Patch Developer

Manual

(c) Opatch by ACROS Security, 2017
https://0Opatch.com

Contents

O) o oo [¥ Lot d T o O TP P OO P RO PPN 3
PN 0 o Y-) ol g WA o{= T o i o Tl D=V] (o] o =Y o PP PPR 3
3. SECUIMTY NOLES ..ttt ettt e e e e e e et e et e e e s e s s abbbbaeeeee e s anbaaeeaeeessaannreaaaeens 4
4. Patches and PatChlets.o ittt e e e 4
T - el o 11 V- GV T T =] 1o V=TSR 5
6. INJECLING @ PAtCIBL.....eeiiiceeee e e e e e e e e e e e be e e e e e abee e e ennreeas 7
7. Suitable Places for Injecting @ Patchletcoooiiiiiiii e 7
T - ol o] [=1 g Yo Yo T Al I o] L= PP 9
9. ANatomy Of @ PatCh FIle cc..eueiieieeee e et e s e e s sbte e e e sntaeeeeanes 10
10. PatCh File KEYWOITS. . ..o ieiieeciieee ettt ettt e e e e st e e et te e e st ee e e e astaeeeenbaeeeenseeeeennseneeennsenas 12
11. BUilding A SAmMPIE PAtCh....coceeiiie et e e e e e e e et e e e e abe e e e e anaeas 14
12, FINAI NOTES ..ttt ettt et e bt e s b e s at e sat e st e e e e bt e bt e s beesaeesaeeeaseebeenbeesbeenanenas 21
(c) Opatch by ACROS Security, 2017 -2-

https:

Opatch.com

https://0patch.com/

PATCH

1. Introduction

Welcome to the crowdpatching community! We’re extremely happy about your interest in writing
patches with Opatch. Whether you want to patch vulnerabilities or functional bugs, or you need
some way to correct code flow during your reverse engineering efforts, Opatch aims to be the tool
for you. We hope you’ll use it to solve your, and many other people’s problems.

This document will show you how to set up your environment for writing patches, explain basic
mechanics of Opatch, and provide many guidelines and hints to get you started.

It is assumed that you are already familiar with Opatch Agent in terms of its user interface and
general functionalities. If not, it is highly recommended that you read the Opatch User Manual
available at https://0Opatch.com/user _manual.htm.

2. Opatch Agent for Developers

Opatch Agent for Developers is a slightly modified version of Opatch Agent (which is meant for
production) and also includes a toolset needed for building your own patches. Much like Opatch
Agent, Opatch Agent for Developers gets updates from the Opatch server when a new version
becomes available. You cannot have both Opatch Agent for Developers and Opatch Agent installed on
the same computer at the same time.

Specifically, Opatch Agent for Developers differs from Opatch Agent in the following ways:

1. Opatch Agent for Developers comes with Opatch Builder, our tool for compiling Opatch source
files (.Opp files) into patch blobs that can get immediately applied to your local processes.

2. Opatch Agent for Developers doesn’t validate signatures on patch blobs before applying them
to newly-launched or running processes. This allows you to create patches locally on your
computer and also test them there without having them signed. In contrast, Opatch Agent
requires a patch to have our valid signature before applying it. Signatures are still being
validated on all agents for patches that get delivered from the Opatch distribution server —
we don’t want you to get pwned by someone breaking into the server ;)

3. Opatch Agent for Developers registers a Opatch icon for . Opp files so that you can visually
identify your patch source files, and adds two actions to the Explorer menu for .0Opp files:
“Build Patch” and “Build+Debug Patch”. More on these later.

4. Opatch Agent for Developers automatically sets breakpoints on patchlet JMPs in WinDbg
using the . ocommand instruction, provided that WinDbg has the correct magic word set.

(c) Opatch by ACROS Security, 2017 -3-
https://Opatch.com

https://0patch.com/
https://0patch.com/user_manual.htm

PATCH

3. Security Notes

Being interested in writing your own patches, you are likely sensitive to the state of security of any
software you install on your computer, and any risks it brings with it. As such, here are some things
you need to know about Opatch Agent for Developers.

1. Opatch Agent for Developers does not verify digital signatures for patches when applying
them to local processes. (If it did, you wouldn’t be able to apply your own patches as you
don’t have the signing key.) As a consequence, local malware with administrative privileges*
could store a malicious patch in the Opatch database and achieve its own persistence by
using Opatch Agent for injecting malicious code into a system process such as
winlogon.exe.

2. Beware of malicious .0pp files. Opatch Builder by design supports launching an executable
specified in a .0pp file with a debugger. Inspect every .0pp file from an untrusted source
before executing “Build + Debug” on it.

3. Beware of debugging potentially malicious processes with “Build+Debug”. To allow for
automatic setting of breakpoints, Opatch Builder instructs WinDbg to accept external
commands from the debuggee via . ocommand. This means that a malicious debuggee
(potentially running as a low-privileged user) could instruct WinDbg (potentially running as
admin) to execute an external application with arbitrary parameters, thereby elevating its
privileges. If you want to debug a malicious process, either debug it manually (not via
“Build+Debug”) or manually change the . ocommand magic word.

4. Current update procedure doesn’t (yet) preserve your “unofficial” patches in the local Opatch
database. Updating Opatch Agent for Developers (when an update becomes available) will
delete your own patches from the local Opatch database. (Yes, we’re working on that.)
Should this happen, you can simply re-build the patches from your .0pp files after the Agent
has been updated.

4. Patches and Patchlets

Opatch currently supports patches that inject X86 or X64 machine code at a desired offset in a
Windows binary, and optionally jumps over a selected number of bytes to effectively remove one or
more original machine code instructions in said binary.

Each patch applies to exactly one binary, namely the binary that has the exact crypto hash specified
in the patch. (Note that you don’t see this hash in the .Opp patch source file as patch file only
specifies the path to the binary while Opatch Builder calculates the hash for you.)

A patch comprises one or more patchlets; each patchlet defines the code to be injected at a specific
offset from the binary’s base address, an optional number of original code bytes to jump over (to

1 . .
Yes, we know, local admin malware means game over anyway, but still...

(c) Opatch by ACROS Security, 2017 -4 -
https://Opatch.com

https://0patch.com/

PATCH

implement removal of original code), and an optional list of functions to import from selected
binaries in order to be able to call them from the patchlet code.

Some patches - like those for typical buffer overflow vulnerabilities - only need a single patchlet,
while some others — like those for typical use-after-free vulnerabilities — need more than one.

Each patch has a globally unique ID, and each of its patchlets has a patch-wide unique ID. As a rule of
thumb, patchlets should be identified sequentially with IDs 1, 2, 3, etc. While a patch ID needs to be
globally unique when deployed to the Opatch distribution server for distribution to agents around the
World, you can use any unused patch ID during local patch development. We usually give patches
under development IDs above 10000 to avoid conflict with existing patches that arrive from the
distribution server. (This will obviously have to be revised as the number of official patches starts to
grow.)

5. Patching Guidelines

Writing a patch is a delicate endeavor. You will be changing existing machine code that was almost
certainly generated by a compiler; this is good in terms of recognizing compilers’ coding patterns,
and bad because compilers heavily optimize the code and make it more difficult to match it to the
source code (should you happen to have it).

You will first have to understand the nature and context of the bug you’re about to patch to the point
of being able to say: “Okay, | now know exactly what the problem is,” and then find a way to reliably
and efficiently fix the bug. There will generally be more than one way to fix the bug, and you will
want to find the one that has the least impact on the original code while fixing the problem in its
entirety without allowing ways to bypass it and —importantly! - without breaking anything. In
general: the less patch code the better, the fewer patchlets the better.

Always keep in mind that you’re a guest in a likely huge and complex code base that you can’t
possibly understand as well as its original developers, and your only job is to put a plug in a tiny hole
without causing any problems to original inhabitants or making their existing problems worse. This
means, for example:

1. If you change a CPU register or a local variable, you have to make sure to restore it to its
original value before letting the original code continue — unless you can prove that the
original code will not use that value any more. (E.g., if you change ecx and the original code
executing after your injected patch code also changes ecx before ever using it, it’s okay not
to restore it.)

2. If you make a call to some function from your patch code, you need to either completely
understand its side effects (e.g., modifying registers, using blocking operations that might
cause deadlocks, taking time that could cause timeouts in some other code waiting for the
patched code to finish, etc.) and prove that they are inconsequential, or make sure to

(c) Opatch by ACROS Security, 2017 -5-
https://Opatch.com

https://0patch.com/

3.

PATCH

neutralize these side effects (e.g., by storing relevant registers on stack before the call and
restoring them after the call).

Take as little space as possible. Your patch code must be trivial to review by anyone
understanding the bug and looking at your patch. It’s not called “micropatching” for nothing.
Also, do write many comments in your patch code: any instruction can be decorated with a
comment using a semi-colon.

Be extremely cautious with multi-patchlet patches! While we’ve designed Opatch to allow a
patch to consist of more than one patchlet, you must be aware that it is inevitably possible
(although perhaps extremely unlikely) that when your patch is applied to an already running
process, some thread might end up executing some, but not all of your patchlets. For
instance, imagine only two patchlets: patchlet A storing some value in registry edx (which
happens not to be used anywhere else), and patchlet B subsequently taking the said value
from registry edx and using it, assuming that patchlet A has previously stored the value in it.
It can well happen that at the moment when the patch is applied, some thread’s execution is
between the two patchlets, meaning that once its execution is resumed, it will only execute
patchlet B without having previously executed patchlet A. Obviously this can quickly lead to
serious problems. So while you may find it tempting to pass data from one patchlet to
another, or to make patchlets inter-dependent in some way, you really must not. Each
patchlet must be able to execute independently, whether other patchlets have been / will
be executed, or not.

Sometimes understanding the problem or figuring out the way to fix it will take you a long time

(especially if you’re not experienced in reverse engineering), and sometimes this will frustrate you

and make you want to give up. We’re planning to release lots of material to help you with both

stages of patching (you can already find some on our blog at https://Opatch.blogspot.com), and

we’re building a patching community you’ll be able to turn to for help.

(c) Opatch by ACROS Security, 2017 -6-

https:

Opatch.com

https://0patch.com/
https://0patch.blogspot.com/

6

When

PATCH

. Injecting a Patchlet

Opatch Agent injects a patchlet into the original code, it overwrites 5 bytes of the original code

with a 5-byte JMP instruction that transfers code execution to the patchlet code. This is a process

well known from function hooking, where one or more original machine code instructions from the

very beginning of a function are copied (»relocated«) to another place in memory (called a

»tram

poline«), while their original location is overwritten with a JMP instruction to injected code (in

our case: patchlet code). The patchlet code ends with a JMP to the trampoline in order to execute

the relocated original instructions, and the trampoline is then completed with a JMP back to the first

original code instruction after the relocated instructions.

Opatch takes traditional hooking to a higher level by:

1)
2)

supporting the injection almost anywhere” in the code, not just at the beginning of functions;
removing (jumping over) any number of original code instructions after the injection point,
allowing you to effectively replace existing code with your patch code, or remove flawed
code.

7. Suitable Places for Injecting a Patchlet

For several reasons, a patchlet cannot be injected just anywhere in the code:

1)

Some original instructions cannot be safely relocated to another address. For example, a
short JZ with a single-byte operand at address 10000000h cannot be relocated to address
20000000 because the recalculated relative jump offset from the new address would not
fit into that single byte. The same goes for two-byte jumps, so we can only relocate 4-byte
(32-bit) jumps. This also applies to relative CALL instructions with 2-byte (16-bit) operands.
(We’re planning to provide support for all these cases in the future by replacing short relative
jumps and calls with 32-bit alternatives that can reside anywhere in the memory.)

A call instruction can only be safely relocated if it is the last relocated instruction; it is
possible that at the moment of patching, one of the threads would be inside a relocated call
(possibly already several further calls deeper down the call stack) and when it returns, it has
to return to the original instruction that was there when the call was executed. If the
relocated call is the last relocated instruction, we can be sure that instructions immediately
after it on its original location are intact and can be safely returned to. However, if another
instruction after the call was relocated to trampoline, it would mean that this instruction was
also at least partly overwritten by JMP Patchlet, so returning to it from a thread

>Not a

Il original instructions can be relocated to a trampoline; refer to section »Suitable Places for Injecting a

Patchlet«.
(c) Opatch by ACROS Security, 2017 -7-
p y Y

https:

Opatch.com

https://0patch.com/

4)

5)

PATCH

currently executing the relocated call would result in executing unwanted code, almost
certainly causing functional problems. On the left image below is a suitable code block to
inject at, on the right an unsuitable code block, because the call is not the last to-be-
relocated instruction.

nmov eax, [esi+08h] cal X]
call [eax] cnp ecx; 01h

Original instructions that are a destination of any jump or call elsewhere in the original code
can only be safely overwritten with our 5-byte JMP Patchlet instruction if they are the
first relocated instruction (as that would result in the said jump or call transferring execution
to JMP Patchlet which would be okay). Any non-first overwritten original instructions
must not be a destination of any jump or call, as such jump or call would end up executing
unexpected code in the middle of the JMP Patchlet instruction. We recommend using
some powerful disassembler (e.g., IDA) to determine whether original instructions at your
potential patch location happen to be a destination of any jump or call.

nmov ecx, edi mov edi

cnp ecx, esi ’% cnp ecx,— esi

Absolute calls and jumps can be safely relocated.

32-bit relative calls can be safely relocated as we're recalculating their offset operands to
work at their relocated address.

(c) Opatch by ACROS Security, 2017 -8-

https:

Opatch.com

https://0patch.com/

PATCH

8. Patchlet Import Table

If needed, a patchlet can make calls to functions - for instance, Windows API functions or functions in
the module it is patching. This is done by having desired functions imported to the Patchlet Import
Table (PIT) using the PIT keyword. Let’s look at some examples of imported functions in a patchlet

injected into myapp . exe.

PIT user32.dll!MessageBoxW,myapp.exe!0x7798

The above instruction makes two functions available to the patchlet (note their names start with

“PIT

1.

" to avoid confusion with local labels):

PIT MessageBoxW: The MessageBoxW function exported from Windows’ system library
user32.dll, and

PIT 0x7798: Location at offset 0x7798 from myapp . exe’s base. This can be very useful
in case your patchlet implements some sanity check (e.g., for excessive height or width of an
image) and the appropriate response would be to leave the patched function: using an
import like this allows your patch to simply jump to the function epilog instead of having to
replicate said epilog, usually comprising several POP instruction, ESP manupilation and a
RET. Note that while you can use this notation to reference non-exported
functions/locations from any binary, it is only safe to reference locations from the binary
you’re patching, as this guarantees that you’re using the correct version of binary. You
wouldn’t want to reference a non-exported function from some DLL that might be different
on another user’s system.

In addition, there is one other function that is always available for calling from patchlet code:

3.

PIT ExploitBlocked: If you call this function (it takes no arguments), Opatch Agent will
display an “Exploit Attempt Blocked” popup to the logged-in user. While the dialog requires
manual closing, this function is not blocking and returns as soon as it sends out an instruction
to show the popup. (The popup is displayed by Opatch Tray.)

Some guidelines for using imported functions:

Avoid calling functions if possible. Any function call is likely to significantly increase the
amount of code executed by your patch.

The most safe-to-use functions are those from the module that is being patched, either
exported functions or functions you specify by offset from the module base. That module’s
code is namely always guaranteed to be the same on all computers, as the patch will not get
applied if the module’s hash does not match the hash specified in the patch.

It may sound safe to import functions from the main executable of the patched process (e.g.,
you’re patching 1ib.d11 that gets loaded by app . exe, and you want to import a function
from app . exe). But there are risks here: What if another executable also loads 1ib.d11

(c) Opatch by ACROS Security, 2017 -9-

https:

Opatch.com

https://0patch.com/

PATCH

and your patchlet can’t find an exported function from app . exe? Worse yet, what if you're
importing a function from offset 0x888 from app . exe, and then an update replaces
app.exe butleaves 1ib.d11 intact? Your patchlet will still get appliedto 1ib.d11 and
will call a “function” at offset 0x888 into app.d11 — this will likely not be the function you
intended to call but rather some random code.

e Even for the safest of function calls, you have to be sure that the binary you’re importing a
function from is already loaded when the module you’re patching is loaded (so that the
imported function will already be there), and that it will remain loaded until the process exits
(so that you don’t end up calling a function in an already-unloaded module, and crash).

e Be aware that Windows API functions may behave differently on different Windows versions
(and even between service packs or monthly updates). Some functions may even only exist
on newer Windows versions: RemoveDl11Directory, forinstance, only exists on
Windows 8 or later and Windows Server 2012 or later. Note that a patch will not get applied
unless all imported functions from all its patchlets can be found.

e When a patched module is loaded, all its patches are copied to an internal cache, and at that
time, all PIT addresses are calculated based on the current base of the modules they refer to.
For example, if PIT includes 1ib.d11! function, the address of functionin 1ib.d11 is
determined using Get ProcAddress and stored to the PIT. This introduces some risks you
need to consider:

o If1ib.d11 gets unloaded at a later time, PIT will point to an invalid address and
executing the patch code will result in a crash.

o Iflib.d11 is not yet loaded in the process when we find it in PIT, Opatch loader will
force load it — which will result in its d11main () function getting executed,
provided it has one. This may have unexpected results as this function may assume it
will only get executed after some other initialization has taken place, and that may
not be the case now.

o If1lib.d11 is not yet loaded in the process when we find it in PIT, Opatch loader
calling LoadLibrary ("1ib.d11") may resultin a binary planting vulnerability.

9. Anatomy Of a Patch File

A .Opp patch file is formatted in the following way:

e Patch data section: This section specifies the main parameters for the patch, such as patch
ID, the binary it patches, the vulnerability ID, and whether it’s a 32-bit or 64-bit patch. This
section is followed by one or more patchlet sections.

e Patchlet section: This section, beginning with patchlet start and ending with
patchlet end, specifies two things:

1. the main parameters for the patchlet, such as patchlet ID, offset for injecting the
patchlet code, optional number of bytes of original code to jump over and optional
imported functions the patchlet code is going to call;

(c) Opatch by ACROS Security, 2017 -10-
https://Opatch.com

https://0patch.com/

PATCH

2. patchlet code, beginning with code start and ending with code end, contains
patchlet’s assembly code in the NASM? format

The following image shows an actual .Opp file for the Foxit Reader FlateDecode Use-After-Free
vulnerability ZDI-16-392". You can see that it begins with a Patch data section, which is followed by
two Patchlet sections. (We patched this use-after-free vulnerability by sabotaging the free and
marking the not-freed buffer with a “BADBAFFA” marker, then catching this marker at use and
preventing its use.)

MODULE PATH "C:\Program Files (x86)\Foxit Software\Foxit Reader‘\FoxitReader.exe"
PATCH ID 230
PATCH FORMAT VER 2

PraTFOR wins2 Patch data
patchlet start
PATCHLET ID 1 PatChlet 1

PATCHLET TYPE 2

PATCHLET OFFSET Ox004393AE6
N_ORIGINALBYTES 5
JUMPCVERBYTES 2

code_start PatCh|Et COde

Jz BETURH ; if ecx is 0, return
; (remember that the last instruction before entering this patch
; code was "test ecx, ecx", and that the JZ we removed was just
; going to jump to retn, which we can do here as well
cmp dword [ecx+8], OxBADBAFFRA ; does ecx point to a previously "freed" buffer?
Jz BETURH ;if so0, return
jmp RESUME
RETURI:
retn
RESUME :

code_end

patchlet end

patchlet start P h | 2
PATCHLET ID 2 atc Et
PATCHLET TYPE 2

PATCHLET OFFSET 0x00495663

N ORIGINALBYTES 5

JUMPCOVERBYTES 5; we eliminate the 5-byte call to free as we will write BADBAFFA to it

code start
mov dword [esi], OxBADBAFFL ; instead of freeing esi, we write BADBAFFA to it

code end

patchlet end

? http://www.nasm.us
* http://www.zerodayinitiative.com/advisories/ZDI-16-392/

(c) Opatch by ACROS Security, 2017 -11-
https://Opatch.com

https://0patch.com/
http://www.nasm.us/
http://www.zerodayinitiative.com/advisories/ZDI-16-392/

PATCH

10. Patch File Keywords

Patch Data

Keyword Mandatory | Description

RUN_CMD No Full path to the executable you want to have launched
when selecting “Build+Debug” from the shortcut menu
on a .0pp file. Opatch Builder will launch this executable
in WinDbg debugger.

MODULE PATH Yes Full path to the binary to be patched. Opatch Builder
calculates a crypto hash from the content of this file and
stores both filename (without path) and this hash to the
patch blob. The patch will only be applied to binaries with
the same name and the same hash.

PATCH ID Yes Unique identifier for this patch. If a patch with this ID
already exists in your local Opatch Agent’s database, that
patch will be overwritten with this one when you build it.

PATCH FORMAT VER Yes The only supported format version at this time is 2.

VULN ID Yes ID of the vulnerability this patch is fixing. If a vulnerability
with this ID exists in your local Opatch Agent’s database,
its title and CVE ID will be shown in the Opatch Console
and on Opatch popups. If you don’t know this ID, we
recommend using some arbitrary large value such as
10000.

PLATFORM Yes win32 for 32-bit binaries or win64 for 64-bit binaries

Patchlet Data

Keyword Mandatory | Description

PATCHLET ID Yes Unique identifier for this patchlet inside the patch. Make sure

that each patchlet in a patch has a different ID; we
recommend using 1, 2, 3...
PATCHLET TYPE Yes The only supported patchlet type at this time is 2.
PATCHLET OFFSET Yes Offset from the base of the module where the patchlet is to

be injected. The patchlet gets injected before the instruction

(c) Opatch by ACROS Security, 2017

https://0patch.com

-12 -

https://0patch.com/

PATCH

at this offset, while the said instruction (and if needed,
subsequent instructions) gets relocated to another place in
memory where it will be executed after the patchlet code.
This value can be either in hex (0xAAAAAAAA format) or
decimal (AAAAAAAA format). We recommend using hex
format.

N ORIGINALBYTES

No

The number of original bytes at the PATCHLET OFFSET
location that get verified before the patchlet is applied.
Default value is 5, which is all bytes overwritten by our “jump
to patchlet” instruction.
The only use cases for setting this value we know of are:
1) injecting at a location of a JUMP or CALL that gets
relocated by Windows according to the PE relocation
table (in this case we set N ORIGINALBYTES to 1
as only the instruction code is constant);
2) injecting at a location where the to-be-patched code
does not exist in its final form at module load time -
e.g., is either decrypted or decoded after the module
loads (in this case we set N ORIGINALBYTES to 0).

JUMPOVERBYTES

No

The number of bytes of the original code we want to jump
over (i.e., effectively remove) after the execution of patchlet
code is completed. Default value is 0, which means we want
to keep all of the original code. If you set this value, you must
make sure that the number of bytes you specify corresponds
to the actual length of original instructions from the
PATCHLET OFFSET location forward. For instance, you can
use JUMPOVERBYTES 3 for jumping over two instructions
xor eax, eax (2-byteinstruction)and inc esi (1-byte
instruction) located at PATCHLET OFFSET.

PIT

No

Patchlet import table — allows you to specify exported
functions or offset-based locations, either in the module
you’re patching or some other module. Format is:

PIT

<module namel>!<function name or offsetl>,
<module name2>!<function name or offset2>,

See section 9 for more information.

code start
code end

Yes

Non-empty patchlet code (to be injected right after the
original code instruction at PATCHLET OFFSET) must be
located between these two keywords; the code must be in
NASM format as it’s being compiled by NASM.

(c) Opatch by ACROS Security, 2017

https://0patch.com

-13 -

https://0patch.com/

PATCH

11. Building A Sample Patch

This section will guide you through the process of building a sample patch. You’ll need the following
setup before you begin:

1) A Windows computer with one of the following Windows versions’:
a. Windows 10 64-bit
b. Windows 8.1 64-bit
c. Windows 7 64-bit
d. Windows 7 32-bit
e. Windows XP 32-bit

2) The latest version of Opatch Agent for Developers must be installed and registered on your
computer. You can download the agent installer from
https://dist.0patch.com/download/latestagentdev. After successful installation, you will be

prompted to register your agent when the Opatch Console is launched for the first time. Use
your existing Opatch account credentials if you already have one, or register a new account at
https://dist.0patch.com/User/Register.

(Note that if you currently have Opatch Agent installed, you will need to manually uninstall it

and install Opatch Agent for Developers; while they share much of the code base, these are
two distinct products. If unsure about which Agent you have installed, look at its version
number: if the last five digits look like “2xxxx”, it is Opatch Agent for Developers, otherwise it
is the production Opatch Agent.)

3) Opatch Agent for Developers sample package must be unpacked on your computer in a
folder of your choice. The package can be downloaded from
https://Opatch.com/files/DevAgentSamplePackage.zip.

4) WinDbg must be installed if you want to use the “Build+Debug” feature. On 64-bit systems,
we recommend installing both 32-bit and 64-bit WinDbg. We are officially supporting the
following WinDbg versions®:

a. WinDbg 6.12.2.633 on pre-Windows 7 systems
b. WinDbg 6.3.9600.16384 on Windows 7 and newer systems

5) System-wide WinDbgDir _environment variable(s) must be set if you want to use the
“Build+Debug” feature:
a. On 32-bit and 64-bit systems, WinDbgDir x86 environment variable must be set
to the directory of 32-bit windbg. exe; for the default installation location of 32-bit
WinDbg 6.3.9600.16384, you can use the following command to set this variable:

> Other Windows versions back to Windows XP and Windows Server 2003 likely work as well, although we have
experienced problems with deploying a patch to registry on Vista.

® Other WinDbg versions are likely to work well too, but there may be some differences in options, flags or
features that could cause incompatibility issues.

(c) Opatch by ACROS Security, 2017 -14 -
https://0Opatch.com

https://0patch.com/
https://dist.0patch.com/download/latestagentdev
https://dist.0patch.com/User/Register
https://0patch.com/files/DevAgentSamplePackage.zip

PATCH

setx WinDbgDir x86 "C:\Program Files (x86)\Windows
Kits\8. l\Debuggers\x86"

b. On 64-bit systems, WinDbgDir x64 environment variable must be set to the
directory of 64-bit windbg . exe; for the default installation location of 64-bit
WinDbg 6.3.9600.16384, you can use the following command to set this variable:
setx WinDbgDir x64 "C:\Program Files\Windows
Kits\8.1\Debuggers\x64"

Having all the above, you're ready to start. Let’s go!

Step #1: Launch SmokeTest_x86.exe

SmokeTest x86.exe (part of the sample package you have downloaded) is our sample
executable that does one thing only: it pops up a “Hello World!” message box. Double-click this
executable and notice the message, then close it.

Step #2: Build a patch

zP-SmokeTest x86.0pp isa patch source file for patching SmokeTest x86.exe by simply
injecting a callto PIT ExploitBlocked, which should result in displaying a Opatch “Exploit
Attempt Blocked” popup when the test executable is executed.

Right-click on ZP-SmokeTest x86.0pp and select “Build Patch”. A command interpreter
(cmd. exe) window shortly appears, then a UAC prompt is displayed asking your permission to
launch Registry Editor. Confirm the UAC prompt. The command interpreter window closes.

If everything went well, you have just created a patch with ID 20000 for SmokeTest x86.exe.
Open the Opatch Console and find patch #20000 at the end of the list in the “PATCHES” tab. You'll be
able to disable and enable this patch there from now on.

(c) Opatch by ACROS Security, 2017 -15-
https://Opatch.com

https://0patch.com/

® PATCH

Step #3: Launch patched SmokeTest_x86.exe

Double-click SmokeTest x86.exe and notice that, in addition to the “Hello World!” message
box, an “Exploit Attempt Blocked” popup also appears as a result of your patch injecting a call to
PIT ExploitBlocked inthe code of the testing executable.

st uid.exe [m7 SmokeTest_x86.exe
| SmokeTest_x86.exereq g ZP-SmokeTest_x64.0pp
A=
X
EXPLOIT ATTEMPT
BLOCKED
Exploit attempt was blocked in process:
SmokeTest_x86.exe
FATCH ID: 20000
(c) Opatch by ACROS Security, 2017 -16-

https://0patch.com

https://0patch.com/

® PATCH

Step #4: Build + Debug a patch

Right-click on ZP-SmokeTest x86.0pp and select “Build+Debug Patch”. A command interpreter
(cmd. exe) window shortly appears, then a UAC prompt is displayed asking your permission to
launch Registry Editor. Confirm the UAC prompt. The command interpreter window closes and
WinDbg is launched, attached to a newly-launched SmokeTest x86.exe, as shown on the image
below.

= SmokeTest_x86.exe - WinDbg:6.3.9600.16384 X86 = B
File Edit View Debug Window Help

Command - SmokeTest_x86.exe - WinDbg:6.3.9600.16384 X386 = B

oK C:\Users\Acros\Desktop A

Symbol search path is: C:\Users\Acros\Desktop

Executable search path is:

ModLoad: 98482880 BB485808 SmokeTest x86.exe

ModLoad: 77a7@8@8 77bda@es ntdll.dll

ModLoad: 77698888 77790000 :\Windows'system32\KERNEL32.DLL

ModLoad: 75568880 75639888 C:\Windows\system32\KERMELBASE.dll

ModLoad: 75948880 753956888 C:\Windows\system32\USER32.d1l

ModLoad: 71498888 71533882 C:\Windows\WinSx5\x86_microsoft.vco9@.crt_1fcBb3b9alelse3b 9.8.387:
ModLoad: 75b7@8868 75c82808 C:\Windows\system32\GDI32.d1l

(1b79.19b@): Break instruction exception - code 3@eeesd3 (first chance)

*** ERROR: Symbol file could not be found. Defaulted to export symbols for ntdll.dll -
eax=Aa0e8a88 cbx=0A08B008 ecx=B@13Taec edx=77adca’@ esi=7ffdfeee edi-eeeccese

I

eip=77b183d4 esp=0813fbB3 ebp=0@13fb34 iopl=08 nv up ei pl zr na pe nc
cs=881lb ss5=8823 ds=0823 es=0023 Ts=083b gs=0000 efl=-peBaB246
ntdll!LdrInitShimEngineDynamic+axGed:

77b183d4 cc int 3

Processing initial command '.ccommand @patchloaderWinDbgCallback’
@:888> .ocommand @patchlLoaderWinDbgCallback
Treat output prefixed with '@patchLcaderWinDbgCallback’ as a command

£ >

b:@@9> |

Ln0, Col0 Sys:<lLocal> Proc000:1b70 Thrd 000:19b0 ASM OVR | CAPS NUM

(c) Opatch by ACROS Security, 2017 -17 -
https://Opatch.com

https://0patch.com/

PATCH

Make sure the focus is on WinDbg's Command window and press F5; WinDbg should continue with
execution and stop on breakpoint 200001 at a JMP instruction, as shown on the image below. This is
the exact JMP instruction Opatch Agent has put in the original code to inject the patchlet code.

o] SmokeTest_x86.exe - WinDbg:6.3.9600.16384 X86 = B
Eile Edit View Debug Window Help
Command - SmokeTest x86.exe - WinDbg:6.3.9600.16384 X86 = B
Processing initial command '.ocommand @patchLoaderWinDbgCallback’ ~

@:8@8> .ocommand @patchlLoaderiinDbgCallback

Treat output prefixed with '@patchLcaderWinDbgCallback’ as a command
B:pear g

ModLoad: 77288888 772268808
ModLoad: 75630000 75792080
ModLoad: 75a3a@@ed 75be3eea
ModLoad: 66748088 657beBB@
ModLoad: 752de8ee 75455000
ModLoad: 77838888 778acked
ModLoad: 77@besee 77ebeooe
ModLoad: 78858880 70553000
ModLoad: 715Tesa8 717316860
ModLoad: 752ceBes 752ceeeq
ModLoad: 75868888 758alf88
ModLoad: 77790080 77360000
ModLoad: 75468880 754533000
ModLoad: 72586088 72525080
ModLoad: 74dleeee 74d29080

t\Windows\system32\IMM32.DLL
:\Windows'\system32\MSCTF.d11
sA\Windows'\system32\msvert.dll

:\Program Files\@patch\Agent\®PatchlLoader.dll
:\Windows\system32\CRYPT32.d11
t\Windows\system32\ADWAPI32.d11
:\Windows'\system32\PSAPI.DLL
:AWindows\SYSTEM32\WERSION.d11
D\Windows\SYSTEM32 \dbghelp.dll
:\Windows\system32\M3ASNL.d11
\Windows\S¥YS5TEM32\sechost.d1l
s\Windows'system32\RPCRT4.d11
:\Windows\system32\SspiCli.dll
t\Windows\SYSTEM32\ntmarta.dll
:\Windows\SYSTEM3I2\CRYPTSP.d11

Modload: 7@la@@ee 78lciens \Windows\system32idssenh.dll

ModLoad: 74e48080 74260000 DA\Windows\SYSTEM32\bcrypt.dll

ModLoad: 75@b@ees 7s5le4eed C:\Windows\system32\bcryptprimitives.dll

**%* ERROR: Symbol file could not be found. Defaulted to export symbols for C:\Windows)system3:

[aN e aE NN T iR i el el

[@patch Tools]: Setting breakpoint:
200001 = Q8401000 8881 (9B9Ll) @:%*** *** FRROR: Module load completed but symbols could nc
SmokeTest x86+8x1088

Breakpoint 28@e8l hit
**¥* ERROR: Symbol file could not be found. Defaulted to export symbols for C:\Windows)\system3:

eax= a ebx= eCK= 65 edx= 4 esi=001b28dl edi=P848337c
eip=0@481888 esp=0813fef4 ebp=B@13ff3@ iopl=08 nv up ei pl zr na pe nc
cs5=@81b s55=8823 ds=8823 es5=80823 {s5=083b gs=0000 efl=ppRRa245
SmokeTest_xB6+8x1008:
8a481008 e977fBdoff jmp Balada7c
v
£ >
o : 006> | -

Ln0, Col0 Sys(:<Local> Proc000:1b70 Thrd 0D0:19b0 ASM @ OWR CAPS NUM

As you can see, WinDbg first received an external command (via . ocommand from Opatch Agent
running inside the debuggee) for setting breakpoint #200001 at location 0x00401000, which is the
location where we inject our patchlet code. Subsequently, as execution continued, this breakpoint
was hit.

(c) Opatch by ACROS Security, 2017 -18-
https://Opatch.com

https://0patch.com/

® PATCH

Step over the JMP instruction to get into the patchlet code, as shown on the image below. As you
can see, the patchlet code consists of a single call (to PIT ExploitBlocked), after which there if
a JMP to the original instructions that were relocated before the Agent overwrote them with the
JMP to patchlet code.

3 SmokeTest_x86.exe - WinDbg:6.3.9600.16384 X86 - o
File Edit View Debug Window Help
Command - SmokeTest x86.exe - WinDbg:6.3.9600.16384 X86 = B
e Disassembly - SmokeTest_x86.exe - WinDbg:6.3.9600.16384 X86 — = - |
':E Offset: | @3scopeip Previous MNext
Mc |B@laB@se eoel add byte ptr [eax],al
Mc |e@lakece eooe add byte ptr [eax],al
Mc (@@laBec2? eoen add byte ptr [eax],al
Mo |@0lapesd BOEO add byte ptr [eax],al
Mc |@@laB@cs @00 add byte ptr [eax],al
Mc (@@laBlcs eoen add byte ptr [eax],al
Mo |e@laleca @008 add byte ptr [eax],al
Mc |@@la@dec 3T aas
Mc |@@lap@ed 6875666838 push 3B686675h
Mc |#81la@a72 687566c3TT push AFFC36675h
Mc |881a@B77 156cB8lade adc eax, LABBaCh
el |eeladd7c eSeffififf call BB1aba7e
Mc [@@lapesl ff2587001a08 jmp dword ptr ds:[1A8887h]
Mc |881a@@87 2cB8 sub al,@
*1 |3B1aBe50 1laed sbb al,byte ptr [eax]
Belapesh eoen add byte ptr [eax],al
[¢ |e@ladesd @888 add byte ptr [eax],al
2¢ |eelaeest eooo add byte ptr [eax],al
Sn |BBlaBeol eaea add byte ptr [eax],al
B81laBad3 oooe add byte ptr [eax],al
Er |2Blale95 esen add byte ptr [eax],al
*4 |B81aB@d7 o880 add byte ptr [eax],al
ez
eip=08401088 esp=0813fef4 ebp=pR13ffeR iopl=0 nv up ei pl zr na pe nc
cs=881lb ss5=8823 ds=0823 es=0023 Ts=083b gs=0000 efl=-peBaB246
SmokeTest_x56+8x1000:
Be4elea =977fadoff jmp Bala@a’c
Bieaer p
eax=0000000a cbx=-0B0BEBA0 ecx=0000RRES edx=0000B084 esi=EB01b26d1l edi=BB4B8337c
eip=081a887c esp=-8013fefd4 ebp=08813Tf50 iopl=0 nv up ei pl zr na pe nc
cs=881b s5=0023 ds=0823 es=0023 Ts=083b gs=0000 efl=860808245
B@lapeic eBeffffiff call Belaga’e
v
£ >
lo:ae0> | B
LnQ, Col0 Sys(:<local> Proc000:1b70 Thrd 000:1900 ASM OWVR CAPS NUM

Step over the CALL to see the “Exploit Attempt Blocked” popup.

(c) Opatch by ACROS Security, 2017 -19-
https://Opatch.com

https://0patch.com/

® PATCH

Finally, step over the JMP to see how execution continues with the relocated original code. As you

can see on the image below, the original code consists of two PUSH instructions; Opatch Agent had
to relocate them both as the first one takes up only 2 bytes and the JMP to patchlet code needs 5

bytes. After the relocated PUSH instructions, you can see a JMP to the original code immediately

following the original location of these two relocated instructions.

Command - SmokeTest_x86.exe - WinDbag:6.3.9600.16384 X86

4 esi=@@lb2edl edi=0848337c
nv up ei pl zr na pe nc
efl=08600245

4 esi=@@lb2edl edi=0848337c
nv up ei pl zr na pe nc
efl=08600245

= SmokeTest_x86.exe - WinDbg:6.3.9600.16384 X86

File Edit View Debug Window Help

[Mc Disassembly - SmokeTest_x86.exe - WinDbg:6.3.9600.16384 X86

':E Offset | @%scopeip

Mo |P@laBRlc eeae add byte ptr [eax],al

Mc |@@lakels oeoe add byte ptr [eax],al

Mc |P@labala @008 add byte ptr [eax],al

Mo |BBlaB@lc @8BS add byte ptr [eax],al

*1 |BA1afale BOBG add byte ptr [eax],al
B8laBe2e epen add byte ptr [eax],al

[¢ |@@laBB2? @888 add byte ptr [eax],al

2¢ |PBlafe24 GBEO add byte ptr [eax],al

Sn |9Blal@2s BEEE add byte ptr [eax],al
88128828 G008 add byte ptr [eax],al

Br |P@1a0@2a @808 add byte ptr [eax],al

*

p: |P0la@e2e 63fc2adp00 push offset SmokeTest_x36+@x28fc (@e4028fc)

ei |@@lal@33 egcfef2eesn jmp smokeTest x86+8x1887 (Be481887)

c: |PB1aba33 e8e8 add byte ptr [eax],al

Sn |9@lal@3a o8B add byte ptr [eax],al

@¢ |@@laf@3c 088 add byte ptr [eax],al

@: |P2ladeie G000 add byte ptr [eax],al

e: |PBlaBE4B BBEE add byte ptr [eax],al

ei |B@laG@4? ceee add byte ptr [eax],al

c: |PRla0e44 BBEE add byte ptr [eax],al

B¢ |@@lab@ds GBEG add byte ptr [eax],al

B .

eax= a ebx= eCx= 65 edx=

eip=081a8881 esp=0813fefd4 ebp=0813ffE8 iopl=0

cs=881b s55=0823 ds=8823 es=0823 Ts=083b gs=0880

Belapesl ff258708la08 jmp dword ptr ds:[128887h] ds:8023:801a8837=001a882C

B:aaex p

eax= a ebx= eCx= 65 edx=

eip=081aB@2c esp=0@13fefd4 ebp=0813ffE8 iopl=0

cs=881b s55=0823 ds=8823 es=0823 fs=083b gs=0880

B8laBB2c 6ale push]

<

|9:B-B-B> |

Ln0, Col0 SysO:<lLocal>

(c) Opatch by ACROS Security, 2017

https:

Opatch.com

Proc 000:1b670 Thrd 000:19b0 | ASM

OVR CAPS NUM

-20-

https://0patch.com/

PATCH

12. Final Notes

If you’re as passionate about fixing vulnerabilities as we are, you will want to get to the point of
writing production-quality patches that can actually be distributed to millions of endpoints
around the World and potentially applied even before the attackers had enough time to build
reliable exploits. We’re working hard on building the infrastructure to allow you to submit your
patches for an independent quality and security review, and finally have them distributed to
users for a decent compensation.

Do let us know about your experience with building patches. We'll appreciate your suggestions,
ideas, criticism and bug reports, as well as words of encouragement. We’re building this product
for you and we need your input to make your work easier and more efficient. Your comments on
our documentation are also highly welcome. Email us at support@Qpatch.com.

13. Troubleshooting

Problem: Disabling a patch while the patched process is being debugged with WinDbg results in a
»Unable to insert breakpoint« WinDbg error.

Solution:
1. Thisis a bugin our code, waiting to be fixed. Until it is fixed, avoid disabling a patch during

debugging.

Problem: Building a Opp file results in a »Buffer out of bounds« error in the last line of the file.

Solution:
1. Thisis a bugin our code, waiting to be fixed. As a workaround, make sure that your Opp file does

not have any empty lines at the end.

(c) Opatch by ACROS Security, 2017 -21-
https://Opatch.com

https://0patch.com/
mailto:support@0patch.com

