New Aspects of Heterotic Geometry and Phenomenology

Lara B. Anderson

Harvard University

Work done in collaboration with:

J. Gray, A. Lukas, and E. Palti: arXiv: 1106.4804, 1202.1757

J. Gray, A. Lukas and B. Ovrut: arXiv: 1010.0255, 1102.0011, 1107.5076, 1208.????

Strings 2012 – LMU, Munich

July 25th, 2012

• • • • •

Motivation

• String theory is a powerful extension of quantum field theory, but extracting low-energy physics from string geometry is mathematically challenging...

Higher dimensional geometry \rightarrow String Comp. \rightarrow 4d physics

- Need a good toolkit in any corner of string theory to extract the full low energy physics: (missing structure in the N = 1 lagrangian, coupings, moduli stabilization, etc.)
- Rules for "top down" model building? Patterns/Constraints/Predictions?

An algorithmic approach:

Rather than attempting to engineer/tune a single model, can we develop general techniques? Produce a large number (i.e. billions) of consistent, global models and then scan for the desired properties? Identify: Patterns? Clara Anderson (Harvard) New Aspects of Heterotic Geometry and Phenomenolo Strings - July 25th, '12 2/18

A smooth $E_8 \times E_8$ heterotic compactification:

- The geometric ingredients include:
 - A Calabi-Yau 3-fold, \boldsymbol{X}
 - Two holomorphic vector bundles, $V_1 \subset$ "Visible E_8 ", $V_2 \subset$ "Hidden E_8 " on X (with structure group $G_i \subset E_8$).
- Compactifying on X leads to $\mathcal{N} = 1$ SUSY in 4D, while V breaks $E_8 \rightarrow G \times H$, where H is the Low Energy GUT group
 - G = SU(n), n = 2, 3, 4, 5 leads to $H = E_7, E_6, SO(10), SU(5)$
- Matter and Moduli:

 $248_{\textit{E}_8} \rightarrow [(1,24) \oplus (5,\bar{10}) \oplus (\bar{5},10) \oplus (10,5) \oplus (\bar{10},\bar{5}) \oplus (24,1)]_{SU(5) \times SU(5)}$

SU(5)-Charged	$n_{10} = h^1(V), n_{\overline{10}} = h^1(V^*), n_5 = h^1(\wedge^2 V^*), n_{\overline{5}} = h^1(\wedge^2 V)$
Moduli (n_1)	$X \Rightarrow h^{1,1}(X)$ Kähler, $h^{2,1}(X)$ Complex Structure
	$V \Rightarrow h^1(X, V \otimes V^*)$ Bundle moduli, (+ Dilaton, $M5$)

Two new ideas, both based on Vector bundles, V_i , and conditions for N = 1SUSY: (Hermitian-Yang-Mills) $\delta \chi = 0 \Rightarrow \begin{cases} F_{ab} = F_{\bar{a}\bar{b}} = 0\\ g^{a\bar{b}}F_{a\bar{b}} = 0 \end{cases}$

Model Building

- Idea: Make V_1 simpler. Easier to solve $g^{a\bar{b}}F_{a\bar{b}} = 0$.
- A simpler construction for the visible sector vector bundle allows us to find many models with Standard Model spectra. Provides a probe into general moduli space.

Moduli Stabilization

- Idea: Make V_2 more complicated. $F_{\bar{a}\bar{b}} = 0$ constrains moduli.
- Must determine what the moduli of the theory are and how to fix them. Values appear in Yukawa couplings, gauge couplings, etc.
- It is possible to choose vector bundles, V, which are only holomorphic at special points in complex structure moduli space of their base X.

Observation: At special loci in moduli space, bundle structure groups can (and often do) "split", causing the low energy gauge group to enhance.

Bundle4d Symmetry
$$SU(5) \rightarrow S[U(4) \times U(1)]$$
 $SU(5) \rightarrow SU(5) \times U(1)$ $V \rightarrow U_4 \oplus L$ $(c_1(U_4) + c_1(L) = 0)$

Can consider "maximal" splitting

$$\begin{aligned} SU(5) &\to S[U(1)^5] \\ V &\to \bigoplus_a^5 L_a \quad (\sum_a c_1(L_a) = 0) \end{aligned}$$

• $V_{split} = \bigoplus_{a} L_{a} \Rightarrow$ much easier to handle technically (HYM easy!)

- V_{split} resides in a larger, non-Abelian bundle moduli space and still carries many of the properties of generic, non-Abelian bundles
- The enhanced U(1) symmetries are Green-Schwarz anomalous (massive) and most matter becomes charged under them.

- Scanned over $\sim 10^{12}$ bundles V_{split} over 65 Calabi-Yau 3-folds with $h^{1,1} \leq 5.$
- Found 2122 models with exact MSSM spectrum and no exotics.
- Can group these into 407 families with distinct symmetries.
- Discrete remnants of anomalous U(1) symmetries constrains the superpotential, Kahler potential, etc...
- Further (hopefully exhaustive) scans ongoing. Still a long way to go...
 - $\bullet\,$ Only 198 (of 407) free from dim 4,5 proton decay
 - 45 with $rk(Y^{(u)}) > 0$, etc.

Now on to moduli stabilization and the hidden sector...

A D > A P > A B > A

- Holomorphy: $F_{\bar{a}\bar{b}} = 0.$
- In 10d:

$$S_{partial} \sim \int_{M_{10}} \sqrt{-g} \{ (F^{(1)}{}_{ab}F^{(1)}{}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}}) + (F^{(2)}{}_{ab}F^{(2)}{}_{\overline{a}\overline{b}}g^{a\overline{a}}g^{a\overline{a}}) \dots \}$$

- For the 4*d* Theory: Holomorphy obstructions should appear through 4*d* F-terms. Superpotential $W = \int_X \Omega \wedge H$ where $H = dB - \frac{3\alpha'}{\sqrt{2}} (\omega_3^{\text{YM}} - \omega_3^{\text{L}})$ and $\omega_3^{\text{YM}} = A \wedge dA - \frac{1}{3}A \wedge A \wedge A$. But how to explicitly compute?
- Start with $F_{\bar{a}\bar{b}} = 0$, w.r.t a fixed complex structure. What happens as we vary the complex structure? Must a bundle stay holomorphic for any variation $\delta \mathfrak{z}' v_l \in h^{2,1}(X)$? \Rightarrow No.
- Infinitesimally, we must solve:

$$\delta \mathfrak{z}' v_{I[\bar{\mathfrak{a}}]}^{c} F_{|c|\bar{b}]}^{(0)} + 2 D_{[\bar{\mathfrak{a}}]}^{(0)} \delta A_{\bar{b}]} = 0$$

(a)

We must take the holomorphy condition

$$\delta \mathfrak{z}' v_{I[\bar{a}]}^{c} F_{|c|\bar{b}]}^{(0)} + 2D_{[\bar{a}]}^{(0)} \delta A_{\bar{b}]} = 0$$

into account to determine the real moduli of a heterotic compactification. Naively: $h^{1,1}(X) + h^{2,1}(X) + h^1(End_0(V_1)) + h^1(End_0(V_2))$. Not that simple...

Physics Idea Use bundle holomorphy to constrain C.S. Moduli of X. New moduli stabilization tool.

Math Question Given a CY, X, how to find/engineer bundles that are holomorphic only at special loci (ideally isolated pts) in CS moduli space?

Deformation Space – Def(X, V): Simultaneous holomorphic deformations of

V and X. The tangent space is $H^1(X,\mathcal{Q}),$ defined via Atiyah Sequence

$$0 \to V \otimes V^{\vee} \to \mathcal{Q} \xrightarrow{\pi} TX \to 0$$

 \mathcal{Q} is the projectivized total space of the bundle $\mathbb{P}(V) \to X$.

• The long exact sequence in cohomology gives us

$$0 \to H^1(V \otimes V^{\vee}) \to H^1(\mathcal{Q}) \stackrel{d\pi}{\to} H^1(TX) \stackrel{\alpha}{\to} H^2(V \otimes V^{\vee}) \to \dots$$

• We must determine: $H^1(X, \mathcal{Q}) = H^1(X, V \otimes V^*) \oplus Ker(\alpha)$ where

$$\alpha = [F^{1,1}] \in H^1(V \otimes V^{\vee} \otimes TX^{\vee})$$

is the Atiyah Class

• C.S. moduli allowed $\alpha(\delta \mathfrak{z} v) = 0$ $(0 \in H^2(V \times V^{\vee}))$. I.e. in $Ker(\alpha)$,

$$\delta \mathfrak{z}' v_{I[\bar{\mathfrak{z}}]}^{c} \mathcal{F}_{|c|\bar{b}]}^{(0)} = -2D_{[\bar{\mathfrak{z}}]}^{(0)} \delta A_{\bar{b}]}$$

 $H^1(X, \mathcal{Q})$ are really the moduli

A simple example

• Consider an SU(2) bundle defined by a extension in $Ext^1(\mathcal{L}^{\vee}, \mathcal{L})$:

$$0
ightarrow \mathcal{L}
ightarrow \mathcal{V}
ightarrow \mathcal{L}^{ee}
ightarrow 0$$

In principle, such a bundle can stabilize arbitrarily many moduli.

- For example, consider $\mathcal{L} = \mathcal{O}(-2, -2, 1, 1)$ on the CY, $X = \begin{bmatrix} \mathbb{P}^1 & 2 \\ \mathbb{P}^1 & 2 \\$
- Why this one? Here $Ext^1(\mathcal{L}^{\vee}, \mathcal{L}) = H^1(X, \mathcal{O}(-4, -4, 2, 2)) = 0$ generically. Hence cannot define the bundle for general complex structure!
- Happily, cohomology can "jump" at higher co-dimensional loci in Complex Structure moduli space.
- This is a easy example of "structural" C.S. dependence in V. Many others... (Monads/Spectral covers/Serre Construction, etc.)

- Jumping cohomology: Suppose $H^1(X, \mathcal{L}^{\otimes 2}) \neq 0$ for starting pt., p_0 , in C.S. Question: How can we vary $p = p_0 + \delta p$ so that $H^1(X, \mathcal{L}^{\otimes 2}) \neq 0$?
 - \Rightarrow Can prove that this is equivalent to Atiyah computation for this case

In field theory:

• E_7 Singlets: $C_+ \in H^1(\mathcal{L}^{\otimes 2}), \ C_- \in H^1(\mathcal{L}^{\vee \otimes 2})$. ("Jump" together)

• Superpotential: $W = \lambda_{ia}(\mathfrak{z}) C^{i}_{+} C^{a}_{-}$

- Choose Vacuum: $< C_+ > \neq 0$ and $< C_- >= 0$ (Corresponds to non-trivial $0 \to \mathcal{L} \to V \to \mathcal{L}^{\vee} \to 0$)
- Non-trivial F-term: $\frac{\partial W}{\partial C_{-}^{i}} = \lambda_{ia}(\mathfrak{z}) < C_{+}^{i} >= 0$

• In fluctuation
$$\delta\left(\frac{\partial W}{\partial C_{-}^{b}}\right) = \frac{\partial \lambda_{ib}}{\partial \lambda_{\perp}^{I}} < C_{+}^{i} > \delta \mathfrak{z}_{\perp}^{I}$$

 $\frac{\partial \lambda_{is}}{\partial \mathfrak{z}^{\prime}}$ vanishes along locus with $\lambda = 0$. \perp to locus, $\delta \mathfrak{z}_{\perp}^{\prime}$ gets a mass. All agree with Atiyah Computation.

イロト イポト イヨト イヨ

- Everything we have discussed so far involves fluctuation around a point in C.S. moduli space. Big limitiation: You have to know where to start.
- Hard to find isolated solutions (wanted for moduli stabilization) this way.
- New Idea: Represent CS Loci (vacuum solutions to the F-terms) as an algebraic variety: $\frac{\partial W}{\partial C_{-}^{2}} = \lambda_{ia}(\mathfrak{z}) < C_{+}^{i} >= 0$
- Tools exist in computational algebraic geometry to analyze the properties of the solution space...
- Now we can scan over all possible starting points!

< ロ > < 同 > < 三 > < 三

Disconnected Loci

- Let's perform the analysis for the example... $\mathcal{L} = \mathcal{O}(-4, -4, 2, 2)$ on $X^{4,68}/\mathbb{Z}_2 \times \mathbb{Z}_4$.
- For this bundle, 27 distinct loci in Complex Structure Moduli Space
- Branches to the solution space of $\lambda_{ia}(\mathfrak{z}) < C_+^i >= 0$ range in dimension from 7 to zero in \mathfrak{z} .
- Having found isolated point-like solutions, we might think we can declare victory...
- But for the given values of C.S., we still have to check transversality of the CY: p = 0 = dp
- By Bertini's Theorem, a generic CICY is smooth, but once we are fixed to very special points in CS, singularities are a real concern...

Dimension in CS	7	5	4	3	2	1	0
Dimension of Singularities in X		0	smooth	0	0	0	2

- For this example, of the 27 branches to the solution space, all but one force the CY to be singular somewhere.
- Can we do anything with the singular solutions?
- Locally, for dim(Sing)≤ 1 we can imagine resolving (i.e. blowing-up) the singularities.
- Unfortunately, for the case at hand, all isolated point-like solutions are too badly singular. However, we can consider one of the larger loci...

▲ @ ▶ ▲ ∃ ▶

Resolution

- Consider the 5-dimensional locus with pt-like singularities in CY
- Locally, we can resolve these singular pts. But have to worry about global issues: CY condition? What happens to the bundle? Symmetries?
- Happily, there are some resolutions of singular CYs that we have good control over: Conifold Transitions.
- CY defining poly takes the form $p = f_1 f_3 f_2 f_4 = 0$. Topologically a cone over $S^3 \times S^2$. Can be resolved by introducing new \mathbb{P}^1 direction

$$\left(\begin{array}{cc} f_1 & f_2 \\ f_3 & f_4 \end{array}\right) \left(\begin{array}{c} x_0 \\ x_1 \end{array}\right) = 0$$

• Can explicitly track divisors, extension bundles, and symmetries through this geometric transition.

(日) (同) (三) (三)

• Consider the following resolution of the Tetraquadric:

$$X = \begin{bmatrix} p^{1} & 2 \\ p^{1} & 2 \\ p^{1} & 2 \\ p^{1} & 2 \\ p^{1} & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} p_{(2,2,2,2)} \rightarrow f^{1}_{(2,0,2,0)} f^{3}_{(0,2,0,2)} - f^{2}_{(2,0,2,0)} f^{4}_{(0,2,0,2)} = 0 \end{bmatrix} \Rightarrow X_{res} = \begin{bmatrix} p^{1} & 1 & 1 \\ p^{1} & 2 & 0 \\ p^{1} & 0 & 2 \\ p^{1} & 0 & 2 \\ p^{1} & 0 & 2 \end{bmatrix}$$

- Quotienting both sides by $\mathbb{Z}_2 \times \mathbb{Z}_4$, this "factored" locus intersects the dim 5 CS locus above, leads to 8 singular pts on the CY. Resolving such pts, $X \to X_{res}$.
- To check, can repeat the analysis independently with $\mathcal{L} = \mathcal{O}(0, -2, -2, 1, 1)$ on X_{res} .
- This time, 14 branches ranging from dimension 3 to 0. The resolution X gives a 2 dimensional locus in the CS space of a smooth X_{res} .
- All CICYs connected by such transitions. Reid's Fantasy?
- Not yet dynamical transitions, but provides interesting web of "stabilizing" bundles on CYs...

Conclusions

- It is possible to build phenomenologically relevant heterotic models using the simplest possible gauge configurations – sums of line bundles. ⇒ A computationally accessible arena for probing more general geometries.
- The presence of a holomorphic vector bundle constraints C.S. moduli \Rightarrow Can be used as a hidden sector mechanism for moduli stabilization.
 - Allows us to keep Kähler geometric model-building toolkit
 - Stabilized values fully determined for use in physical couplings
- Both new tools give interesting hints into connections/patterns in web of CY 3-folds linked via geometric transitions
 - Complex structure fixing bundles can carry through resolutions
 - Patterns in SM data set linking bundles over conifold pair CYs

(a)

The End

Lara Anderson (Harvard)

2

・ロト ・回ト ・ヨト ・ヨト