, Y.: Reasoning with large scale ontologies in fuzzy
pD* using MapReduce. Computational Intelligence Magazine, IEEE 7(2) (2012)
Weaver, J., Hendler, J.: Parallel materialization of the finite RDFS closure for
hundreds of millions of triples. In: Proceedings of the ISWC’ 09. (2009)

Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern
match problem. In Raeth, P.G., ed.: Expert systems. (1990) 324-341

ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Web Semantics:
Science, Services and Agents on the World Wide Web 3(2-3) (October 2005) 79-115
Muoz, S., Prez, J., Gutierrez, C.: Minimal deductive systems for RDF. In Fran-
coni, E., Kifer, M., May, W., eds.: The Semantic Web: Research and Applications.
Volume 4519. (2007) 53-67

DBPedia: [Online]. available at http://wiki.dbpedia.org/

Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for OWL knowledge base systems.
Web Semant. (October 2005) 158-182

Soma, R., Prasanna, V.: Parallel inferencing for OWL knowledge bases. In: Parallel
Processing, 2008. ICPP ’08. 37th International Conference on. (2008) 75-82
Urbani, J., Kotoulas, S., Oren, E., Harmelen, F.: Scalable distributed reasoning
using MapReduce. In: Proceedings of the ISWC’ 09. ISWC ’09 (2009) 634-649
Urbani, J., Margara, A., Jacobs, C., van Harmelen, F., Bal, H.: DynamiTE: Parallel
materialization of dynamic RDF data. In: Proceedings of the ISWC’ 13. (2013)
Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In: Data Engineering, 2008. ICDE 2008. IEEE 24th International
Conference on. (2008) 1239-1248

Heino, N., Pan, J.: RDFS reasoning on massively parallel hardware. In: The
Semantic Web ISWC 2012. Volume 7649 of Lecture Notes in Computer Science.
(2012) 133-148

Urbani, J., Kotoulas, S., Massen, J., van Harmelen, F., Bal, H.: WebPIE: A web-
scale parallel inference engine using MapReduce. Web Semantics: Science, Services
and Agents on the World Wide Web (0) (2012)

Maier, F., Mutharaju, R., Hitzler, P.: Distributed reasoning with EL++ using
MapReduce. Technical report, Kno.e.sis Center, Wright State University, Dayton,
Ohio (2010)

