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Preface

The 2002 Clay School on Geometry and String Theory was held at the
Isaac Newton Institute for Mathematical Sciences, Cambridge, U.K., from
25 March through 19 April 2002. It was run jointly by the organizers of two
concurrent workshops at the Newton Institute: one on Higher Dimensional
Complex Geometry organized by Alessio Corti, Mark Gross and Miles Reid,
and the other on M-theory organized by Robbert Dijkgraaf, Michael R.
Douglas, Jerome Gauntlett and Chris Hull, in collaboration with Arthur
Jaffe, then president of the Clay Mathematics Institute.

This is the second of two books that provide the scientific record of the
school. The first book, Strings and Geometry [131], edited by Michael R.
Douglas, Jerome Gauntlett and Mark Gross, was a proceedings volume and
largely focused on the topics of manifolds of special holonomy and super-
gravity.

The present volume, intended to be a monograph, covers mirror symime-
try from the homological and torus fibration points of view. We hope that
this volume is a natural sequel to Mirror Symmetry, [242], written by Hori,
Katz, Klemm, Pandharipande, Thomas, Vafa, Vakil and Zaslow, which was
a product of the first Clay School in the spring of 2000. We shall refer to it
as MS1. A familiarity with the foundational material of MS1 can be viewed
as a prerequisite for reading this volume, and we shall often refer to MS1
for background.

The overall goal of this volume is to explore the physical and math-
ematical aspects of Dirichlet branes. The narrative is organized around
two principal ideas: Kontsevich’s Homological Mirror Symmetry conjecture
and the Strominger-Yau-Zaslow conjecture. While Kontsevich’s conjecture
predates the introduction of D-branes into physics, we will explain how the
conjecture really is equivalent to the identification of two different categories
of D-branes. In particular, we examine how the physics leads us naturally
to mathematical concepts such as derived categories and Fukaya categories.
We explore the ramifications and the current state of the Strominger-Yau-
Zaslow conjecture. We relate these ideas also to a number of active areas
of research, such as the McKay correspondence, topological quantum field
theory, and stability structures.

vii



viii PREFACE

As with mirror symmetry in general, these areas have benefited from
a remarkably fruitful interaction between mathematicians and physicists.
And, over the six year gestation period of the book, a great deal of progress
has been made in clarifying and in understanding, and in some cases proving,
the original conjectures.

It seems fair to say that to fully appreciate the resulting picture requires
having some understanding of both mathematical and physical points of
view. Conveying both in the same book has been a challenge and an oppor-
tunity. We were not satisfied to simply tell the story twice, once from each
point of view. Rather, we attempted a unified presentation, in which both
mathematics and physics have their essential insights to provide, explained
in a way that physicists and mathematicians can follow without necessarily
having all of the foundations of both subjects at their fingertips.

Part of the difficulty in doing this stems from the numerous differences
in background and language between physicists and mathematicians; while
we feel we have done a great deal to bridge these gaps, it is all the more
obvious to us how many gaps remain.

Of course there is a more essential difficulty, which is that the breadth
of topics needed to tell the entire story is such that none of the authors
are experts in all of them. We have thus divided the main part of the
writing while nevertheless striving to unify the book by extensive editing
and cross-referencing. The task was carried out by Michael R. Douglas and
Mark Gross on the basis of cross-reading and comments made by all of the
authors. Michael R. Douglas and Mark Gross take responsibility for the
book’s success or failure on this level.

Chapter 1 is intended to give a largely physical overview of the topics
of the book. Chapter 2, on topological open string theory, is due to Greg
Moore and Graeme Segal. An earlier draft of this material appeared as
arXiv:hep-th/0609042v1.

Chapters 3 and 5, on the physics of Dirichlet branes, are largely due
to Paul Aspinwall, Michael R. Douglas and Anton Kapustin. Parts of this
material appeared in arXiv:hep-th/0403166, while §§5.7 and 5.8 are heavily
based on Tom Bridgeland’s published work on stability structures.

Chapter 4, on representation theory, is largely due to Tom Bridgeland,
Alastair Craw, and Balazs Szendréi.

Chapters 6 and 8 are due to Mark Gross, while Chapter 7 is due to Mark
Gross and Pelham Wilson.

The entire manuscript was read by Robert Karp and Arthur Greenspoon,
both of whom caught numerous imprecisions and unclear points. We also
benefited from discussions with and comments by Mohammed Abouzaid,
Gary Gibbons, Akira Ishii, Dmitri Orlov, and Bernd Siebert. Several of the
authors would also like to thank the hospitality of the IHES, where portions
of the book were completed.
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Let us again repeat our thanks to those who made the 2002 school pos-
sible: H. Keith Moffatt and John Kingman, the directors of the Newton
Institute; and its staff, Wendy Abbott, Tracey Andrew, Caroline Fallon,
Jackie Gleeson, Louise Grainger, Rebecca Speechley and Christine West.

Finally, let us express our thanks to Jim Carlson and to the staff of
the Clay Mathematics Institute, especially Vida Salahi, in helping with the
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CHAPTER 1

Overview and physical background

This book is an introduction to a collection of topics at the interface
between theoretical physics and mathematics, referred to collectively as
“mirror symmetry.” The concept of mirror symmetry evolved in the late
1980’s out of the study of superstring compactification, and received its first
precise formulation in the 1991 work of Candelas, de la Ossa, Green, and
Parkes [85] conjecturing (on the basis of solid physical arguments) a formula
for the number of rational curves of given degree on a quintic Calabi-Yau
manifold, in terms of the periods of the holomorphic three-form on another
“mirror” Calabi-Yau manifold. Further developments along these lines in-
cluded Batyrev’s general mirror symmetry construction for hypersurfaces in
toric varieties and Givental’s and Lian, Liu and Yau’s proof of the validity of
the instanton number predictions of Candelas et al. In physics terms, these
developments all concern the relation between the A- and B- topologically
twisted N = 2 sigma models with Calabi-Yau target space, and relate to the
theory of closed strings in these spaces. These topics are covered in depth
in the prequel to this volume [242], as well as in [101, 458].

In the mid-nineties, two bolder developments emerged, inspired by the
physics of open string theory: Kontsevich’s 1994 proposal of homological
mirror symmetry [309], and the geometric picture put forth by Strominger,
Yau and Zaslow [433] in 1996. These ideas lifted mirror symmetry beyond
the somewhat specialized domains of enumeration problems in algebraic
geometry and two-dimensional sigma models in physics to a broader picture
with more wide-ranging importance in both fields. These two developments
and the work they inspired are the subject of our book.

We begin by recalling some of the general physical background from
string theory, and give an intuitive description of string compactification,
Dirichlet branes, T-duality and the other physical concepts we will discuss
in more depth, primarily in Chapters 2, 3 and 5. We then summarize the
mathematics behind homological mirror symmetry and SYZ, which we will
discuss in depth in Chapters 4, 6 and 7. In Chapter 8 we give a precise
formulation of Kontsevich’s original homological mirror conjecture, and the
worked example of the elliptic curve.



2 1. OVERVIEW AND PHYSICAL BACKGROUND

1.1. String theory and sigma models

The central physical object which motivates both proposals, explicitly
in Strominger-Yau-Zaslow, and which (as emerged later) lies behind Kontse-
vich’s proposal as well, is the Dirichlet brane, introduced in 1995 by Polchin-
ski.! A Dirichlet brane is defined physically as an allowed end point for an
open string, or equivalently a boundary condition in two-dimensional con-
formal field theory.

What does this mean? While various useful mathematical definitions
and explanations of conformal field theory and Dirichlet branes have been
made, at present none of them provides a completely satisfactory starting
point for our purposes. Thus, our general approach in this book will be
to explain this physics on an intuitive level, extract the parts we need, and
then provide mathematical definitions which can serve as the basis of a more
precise discussion.

In general terms, a string theory describes the motion of one-dimensional
strings, topologically loops (closed strings) or segments (open strings), in
some target space, a Riemannian manifold M. To represent the motion of
a string through time, one uses a map from a two-dimensional Riemannian
manifold 3, the world-sheet, into the target space-time (a product M x R,
where the R factor represents time).

To specify a quantum theory of strings, we must define a Hilbert space H
of “string wavefunctions,” and various linear and multilinear operations on
this space. In very rough terms, one can think of H as a space of functionals
on the loop space of M; although in detail this picture is not really right
(wave functions have support on discontinuous loops) it gives a reasonable
intuitive starting point.

The linear operations correspond to particular world-sheets, or opera-
tions on world-sheets. Given a world-sheet ¥ without boundary, the quan-
tum theory produces a number, the partition function. On each boundary
of ¥, one specifies a “boundary condition,” an element of H, and in return
gets a number. For example, the sphere with three boundaries (or “pair of
pants”) corresponds to a linear functional on H®3. Other operators acting
on ‘H correspond to varying the metric on 3 or to other physical observables.

The resulting structure, quantum field theory and conformal field theory,
is comparable to and in a sense a generalization of an algebra of functions
on M. While we will give a flavor of this subject in Chapter 3, as with
almost all work on mirror symmetry, our primary discussion will be based
on a simplified but still very rich subset of the problem, called topological
string theory and topological quantum field theory.

1Actually, re-introduced; see [393, 461] for the history.
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We will introduce topological string theory in Chapter 2 with the fol-
lowing approach. The correspondences between world-sheets and linear op-
erations satisfy “sewing relations,” coming from the fact that a world-sheet
> can be decomposed into a connected sum of smaller world-sheets in a va-
riety of ways, and the corresponding compositions of linear operations must
all lead to the same results. Some simple examples appear in Figure 3 in
Chapter 2.

These sewing relations can be summarized as follows:

DEFINITION 1.1. A string theory is a functor from a geometric category
to a linear category.

We discuss the simplest example in Chapter 2, that of topological string
theory. Here we choose the geometric category to be the category whose
objects are oriented (d — 1)-manifolds, and whose morphisms are oriented
cobordisms. The corresponding linear category can then be understood in
terms of an associated finite dimensional algebra and its modules.

One can discuss physical quantum field theories using the same language,
by now constructing the geometric category out of manifolds with metric.
Now the Hilbert space H is infinite-dimensional, and the morphisms depend
on the metric on . The resulting structure has only been made explicit in
a few cases, the “exactly solvable” or “integrable” theories. Since we will
need more general results, we must discuss the physics definitions of these
theories. The standard approach is in terms of a functional integral over
maps ¢ : 3 — M xR, the corresponding “perturbative” graphical expansion,
or in some cases using representation theory of infinite-dimensional algebras.
We will describe these approaches in Chapter 3.

Another important ingredient in this physics is supersymmetry. Phys-
ically, supersymmetry produces much better behaved quantum theories, in
which many of the problematic divergences which require renormalization
in fact cancel between fermions and bosons. Supersymmetry is also at the
heart of many of the connections with mathematics, starting with Witten’s
famous works of the early 1980’s connecting supersymmetry, Morse theory
and index theory [466, 465, 464, 473|.

If one assumes extended supersymmetry, meaning a symmetry algebra
with several supercharges with a compact Lie group action (called R sym-
metry), one gets even stronger constraints on the theory. This structure is
at the root of most of the connections with algebraic geometry. The case of
primary interest for our book is conformal theory with “(2,2)” supersymme-
try (§3.1.4 and §3.3.2). In this case, M must be a complex Kéhler manifold.
There are several other cases, surveyed (for example) in [153].

The central new ingredient in quantizing these theories is the renormal-
ization group, as outlined in §3.2.5 and §3.2.6. This leads to conditions on
the metric of the target space M (and the other couplings if present) which
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are necessary for conformal invariance. For the closed string (and at leading
order in a sense we describe shortly), this is the condition of Ricci flatness
of the metric, and more generally the equations of supergravity.

While not rigorous, the physics analyses give strong evidence that a wide
variety of two-dimensional conformal field theories exist. One general class
takes M to be a complex Kahler manifold with a Ricci-flat metric. By Yau’s
proof of the Calabi conjecture, such a metric will exist if ¢; (M) = 0, and
a large number of such “Calabi-Yau manifolds” have been constructed, for
example as hypersurfaces in toric varieties.

We also know from Yau’s theorem that the Ricci-flat metric is uniquely
determined by a choice of complex structure on M, and a choice of Kéahler
class. Physics arguments show that these CFT’s admit deformations which
are in one-to-one correspondence with infinitesimal variations of complex
structure, and variations of a complexified Kdhler class. The additional
deformations correspond to those of an additional two-form B, satisfying the
condition that it is harmonic (this agrees with the equations of supergravity).

Other general classes of CFT’s include the “Landau-Ginzburg models”
and “gauged linear sigma models.” These can be thought of as physics
versions of the operations of restriction to the zeroes of a section, and of
quotient by a holomorphic isometry.

For any of these models, physics defines a “spectrum of operators” and
“correlation functions,” and techniques for computing these in an expansion
around an exactly solvable limit. The basic such limit for the sigma model
is the “large volume” limit2, in which the operator spectrum and correlation
functions reduce to geometric invariants. A basic example is the algebra
of harmonic forms, while supersymmetric theories based on complex target
spaces can make contact with more subtle concepts, such as variation of
Hodge structure.

1.1.1. Stringy and quantum corrections. While the sigma model
approach emphasizes the relations between quantum field theory and ge-
ometry, there is an opposing strain in the physics discussion, which focuses
on the differences between string theory and conventional ideas of geome-
try. These can be seen by computing the corrections to the large volume
limit, by using other more algebraic approaches to conformal field theory,
and by “semiclassical” arguments that include additional contributions to
the functional integral from instantons and solitons. Many have suggested
that these differences will ultimately find their proper understanding in some
new, “stringy” form of geometry.

Let us begin with an example of the first phenomenon, that of corrections
to the large volume limit. One can show that, in the supersymmetric sigma

2Also called the o/ — 0 limit, or for euphony as well as historical reasons, the zero-
slope limit.
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model, the conformal invariance condition on the target space metric coming
from the renormalization group analysis is actually not Ricci flatness, but
rather a deformation of this,

(1.1) 0= Ry; + I5[RY;; + O(3RP).

Here [RY];; is a symmetric tensor constructed from four powers of the Rie-
mann curvature tensor, given explicitly in [198], and [, is a real (dimen-
sionful) deformation parameter called the “string length.” In the limit that
ls ~ 0 compared to the curvature length, this condition reduces to Ricci flat-
ness. The corrections are defined by quantum field theoretic perturbation
theory, and are believed to continue to all orders in 2.

Almost all of the correlation functions obtain similar corrections and
these might be regarded as defining a deformation of each of the geometric
structures seen in the large volume limit, for example, the algebra of har-
monic forms on M. However, little is known in this generality; almost all
results in this direction at present come from topological string theory, as
we discuss below.

Besides the string length, there is a second “parameter” in string theory,?
the string coupling, denoted gs;. The defining property of the string coupling
is that it controls an expansion whose terms arise at different world-sheet
genera: for example, the Einstein equations, which arise from computations
involving a genus zero (sphere) world-sheet, could get a correction at genus
one of order g2, at genus two of order g*, and so on.

While a fair amount is known about mirror symmetry at higher genus,
regrettably the topic will not appear in this book. Perhaps it will receive its
due in a Mirror Symmetry III.

Our second source of information about “stringy geometry” comes from
world-sheet or “non-geometric” approaches to conformal field theory. These
are largely based on the representation theory of Kac-Moody and related
infinite-dimensional algebras, such as the Virasoro and super-Virasoro al-
gebra. A famous example is the “Gepner model” §3.3.6, which provides
an independent (and in principle rigorous) definition of certain Calabi-Yau
sigma models.

One of these topics will play a central role in our discussion, namely the
theory of the N = 2 superconformal algebra (§3.3.3). This is the basis for
the primary physical argument for mirror symmetry (§3.4.3) and will lead
to most of the specific physical conclusions we draw in Chapters 3 and 5.

We finally turn to information from semiclassical methods. These in-
corporate extended field configurations, which in general fall into two broad

3We put the word parameter in quotes because one can show that its value can
be changed by varying a space-time field, called the dilaton, and thus all of the theories
obtained by starting with different values of g, are physically equivalent. This is somewhat
analogous to the fact that the string length [, is not a parameter, because a different choice
of [s could always be compensated by an overall scale transformation.
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classes, instantons and solitons. Both of these are nontrivial critical points
of the action functional used in the functional integral definition of a quan-
tum field theory, where nontrivial means that the field configuration (in a
sigma model, the map ® : ¥ — M) is nonconstant on X. Typically (though
not always) such critical points exist for topological reasons.

An instanton is a field configuration which is “concentrated” or asso-
ciated with a point in the underlying space-time ¥ (in particular, at an
“Instant” in time). As one goes to infinity in any direction, it asymptotes to
a constant. It is used in approximate evaluations of the functional integral
as a “saddle point;” thus the integral is regarded as a sum of contributions
from each critical point. As we will see in Chapter 3, a nontrivial critical
point will lead to a correction which, unlike the power-like corrections in
(1.1), is exponentially small in the deformation parameter (here ly).

In the case at hand, the basic example is to consider ¥ 22 S? and a target
space M with nontrivial mo. These are called “world-sheet instantons” and
lead to corrections in many correlation functions. We will review these
corrections and their by-now familiar role in mirror symmetry in §3.4. In
the case of open string theory, an analogous role will be played by maps
from X a disk.

A soliton is a nontrivial solution associated to a line which extends
through time, but is concentrated in space. In other words, as one goes
to infinity in any spatial direction, the field configuration approaches a con-
stant. The basic example of a soliton for us will be the “winding string”
which underlies T-duality, as explained shortly in §1.3.

For ¥ of dimension greater than two, one can go on to consider a solution
which asymptotes to a constant in some but not all of the spatial directions.
These are referred to as “branes” (short for membranes). The Dirichlet
brane we are about to discuss is an example, if we consider it in “space-
time” (i.e., ten-dimensional) terms.

The upshot of this very brief overview is that there are a variety of
physical effects which can make stringy geometry differ significantly from
conventional geometry, but all are controlled by two parameters, the string
length and the string coupling. The important parameter in our subsequent
discussion will be the string length ls; when a geometric scale (curvature
length, injectivity radius, volume of cycle) is small compared to [, stringy
geometry (whatever it is) is relevant.

Note that in places (and commonly in the string literature), an alternate
convention o/ = I2 is used for this parameter.

1.1.2. Topological string theory, twisting and mirror symme-
try. A fully general treatment of “stringy geometry” probably awaits a more
complete and satisfactory mathematicization of quantum field theory. How-
ever there is a significant portion of the problem which can be satisfactorily
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understood within our current frameworks, namely the part which can be
framed within topological string theory.

A good primary definition of topological string theory, or topological
quantum field theory more generally, is as a geometric functor from a cate-
gory of topological manifolds and cobordisms to a linear category. On this
level, the subject is essentially mathematics, by which we mean that physics
techniques do not have much to say.

Physics techniques become more valuable when we can relate a topolog-
ical field theory to a physical quantum field theory, defined by a functional
integral. There are two ways in which this can work. One is for the quantum
field theory to be independent of the metric on ¥, as in Chern-Simons the-
ory.* The other, which is relevant here, is “cohomological topological field
theory,” in which the theory contains a nilpotent operator ) such that the
stress tensor (the operator generating infinitesimal variations of the metric)
is Q-exact.

We discuss this construction for (2,2) superconformal theory in §3.3,
going into many details which we will need for the open string case. There
are two possibilities, the A- and B-twists, which isolate different, essen-
tially independent subsectors of the physical theory. Correlation functions
in the A twisted theory (§3.4.1) depend only on complexified Kéhler mod-
uli, while those in the B-twisted theory (§3.4.2) depend only on complex
structure moduli. The physics discussion is very asymmetric between the
two theories — whereas the B-model can be completely understood in terms
of standard geometry (variation of Hodge structure), instanton corrections
in the A-model modify the algebra of operators from the classical de Rham
cohomology ring to a new “quantum cohomology ring.”

In terms of our discussion of stringy geometry, what makes the topo-
logical theory tractable is that almost all of the power-like (perturbative)
corrections are absent, leaving (in the A-model) an interesting series of in-
stanton corrections. These can be computed, for example by using localiza-
tion in the functional integral, and summed to provide an explicit “invariant
of stringy geometry.”

As discussed in detail in MS1, closed string mirror symmetry equates the
A-model on a Calabi-Yau manifold X to the B-model on a mirror Calabi-
Yau manifold Y, usually with a fairly simple relation to X. We outline
that part of the story which is essential for us in §3.4.3; to a good extent
one can take the techniques of closed string mirror symmetry (localization,
Picard-Fuchs equations, mirror maps and so forth) as a “black box” which
will be called on at specific points in the open string story.

41¢ might have some minimal sort of dependence, such as the framing dependence of
Chern-Simons theory.
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1.1.3. Dirichlet branes. We can now explain our definition of a Diri-
chlet brane as an allowed end point for an open string. In an open string
theory, the Hilbert space H should roughly look like a space of functionals
on maps from the interval to M. Of course, an interval has two distinguished
points, its start and end. The image of either of these points traces out a one-
dimensional trajectory (or “world-line”) in M. To complete the definition
of open string, we must state boundary conditions for these endpoints.

The most general definition of these boundary conditions is phrased in
terms of conformal field theory, and need not have any obvious interpretation
in terms of a target space geometry. However, if our conformal field theory
is a sigma model with target M, it is natural to look for such a picture. As
we explain in §3.5, this leads to

DEFINITION 1.2. A geometric Dirichlet brane is a triple (L, E,Vg) — a
submanifold L C M, carrying a vector bundle F, with connection Vg.

The real dimension of L is also often brought into the nomenclature, so
that one speaks of a Dirichlet p-brane if p = dimg L.

An open string which stretches from a Dirichlet brane (L, E,VEg) to a
Dirichlet brane (K, F,VF), is a map X from an interval I = [0,1] to M,
such that X(0) € L and X(1) € K. An “open string history” is a map from
R into open strings, or equivalently a map from a two-dimensional surface
with boundary, say ¥ = I x R, to M, such that the two boundaries embed
into L and K.

K

FIGURE 1. Open strings ending on D-branes.

The quantum theory of these open strings is defined by a functional
integral over these histories, with a weight which depends on the connections
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Vg and V. It describes the time evolution of an open string state which
is a wave function in a Hilbert space Hp g/ labelled by the two choices of
brane B = (L, E,Vg) and B’ = (K, F,Vp).

D — K

FIGURE 2. An example of an open string history.

Note that distinct Dirichlet branes can embed into the same submanifold
L. One way to represent this would be to specify the configurations of
Dirichlet branes as a set of submanifolds with multiplicity. However, we can
also represent this choice by using the choice of bundle F in Definition 1.2.
Thus, a set of IV identical branes will be represented by tensoring the bundle
E with CV. The connection is also obtained by tensor product. An N-fold
copy of the Dirichlet brane (L, E, Vg) is thus a triple (L, EQCY, Vp®idy).

In physics, one visualizes this choice by labelling each open string bound-
ary with a basis vector of CV, which specifies a choice among the N identical
branes. These labels are called “Chan-Paton factors.” One then uses them
to constrain the interactions between open strings. If we picture such an in-
teraction as the joining of two open strings to one, the end of the first to the
beginning of the second, we require not only the positions of the two ends
to agree, but also the Chan-Paton factors. This operation is the intuitive
definition of the “algebra of open strings.”

Mathematically, we are simply saying that an algebra of open strings can
always be tensored with a matrix algebra, in general producing a noncommu-
tative algebra. More generally, if there is more than one possible boundary
condition, then, rather than an algebra, it is better to think of this as a
groupoid or categorical structure on the boundary conditions and the corre-
sponding open strings. In the language of groupoids, particular open strings
are elements of the groupoid, and the composition law is defined only for
pairs of open strings with a common boundary. In the categorical language,
boundary conditions are objects, and open strings are morphisms. We will
make this idea precise in Chapter 2, and use it extensively through the rest
of the book.

Why should we consider non-trivial £ and Vg7 We will see this in detail
in Chapter 3, but the simplest intuitive argument that a non-trivial choice
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can be made here is to call upon the general principle that any local defor-
mation of the world-sheet action should be a physically valid choice. Since
the end of an open string is a point, this allows us to make any modification
of the action we would have made for a point particle. In particular, parti-
cles in physics can be charged under a gauge field, for example the Maxwell
field for an electron, the color Yang-Mills field for a quark, and so on. The
wave function for a charged particle is then not complex-valued, but takes
values in a bundle F, just as we discussed above for the end of an open
string.

Now, the effect of a general connection Vg is to modify the functional
integral by modifying the weight associated to a given history of the particle.
Suppose the trajectory of a particle is defined by a map ¢ : R — M; then
a natural functional on trajectories associated with a connection V on M
is simply its holonomy along the trajectory, a linear map from E|4(t1) to
E|4(t2). The functional integral is now defined physically as a sum over
trajectories with this holonomy included in the weight.

The simplest way to generalize this to a string is to consider the g — 0
limit. Now the constraint of finiteness of energy is satisfied only by a string
of vanishingly small length, effectively a particle. In this limit, both ends of
the string map to the same point, which must therefore lie on L N K.

The upshot is that, in this limit, the wave function of an open string
between Dirichlet branes (L, E,V) and (K, F, V) transforms as a section
of EYX F over LN K, with the natural connection on the direct product. In
the special case of (L, E,Vg) = (K, F,VF), this reduces to the statement
that an open string state is a section of End . A more detailed discussion
of quantization leads to the further refinement that the open string states
are sections of a graded vector bundle End £ ® A*T*L, the degree-1 part
of which corresponds to infinitesimal deformations of Vg. In fact, it can
be shown that these open string states are the infinitesimal deformations of
VE, in the standard sense of quantum field theory, i.e., a single open string
is a localized excitation of the field obtained by quantizing the connection
Vg. Similarly, other open string states are sections of the normal bundle of
L within X, and are related in the same way to infinitesimal deformations of
the submanifold. These relations, and their generalizations to open strings
stretched between Dirichlet branes, define the physical sense in which the
particular set of Dirichlet branes associated to a specified background X can
be deduced from string theory.

1.1.4. Supersymmetry, Calibrated Geometry, and D-Branes.
The physics treatment of Dirichlet branes in terms of boundary conditions
is very analogous to that of the “bulk” quantum field theory, and the next
step is again to study the renormalization group. This leads to equations
of motion for the fields which arise from the open string, namely the data
(M, E,V). In the supergravity limit, these equations are solved by taking
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the submanifold M to be volume minimizing in the metric on X, and the
connection V to satisfy the Yang-Mills equations.

Like the Einstein equations, the equations governing a submanifold of
minimal volume are highly nonlinear, and their general theory is difficult.
This is one motivation to look for special classes of solutions; the physical
arguments favoring supersymmetry are another.

Just as supersymmetric compactification manifolds correspond to a spe-
cial class of Ricci-flat manifolds, those admitting a covariantly constant
spinor, supersymmetry for a Dirichlet brane will correspond to embedding
it into a special class of minimal volume submanifolds. Since the physical
analysis is based on a covariantly constant spinor, this special class should
be defined using the spinor, or else the covariantly constant forms which are
bilinear in the spinor.

The standard physical arguments leading to this class are based on the
kappa symmetry of the Green-Schwarz world-volume action, for which a
good introduction is [172]. We will not explain this, but begin at its penul-
timate step, in which one finds that the subset of supersymmetry parameters
€ which preserve supersymmetry, both of the metric and of the brane, must
satisfy

(1.2) ® = Ree'Te|pr = Vol |y

In words, the real part of one of the covariantly constant forms on M must
equal the volume form when restricted to the brane.
Clearly d¢ = 0, since it is covariantly constant. Thus,

zon= [ o

depends only on the homology class of M. Thus, it is what physicists would
call a “topological charge,” a “central charge” or a “BPS central charge,”
depending on context.

If in addition the p-form ¢ is dominated by the volume form Vol upon
restriction to any p-dimensional subspace V C T, X, i.e.,

(1.3) élv < Voll|y,

then ¢ will be a calibration in the sense of Harvey and Lawson [226]. This
condition can be checked locally, but implies the global statement

(1.4) /M 6 < /M Vol

for any submanifold M. Thus, the central charge |Z(M)| is an absolute
lower bound for Vol(M).

A calibrated submanifold M is now one satisfying (1.2), thereby at-
taining the lower bound and thus of minimal volume. Physically these are
usually called “BPS branes,” after a prototypical argument of this type due
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to Bogomol’nyi and Prasad-Sommerfield, for magnetic monopole solutions
in nonabelian gauge theory.

For a Calabi-Yau X, all of the forms wP can be shown to be calibrations,
and it is not hard to show that the corresponding calibrated submanifolds are
p-dimensional holomorphic submanifolds. Furthermore, the n-form Re e
for any choice of real parameter 6 is a calibration, and the corresponding
calibrated submanifolds are called special Lagrangian.

The previous discussion generalizes to the presence of a general con-
nection on M, and leads to the following two types of BPS branes for a
Calabi-Yau X. Let n = dimg M, and let F' be the (End(E)-valued) curva-
ture two-form of V.

The first kind of BPS D-brane, based on the wP calibrations, is (for
historical reasons) called a “B-type brane.” Here the BPS constraint is
equivalent to the following three requirements:

(1) M is a p-dimensional complex submanifold of X.

(2) The 2-form F is of type (1,1), i.e., (E, V) is a holomorphic vector
bundle on M.

(3) In the supergravity limit, F' satisfies the Hermitian Yang-Mills
equation:

WP AF =c-w,
for some real constant c.

Taking into account the [ corrections of §1.1.1, the Hermitian Yang-
Mills equation is deformed to the “MMMSL” equation [347, 330],

(3') F satisfies Im e (w|ps + il2F)P = 0 for some real constant ¢.

Actually, this statement is not precise either, but the further corrections
require a lengthier discussion, which we give in Chapter 3.

The second kind of BPS D-brane, based on the Ree?Q) calibration, is
called an “A-type” brane. The simplest examples of A-branes are the so-
called special Lagrangian submanifolds (SLAGs), satisfying

(1) M is a Lagrangian submanifold of X with respect to w.
(2) F =0, i.e., the vector bundle F is flat.
(3) Im e*Q|ps = 0 for some real constant a.

More generally, one also has the “coisotropic branes.” In the case when
E is a line bundle, such A-branes satisfy the following four requirements:

(1) M is a coisotropic submanifold of X with respect to w, i.e., for
any € M the skew-orthogonal complement of T, M C T,X is
contained in T, M. Equivalently, one requires kerwy; to be an in-
tegrable distribution on M.

(2) The 2-form F annihilates ker wyy.
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(3) Let FM be the vector bundle TM/ker wys. It follows from the
first two conditions that wys and F' descend to a pair of skew-
symmetric forms on .% M, which we denote by o and f. Clearly, o
is nondegenerate. One requires the endomorphism o~ !f : # M —
F M to be a complex structure on .M.

(4) Let r be the complex dimension of .#M. One can show that r
is even and that r + n = dimg M. Let € be the holomorphic
trivialization of Kx. One requires that Im ¢**Q|y A F /2 = () for
some real constant a.

Coisotropic A-branes carrying vector bundles of higher rank are not fully
understood.

Physically, one must also specify the embedding of the Dirichlet brane
in the remaining (Minkowski) dimensions of space-time. The simplest pos-
sibility is to take this to be a time-like geodesic, so that the brane appears
as a particle in the visible four dimensions. This is possible only for a sub-
set of the branes, which depends on which string theory one is considering.
Somewhat confusingly, in the type ITA theory, the B-branes are BPS parti-
cles, while in IIB theory, the A-branes are BPS particles (the notations were
introduced before this relationship was known).

1.1.5. String theory and mirror symmetry. Of the various ways
one can formulate mirror symmetry, perhaps the most useful for string the-
ory is

CONJECTURE 1.3. Type IIA string theory compactified on a Calabi- Yau

threefold X is dual to type IIB string theory compactified on a mirror Calabi-
Yau threefold Y .

The word “dual” more or less means that, for any theory of the first
type, there exists some isomorphic theory of the second type; in particular
all physical predictions of the two theories are the same.

All of the known mathematical consequences of mirror symmetry can be
derived from this conjecture, by matching the various physical observables.
We will not go into all of its ramifications, as this would require going far
deeper into the physics than we want for this book. Rather, we will focus
on the consequence of central importance for us, namely,

CONJECTURE 1.4. The set of BPS D-branes in type IIA theory com-
pactified on X is isomorphic to the set of BPS D-branes in type IIB theory
compactified on Y.

Since BPS D-branes are particles which could be produced and detected
by a hypothetical observer living in one of these space-times, this certainly
follows from the main conjecture. Having made this conjecture, one might
go on to test it by comparing lists of BPS Dirichlet branes in pairs of dual
theories. Of course, this is difficult. A better approach might be to look



14 1. OVERVIEW AND PHYSICAL BACKGROUND

for some simple construction which, given a BPS D-brane on the first list,
produces its counterpart on the second.

On the other hand, a skeptic might ask the following question. All of the
concepts we just introduced are easily explained in the standard language
of differential geometry, and had been the focus of mathematical attention
for some time. If mirror symmetry had a simple explanation in these terms,
why should it have come as any surprise to mathematicians? This suggests
that we need something new from string theory to motivate or explain mirror
symmetry. While indeed much of our book will be devoted to explaining just
what this new input is, in actual fact there was a mathematical proposal
predating the physics we just outlined, so let us begin with that.

1.2. The homological approach

In his 1994 ICM talk, Kontsevich made the prophetic proposal that
mirror symmetry could be explained through an equivalence between the
bounded derived category of coherent sheaves D’(X) on a Calabi-Yau man-
ifold X and the (derived) Fukaya category of its mirror Y. Objects in
the Fukaya category are Lagrangian submanifolds of Y, while morphisms
are elements of Floer cohomology. A derived equivalence between these
two categories is a deeper version of an isomorphism between (in the odd-
dimensional case) the even and odd cohomology of X and Y, respectively.
Kontsevich predicted that such an equivalence lay behind the enumerative
predictions of mirror symmetry.

This rather abstract proposal took some time to be appreciated by either
mathematicians or physicists — when it was made the Dirichlet brane was
almost unknown,® and the categories being equated are not part of the gen-
eral working knowledge of mathematicians. Furthermore, while the proposal
again has the great advantage of going beyond conventional differential and
algebraic geometry, this means that motivating it requires somewhat more
knowledge of string theory. For both of these reasons, our discussion must
start with more background material.

Thus, in Chapter 3, we provide a review of the ingredients we will need
from superconformal field theory. Since a good introduction can be found in
MS1, we will not aim for completeness here, but rather focus on the following
points. First, there is a close analogy between CFT and quantum mechanics,
and many of the relations between quantum mechanics and mathematics (in
particular, spectral geometry and Hodge theory) have simple generalizations
to CFT. We then discuss the general theory of the N = 2 superconformal
algebra, and the operation of topological twisting, which makes contact with
our discussion in Chapter 2.

5What was known at this point was the definition of A- and B-type boundary condi-
tions in topological sigma models [463], and this was Kontsevich’s starting point.
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Chapter 3 ends with an overview of supersymmetric boundary condi-
tions. We explain the origin of the A- and B-type BPS conditions from this
point of view, and the physics of T-duality.

We then switch to mathematics. In Chapter 4, we review algebraic
preliminaries: homological algebra, coherent sheaves and their derived cat-
egories and derived equivalences.

The theory of quiver representations provides an ideal motivating exam-
ple, in Chapter 4. Next we turn to the specific context in which homological
mirror symmetry operates, beginning with a review of the notion of co-
herent sheaf on a variety X. Coherent sheaves form an abelian category:
every morphism can be extended to an exact sequence using kernels and
cokernels. However, the category of sheaves is not particularly well-behaved
under certain natural operations such as pullback and push-forward. For
example, pulling back or tensoring non-locally-free sheaves is not a pleasant
operation, often leading to loss of information. A solution is offered by the
derived category D(X) of the variety X. Objects in the derived category are
complexes of coherent sheaves, but the notion of morphism is subtler than
the notion of a morphism between complexes, making the derived category
non-intuitive at first sight. Functors such as pullbacks, push-forwards, ten-
sor products, and global sections have an extension to the derived category,
with very natural properties. The notion of an exact sequence is replaced by
that of an exact triangle, providing the analogue of the long exact sequence
for the various functors. This theory is explained in a down-to-earth way
in Chapter 4, with ample references to the literature where the technical
details can be consulted.

A fundamental operation involving the derived category is the Fourier-
Mukai transform. Given varieties X and Y and an object P € D*(X x Y),
with p1,po the projections, we obtain a functor D*(X) — DY) via E —
P2« (P®@piE). This can be viewed as a sheaf-theoretic analogue of the Fourier
transform. Such a transform is most interesting when it is an equivalence of
categories, when it is called a Fourier—Mukai functor. It was initially used
by Mukai to prove that the derived categories of dual abelian varieties were
equivalent. In particular this shows that the derived category Db(X ) does
not necessarily determine the variety X. In Chapter 4 we recall the original
functor of Mukai, and subsequent extensions to other (relative) Calabi—Yau
contexts: flops, elliptic fibrations etc. As another illustration, we show
how a Fourier—-Mukai functor can be used to study the derived category
of projective space P" in terms of linear algebra using the simple set of
generators O,...,O(—n) (Beilinson’s trick). This theory is explained in
Chapter 4.

Another area where the Fourier-Mukai transform has proved useful is
in the McKay correspondence. A celebrated observation of John McKay
states that the graph of ADE type associated to the quotient of C? by a
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finite subgroup G' C SL(2,C) can be constructed using only the represen-
tation theory of G. This establishes a one-to-one correspondence between
exceptional prime divisors of the well known minimal resolution Y — C?/G
and the nontrivial irreducible representations of G. If GG is a finite subgroup
of SL(n,C) acting on C™, the natural generalisation of these ideas involves
Nakamura’s moduli space G -Hilb(C™) of G-clusters on C". He proved that
G -Hilb(C3) is a crepant resolution of C3/G when G is Abelian and con-
jectured that the same holds for all finite subgroups G C SL(3,C). More
generally, whenever Y = G -Hilb(C") — C"/G is a crepant resolution, the
universal bundle on Y determines locally free sheaves R, on Y in one-to-one
correspondence with the irreducible representations p of G, which, according
to a proposal of Reid, should generate the K-theory or the derived category
of Y analogously to the Beilinson generators of the derived category of P".
The McKay conjectures of both Nakamura and Reid were proved simulta-
neously for a finite subgroup G C SL(3,C) by Bridgeland, King and Reid,
who established an equivalence of derived categories ®: D(Y) — DY(C")
between the bounded derived category of coherent sheaves on Y and that
of G-equivariant coherent sheaves on C™. Recent work of Craw and Ishii
establishes a derived equivalence similar to ® for any crepant resolution Y
of C3/G, at least for finite Abelian subgroups of SL(3,C). In Chapter 4, we
explain the ideas behind this circle of results.

At this point, we are now prepared to plunge into the physical origins
and explanation of homological mirror symmetry which takes up Chapter 5.

1.2.1. Stability structures. To explain the basic point, we compare
the objects entering homological mirror symmetry with the original geomet-
ric descriptions of BPS branes. Recall that the A-type branes are special
Lagrangian manifolds; in homological mirror symmetry these are represented
as isotopy classes of Lagrangians, a related but more general class of objects.
And, while at first the B-type branes look more similar, being holomorphic
objects (submanifolds or sheaves) in both cases, on looking at the connec-
tions we realize that a geometric B-type brane carries not just a holomorphic
bundle or sheaf, but the more specific Hermitian Yang-Mills connection, sat-
isfying an additional differential equation.

The precise relation between the two classes of B-type branes follows
from the Donaldson and Uhlenbeck-Yau theorems. These state the neces-
sary and sufficient conditions for a holomorphic bundle to admit an irre-
ducible Hermitian Yang-Mills connection — it is that the bundle be u-stable,
i.e., stable in the sense of [372]. This is often true but not always, so the
geometric B-type branes form a subset of the holomorphic objects. Further-
more, u-stability (in complex dimensions two and higher) depends on the
Kahler class of the underlying manifold, and thus the set of geometric B-
type branes is not invariant under deformations of the Kahler data. Similar
geometric considerations on the A side, first due to Joyce, show that the
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special Lagrangian submanifolds form a subset of the Lagrangian subman-
ifolds. Each isotopy class of Lagrangian submanifolds contains either zero
or one special Lagrangian, depending on a stability condition which varies
with the complex structure of the underlying manifold.

Thus, we have a correspondence between stability conditions on the A
and B sides, as required by open string mirror symmetry. However, from the
point of view of topological string theory this is rather surprising, as the A-
and B-twisted topological string theories only depend on the Kahler (for A)
and complex structure (for B) moduli; they are not supposed to depend on
the other moduli at all. This implies that the concept of BPS brane cannot
be defined strictly within the topological string theory; one must bring in
more information to make this definition.

But what makes this problem particularly accessible is that the stability
conditions only depend on a small subset of the geometric information in
the problem, the Kéahler class for u-stability and the period map for Joyce’s
stability condition. Thus, we can hope to formulate a single stability con-
dition which includes both of the known geometric stability conditions as
special cases, and use this to conjecture that a BPS brane is a stable object
in either of the equivalent categories of topological boundary conditions.
Such a stability condition, often called Pi-stability, was developed in work
of Douglas, Aspinwall and Bridgeland.

To develop this picture, one must identify the elements of Kontsevich’s
proposal in the conformal field theory underlying the A- and B-twisted topo-
logical string theories. It turns out that only a few additional ingredients
are necessary, mostly originating in the structure of boundary conditions for
the U(1) current algebra sector of the N = 2 superconformal algebra. This
sector is the physical construct which underlies the grading of Dolbeault
cohomology, and by taking these physical choices into account one can con-
struct graded complexes from the original topological boundary conditions,
leading directly to the derived category.

The main physical consequence of this construction is that the grading
is not static but dynamic, in that while varying the “missing” moduli (say
the Kéhler moduli in the B-twisted model) preserves all the previously exist-
ing structure of topological string theory, the grading structure introduced
at this point can vary. Understanding this “flow of gradings” leads fairly
directly to the proposal of Pi-stability.

From a practical point of view, the most effective way to use the re-
sulting framework is to use the B-model definition of topological branes,
and take the information entering the stability condition from the mirror
B-model, as in both cases the definitions and computations can be phrased
in standard algebraic geometric terms (there are no world-sheet instanton
corrections). While the derived category of coherent sheaves on a general
compact Calabi-Yau manifold is not yet well understood, for hypersurfaces
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in projective spaces many sheaves can be obtained by restriction, provid-
ing material for simple examples. Furthermore, the techniques of Chapter
4 provide complete and explicit quiver descriptions of the derived category
in a large class of “local” Calabi-Yau manifolds, such as those obtained by
the resolution of quotient singularities. On the closed string side, comput-
ing periods is a highly developed art, because of its applications in closed
string mirror symmetry, allowing us to exhibit many simple examples of
Pi-stability and its variation, which can be checked against other physical
constructions of BPS branes.

Following Bridgeland, the further analysis of Pi-stability requires intro-
ducing several additional concepts, such as a generalized Harder-Narasimhan
filtration. It is more convenient at this point not to strictly follow the physics
but instead to axiomatize the concept of “stability structure” as the most
general realization of these concepts. One can then show that the space
of stability structures forms an open manifold, which includes the physical
examples as a submanifold.

1.2.2. Comparison of A, structures. The discussion we just made
combines A- and B-models and in this sense goes beyond topological string
theory. If we ask about the consequences of mirror symmetry for topological
string theory, it is natural to look for a quantity analogous to the prepotential
which encodes the variation of Hodge structure and correlation functions in
the closed string case.

Physically, this is provided by the superpotential, which can be regarded
as generating open string correlation functions in a very analogous manner.
In this language, the basic enumerative prediction of mirror symmetry is
to count disks with specified homology class and bounding specified special
Lagrangian manifolds in terms of the series expansions of suitable open
string B-model correlation functions.

While this approach has been pursued successfully, it ignores some cru-
cial differences between the closed and open string cases, which in some ways
are more interesting than the actual enumerative predictions. The first of
these, in some ways elementary but still significant, is that — as indicated in
§1.1.3 — the superpotential is best thought of as a function of noncommuting
variables. This is because an open string correlation function corresponds to
a set of operators on the boundary of a disk, which comes with an ordering.

A deeper difference is that whereas the moduli spaces which appear in
the closed string theory are unobstructed, deformations of vector bundles
on a Calabi-Yau can be obstructed. This obstruction theory turns out to be
precisely governed by the superpotential — an unobstructed deformation is
one for which all gradients of the superpotential vanish. As a consequence
of this, the spectrum of operators of the topological open string theory can
vary under deformation.
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Such a structure is more naturally described, not by an associative cate-
gory, but by an A, category. Such a structure also emerges naturally from
the construction of correlation functions on the boundary of a disk, and
indeed this is how it was first seen, in Fukaya’s construction of a category
based on Lagrangian manifolds and Floer homology. This structure was
developed before the physics concept of Dirichlet brane and was the direct
motivation for Kontsevich’s proposal.

In retrospect, some modifications to the open string A- and B-models
are required to fully realize Kontsevich’s proposal. On the A-model side,
the Fukaya category did not realize the triangulated structure of the derived
category of coherent sheaves; this can be remedied by the so-called “twist
construction” of Bondal and Kapranov [50]. On the B-model side, one has
to work a bit to see the A structure; we explain this (following Kontsevich
and Soibelman [311]) in §8.2.1.

Finally having a precise formulation of open string mirror symmetry, we
illustrate it by working out the basic relations for the case of M an elliptic
curve in §8.4.

1.3. SYZ mirror symmetry and T-duality

Although the formalism of homological mirror symmetry is very pow-
erful, one may reasonably ask for other explanations of mirror symmetry
which lie closer to classical differential and algebraic geometry. This brings
us to the proposal of Strominger, Yau and Zaslow.

The central physical ingredient in this proposal is T-duality. To explain
this, let us consider a superconformal sigma model with target space (M, g),
and denote it (defined as a geometric functor, or as a set of correlation
functions), as

CFT(M,g).

In physics terms, a “duality” is an equivalence
CFT(M,g) = CFT(M',g)

which holds despite the fact that the underlying geometries (M,g) and
(M’, g') are not classically diffeomorphic. Rather, one must use the “stringy”
features outlined in §1.1.1 to see the equivalence.

T-duality is a duality which relates two CFT’s with toroidal target space,
M = M’ = T but different metrics. In rough terms, the duality relates a
“small” target space, with noncontractible cycles of length L < [, with a
“large” target space in which all such cycles have length L > [;.

This sort of relation is generic to dualities and follows from the following
logic. If all length scales (lengths of cycles, curvature lengths, etc.) are
greater than [, string theory reduces to conventional geometry. Now, in
conventional geometry, we know what it means for (M, g) and (M’, ¢’) to be
non-isomorphic. Any modification to this notion must be associated with
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a breakdown of conventional geometry, which requires some length scale to
be “sub-stringy,” with L < .

To state T-duality precisely, let us first consider M = M’ = S'. We
parameterise this with a coordinate X € R making the identification X ~
X + 27. Consider a Euclidean metric gp given by ds?> = R?2dX?2. The real
parameter R is usually called the “radius” from the obvious embedding in
R2. This manifold is Ricci-flat and thus the sigma model with this target
space is a conformal field theory, the “c = 1 boson.” Let us furthermore set
the string scale I = 1.

As discussed in elementary textbooks on string theory [395], and as we
will prove in §3.2.3.6, there is a complete physical equivalence

CFT(S", gr) = CFT(S", g1/R).

Thus these two target spaces are indistinguishable from the point of view of
string theory.

Just to give a physical picture for what this means, suppose for sake
of discussion that superstring theory describes our universe, and thus that
in some sense there must be six extra spatial dimensions. Suppose further
that we had evidence that the extra dimensions factorized topologically and
metrically as K5 x S'; then it would make sense to ask: What is the radius
R of this S' in our universe? In principle this could be measured by pro-
ducing sufficiently energetic particles (so-called “Kaluza-Klein modes”), or
perhaps measuring deviations from Newton’s inverse square law of gravity
at distances L ~ R. In string theory, T-duality implies that R > [, because
any theory with R < [, is equivalent to another theory with R > [;. Thus we
have a nontrivial relation between two (in principle) observable quantities,
R and [, which one might imagine testing experimentally.

Returning to the general discussion, let us now consider the theory
CFT(T?,g), where T is the d-dimensional torus, with coordinates X* pa-
rameterising R%/27Z¢, and a constant metric tensor gij- Then there is a
complete physical equivalence

(1.5) CFT(T%,g) = CFT(T9,¢7%).

In fact this is just one element of a discrete group of T-duality symme-
tries, generated by T-dualities along one-cycles, and large diffeomorphisms
(those not continuously connected to the identity). The complete group is
isomorphic to SO(d, d; Z).5

While very different from conventional geometry, T-duality has a sim-
ple intuitive explanation. This starts with the observation that the possible
embeddings of a string into X can be classified by the fundamental group
m1(X). Strings representing non-trivial homotopy classes are usually referred

6For comparison, the group Diff / Diffy & SL(d, Z).
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to as “winding states.” Furthermore, since strings interact by interconnect-
ing at points, the group structure on 7 provided by concatenation of based
loops is meaningful and is respected by interactions in the string theory.
Now 71(T%) 22 Z¢, as an abelian group, referred to as the group of “winding
numbers” for evident reasons.

Of course, there is another Z¢ we could bring into the discussion, the
Pontryagin dual of the U(1)¢ of which 7% is an affinization. An element of
this group is referred to physically as a “momentum,” as it is the eigenvalue
of a translation operator on T%. Again, this group structure is respected by
the interactions. These two group structures, momentum and winding, can
be summarized in the statement that the full closed string algebra contains
the group algebra C[Z%] @ C[Z4].

In essence, the point of T-duality is that if we quantize the string on
a sufficiently small target space, the roles of momentum and winding will
be interchanged. This can be seen by a short functional integral argument
which will appear in §3.2.3.6. But the main point can be seen by bringing
in some elementary spectral geometry. Besides the algebra structure we
just discussed, another invariant of a conformal field theory is the spectrum
of its Hamiltonian H (technically, the Virasoro operator Lo + Lg). This
Hamiltonian can be thought of as an analog of the standard Laplacian A,
on functions on X, and it is easy to see that its spectrum on 7% with metric
g as above is

d
(1.6) Spec Ag = {) _ g”pip;; pi € Z7}.

1,j=1

On the other hand, the energy of a winding string is (as one might expect
intuitively) a function of its length. On our torus, a geodesic with winding
number w € Z? has length squared

d
(1.7) L* = Z gijw'w?

h,j=1

Now, the only string theory input we need to bring in is that the total
Hamiltonian contains both terms,

where the extra terms --- express the energy of excited (or “oscillator”)
modes of the string. Then, the inversion ¢ — ¢~!, combined with the
interchange p < w, leaves the spectrum of H invariant. This is T-duality.
There is a simple generalization of the above to the case with a non-zero
B-field on the torus satisfying dB = 0. In this case, since B is a constant
antisymmetric tensor, we can label CFT’s by the matrix g + B. Now, the
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basic T-duality relation becomes
CFT(T% g+ B) = CFT(T? (g + B)™Y).

Another generalization, which is considerably more subtle, is to do T-
duality in families, or fiberwise T-duality. The same arguments can be made,
and would become precise in the limit that the metric on the fibers varies
on length scales far greater than [;, and has curvature lengths far greater
than [;. This is sometimes called the “adiabatic limit” in physics.

While this is a very restrictive assumption, there are more heuristic phys-
ical arguments that T-duality should hold more generally, with corrections
to the relations we discussed proportional to curvatures [2R and derivatives
150 of the fiber metric, both in perturbation theory and from world-sheet
instantons. These corrections have not been much studied, which is unfor-
tunate as they would probably shed much light on the subtleties involved in
making the SYZ conjecture precise, as we will discuss below.

1.3.1. T-duality and Dirichlet branes. The discussion we just made
was for closed strings. Clearly maps from an interval to a manifold are not
classified by m; and indeed there is no analogous choice. How then can the
T-duality relation hold for open strings?

This is the question which led to the original discovery of Dirichlet branes
[106]. Suppose we start with open strings which are free to propagate
anywhere in 7%, in modern terms with a Dirichlet d-brane wrapping T°.
While there is no winding number in this case, since such a string state is a
function on T%, we can still apply Pontryagin duality and conclude that this
open string algebra contains C[Z¢]. In physics terms, there is a d-dimensional
conserved momentum. Furthermore, the open string Hamiltonian will still
contain a piece which looks like the Laplacian on 79, whose spectrum will
still be (1.6).

If we apply the inversion g — ¢, clearly the simplest way to recover
the original spectrum is to identify a mew open string sector in which the
spectrum is again possible values of (1.7). While this is not true for open
strings on a d-brane wrapping 7%, it could be true if we forced the two
endpoints of the open strings to coincide, as the minimal length of a geodesic
satisfying this condition is again (1.7). Furthermore, since 7; is commonly
defined using based loops (of course here it will not depend on whether or
not there is a base point), a sector of open strings which are forced to begin
and end at a specific point p will again contain (C[Zd] as an algebra.

Thus, the simple proposal, which will be justified by functional integral
arguments in §3.5.4, is that the T-dual to theory CFT(T¢,g) containing a
Dirichlet d-brane is the theory CFT(T%, g~!) containing a Dirichlet 0-brane.
Such a brane is defined by a choice of zero-dimensional submanifold, i.e., a
point p € X, and its open strings must begin or end at p.

1
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This reproduces the spectrum, but now one must ask what the choice
of p corresponds to in the original d-brane theory. The beautiful answer to
this question is that to complete the specification of the d-brane, we must
also specify a bundle E and connection V. It is plausible (and correct)
that the T-dual of the O-brane is a d-brane with trivial bundle E, and a
flat connection. But the moduli space of flat connections on T% is itself
a torus; denote this by 79 Then a slightly non-trivial statement, which
one can check, is that the natural metric on 79, obtained by restricting the
natural metric on the space of connections on T¢ (with metric g) to the flat
connections, is the flat metric g'. While the overall scale of the metric
on the space of connections is undermined, string theory determines this
relation to be precisely (1.5). Thus the moduli spaces of the proposed pair
of T-dual Dirichlet brane theories coincide as metric spaces.

1.3.2. Mirror Symmetry and Special Lagrangian Fibrations.
We are now ready to explain the Strominger-Yau-Zaslow proposal [433].
Consider a pair of compact Calabi-Yau 3-folds X and Y related by mirror
symmetry. By the above, the set of BPS A-branes on X is isomorphic to the
set of BPS B-branes on Y, while the set of BPS B-branes on X is isomorphic
to the set of BPS A-branes on Y.

The simplest BPS B-branes on X are points. These exist for all complex
structures on X, even nonalgebraic ones. Their moduli space is X itself.
Let us try to determine which BPS A-branes on Y they correspond to. The
conditions on BPS A-branes described above imply that an A-brane can
have real dimension 5 or 3. However, the conditions for the existence of
5-dimensional A-branes depend sensitively on the the symplectic structure;
for example, rescaling the symplectic form by a constant factor, in general,
will eliminate such A-branes, because the curvature 2-form of a line bundle
has quantized periods. In contrast, special Lagrangian submanifolds remain
special Lagrangian if we rescale the symplectic form by an arbitrary constant
factor. This matches the properties of points on X. Thus the mirror of a
point on X must be a three-dimensional A-brane (N, E, V). BPS conditions
imply in this case that F' = 0 (we assume for simplicity that B = 0) and that
N is a special Lagrangian submanifold of Y. Thus we conclude that there
exists a family of SLAGs on Y parametrized by points of X. Moreover, this
family is the moduli space of a single SLAG N regarded as a BPS A-brane
onY.

What else can we say about this special family of SLAGs on Y? Accord-
ing to McLean’s theorem (§6.1.1), the moduli space of a special Lagrangian
submanifold N is locally smooth and has dimension b; (N). A BPS A-brane
is a SLAG equipped with a Hermitian line bundle £ and a flat connection
V on E. The moduli space of flat connections on a fixed N is a torus of real
dimension by (V). Thus the total dimension of the moduli space of (N, E, V)
is 2b1 (V). Since this moduli space is X, we must have by (N) = 3. It follows
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that X is fibered by tori of dimension 3. Exchanging the roles of Y and X
we conclude that Y is also fibered by three-dimensional tori.

The T3-fibrations of X and Y obtained in this way cannot be smooth
everywhere (otherwise the Euler characteristic of both X and Y would be
zero). Singularities occur when the deformed SLAG ceases to be smooth.

Next we would like to argue that the smooth fibers of both T fibrations
are themselves SLAGs. Let us imagine that the induced metric on the fibers
of the T3 fibration of X is flat. This assumption is unrealistic, but we may
hope that in the large volume limit this is a good approximation away from
the singular fibers. Then we may perform T-duality on the (nonsingular)
fibers and obtain a (noncompact) Calabi-Yau manifold X’ which is mirror
to (an open piece of) X. T-duality maps a point p € X sitting in a fiber M
into a D-brane of the form (M’, E, V), where the 3-torus M’ is dual to M
and V is a flat connection determined by the location of p on M. Varying p
on X will deform M’ as well as the flat connection V. This strongly suggests
that X’ is an open piece of Y, and that (M’, E, V) is the A-brane N mirror
to p. Then the T3-fibrations of X and Y are (approximately) T-dual to each
other. Furthermore, if we consider a point on N = M’, then its T-dual is
M. But since any point on Y is a BPS B-brane, its T-dual M must be be a
BPS A-brane on X. Therefore each nonsingular fiber of the T fibration of
X is a SLAG. Reversing the roles of X and Y, we conclude that nonsingular
fibers of the T fibration of Y are also SLAGs.

We summarize with the following

CONJECTURE 1.5. (Strominger-Yau-Zaslow): For any mirror pair of
compact simply-connected Calabi-Yau 3-folds X and Y, there should exist
T3 fibrations of X and Y which have the following two properties:

e Their nonsingular fibers are special Lagrangian submanifolds.

e If one takes the large volume limit for X (and the corresponding
“large complex structure” limit for Y ), the two fibrations are T-
dual to each other.

Since the physical arguments are based on genus zero CFT, there is
no evident restriction to six real dimensions and ¢ = 3. Thus, we may
further conjecture that the SYZ proposal is valid not only for 3-folds, but
also for Calabi-Yau mirror pairs of arbitrary dimension d, now predicting
T fibration structures.

1.3.3. Mathematics of the SYZ conjecture. As we saw, physics
suggests a fairly simple picture of mirror symmetry; for non-singular fibres,
it follows by applying the operation of T-duality to the tori. On the other
hand, the work of SYZ did not explain how to deal with singular fibres, nor
have subsequent physical developments really filled this gap.
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But since the initial paper of 1996, there has been much mathematical
progress in understanding the conjecture. Important work of Hitchin de-
scribed natural structures which appear on the base of special Lagrangian
fibrations. Suppose that f : X — B is the special Lagrangian fibration an-
ticipated by Conjecture 1.5. If By = {b € B|f~!(b) is a non-singular torus},
then By carries a so-called Hessian or affine K&dhler manifold structure.
These structures for dual fibrations should then be related by a natural
duality procedure which is essentially just a Legendre transform.

We will describe these structures in detail, and use this to give a complete
picture of the structures which arise in semi-flat mirror symmetry in §6.2.
This is the situation where B = By, and the Ricci-flat metric on X restricts
to a flat metric on each fibre of f. In this case, all of the information about
X can be recovered from structures on B, and one begins to realize that
the crucial objects in mirror symmetry are not the Calabi-Yau manifolds
themselves, but rather the affine Kéhler bases. We will explore this in detail.
We will be able to see the mirror isomorphism between complex and Kéhler
moduli promised to us by mirror symmetry, and in addition describe mirror
symmetry at a deeper level as a phenomenon which interchanges certain
Lagrangian submanifolds on X with vector bundles or coherent sheaves on
Y. This shows how the SYZ conjecture is related to the homological mirror
symmetry conjecture. This material will be covered in §6.3.

To more fully explore approaches to the SYZ conjecture, we will take
several approaches. First, to conclude the initial discussion of the SYZ
conjecture in Chapter 6, we will show how to construct torus fibrations
which compactify to non-trivial Calabi-Yau manifolds, such as the quintic
in P4, This requires an understanding of singular fibres, which we cover in
Chapter 6. In this case, we are able to construct topological torus fibrations
where the tori degenerate over a codimension two locus A C B, called the
discriminant locus. This discriminant locus turns out to be a trivalent graph
in the case of the quintic. However, this is a purely topological approach,
and does not address metric aspects of the conjecture.

The issue of metrics is addressed in Chapter 7, in which we will abandon
the comfort of the semi-flat case. We will begin with a number of points of
view for describing and producing examples of Ricci-flat and other special
metrics, drawing on recent work of Hitchin.

For compact Calabi-Yau manifolds, it is a deep theorem of Yau that
there exists a Kéhler Ricci-flat metric for each Kahler class on the manifold.
However, there is not a single, explicit, non-trivial example known. On
the other hand, in the non-compact case, in the presence of symmetries,
it is often possible to reduce the complicated partial differential equation
governing Ricci-flatness to an ordinary differential equation. There are some
general ansétze applicable in such a situation, such as the Gibbons-Hawking
ansatz. We discuss a selection of examples in Chapter 7.
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In Chapter 7 we also address some of the key recent discoveries of Joyce
on special Lagrangian fibrations. While the semi-flat and topological SYZ
pictures discussed in Chapter 6 fit well with the original SYZ picture, Joyce
developed a picture of general special Lagrangian fibrations which does not
fit with this picture. In particular, he dispelled hopes that special La-
grangian fibrations were necessarily C°, and as a result, one does not expect
that the discriminant locus of a special Lagrangian fibration need be a nice
codimension two object. Thus the topological picture for the quintic devel-
oped in Chapter 6, with a graph as discriminant locus, seems to be only
an approximation to the hypothetical special Lagrangian fibration, where
we would now expect to have some fattening of this graph as discriminant
locus. In addition, evidence developed by Joyce suggests that the dualizing
procedure should actually change this fattened discriminant locus. Thus,
the original strong version of SYZ, in which there is a precise duality be-
tween the fibres, cannot hold, for one might have a situation where f~1(b) is
non-singular but f~'(b) is singular, for dual fibrations. Thus we are forced
to revise the metric version of the SYZ conjecture.

This revision has been developed in work by Kontsevich and Soibelman,
and Gross and Wilson. The basic idea is that we expect SYZ to hold only
near a so-called large complex structure limit point. Essentially, this means
that we are given a degenerating family 7 : X — S of Calabi-Yau manifolds,
with some point 0 € S having 7~1(0) being an extremely singular Calabi-Yau
variety, where “extremely singular” can be made precise. Then we expect
that for ¢ € S near 0, the fibre A} will carry a special Lagrangian fibration,
though perhaps with some quite bad properties, and perhaps only on some
open subset of X;. However, as t — 0, we hope that this special Lagrangian
fibration will improve its behavior, and “tend” towards some well-behaved
limit. We will make this precise in Chapter 7. Current evidence suggests
that this is closely related to the global behaviour of the Ricci-flat metric on
X; as t — 0. In particular, we can define a precise notion of limit of metric
spaces, and one can conjecture that A; actually exhibits collapsing as t — 0,
namely the special Lagrangian tori shrink to points, resulting in a limit
which is a manifold of half the dimension of that of X;. This limit manifold
should in fact coincide with the base of the special Lagrangian fibration.
This allows one to formulate a limiting form of the SYZ conjecture, and
currently this looks like the most viable differential geometric form of the
conjecture.



CHAPTER 2

D-branes and K-theory in 2D topological field
theory

Let us begin our study of Dirichlet branes in the simplest possible con-
text, that of two dimensional topological field theory (TFT). As explained
in MS1 and as we will review, a 2d closed TFT is a finite dimensional com-
mutative Frobenius algebra C. Our goal in this chapter is to generalize this
result to 2d topological open and closed TFT.

Starting with a geometric category of cobordisms between 1-manifolds
with boundary, we shall show in §2.1 that describing the sewing relations
and their solutions is a non-trivial but tractable problem. In rough terms,
the result is that D-branes (boundary conditions) correspond to modules
over the closed string algebra C.

One corollary of this result is a general relation between D-branes and
K-theory. This relation will play a central role throughout our book, and
later we will give a variety of mathematical and physical arguments for it,
particularly in §5.1. However we see here that its origin is far more primitive;
ultimately it follows just from the sewing constraints.

If C is semisimple, we can go on and completely classify the D-branes,
and do so in §§2.2, 2.3. This captures the physics of a zero-dimensional
target space.

In §5§2.4, 2.5 we begin working up to higher-dimensional examples, for
which C is not semisimple. Perhaps the simplest examples are the “Landau-
Ginzburg models,” in which C is a Jacobian algebra of functions modulo an
ideal generated by gradients. To go further, one can look at natural algebras
based on the cohomology of the target space.

In §2.6 we will extend these results to the equivariant case, where we
are given a finite group GG, and the worldsheets are surfaces equipped with
G-bundles. This is relevant for the classification of D-branes in orbifolds.

2.0.1. Summary of results. Our main results are the following two
theorems, which we state now but whose meanings will become clearer in
what follows. To state the first we must point out that a semisimple commu-
tative Frobenius algebra! C is automatically the algebra of complex-valued

LA Frobenius algebra C — commutative or otherwise — means an algebra over the
complex numbers equipped with a linear map 6 : C — C such that the pairing (a,a’) —
0(aa’) is a non-degenerate bilinear form on C. The classical example is the complex

27
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functions on the finite set X = Spec(C) of algebra homomorphisms from
C to C. (For a finite dimensional algebra this agrees with the definition of
Spec which is usual in algebraic geometry.) We think of X as a “space-time”
which is equipped with a “volume-form” or “dilaton field” 6 which assigns
the measure 6, to each point x € X.

THEOREM A. For a semisimple 2-dimensional TFT, corresponding to a
finite space-time (X, ), the choice of a mazimal category of D-branes fixes a
choice of a square root of 0, for each point x of X. The category of boundary
conditions is equivalent to the category Vect(X) of finite-dimensional com-
plex vector bundles on X. The correspondence is, however, not canonical,
but is arbitrary up to composition with an equivalence Vect(X) — Vect(X)
given by tensoring each vector bundle with a fized line bundle (i.e., one which
does not depend on the particular D-brane).

Conversely, every semisimple Frobenius category B is the category of
boundary conditions for a canonical 2-dimensional TFT, whose correspond-
ing commutative Frobenius algebra is the ring of endomorphisms of the iden-
tity functor of B.

We shall explain in the next section the sense in which the boundary
conditions form a category. The theorem will be proved in §2.2. In §2.2.4
we shall describe an analogue of the theorem for spin theories.

The second theorem relates to “G-equivariant” or “G-gauged” TFTs,
where G is a finite group. Turaev has shown that in dimension 2 a semisimple
G-equivariant TFT corresponds to a finite space-time X on which the group
G acts in a given way, and which is equipped with a G-invariant dilaton field
0 and as well as a “B-field” B representing an element of the equivariant
cohomology group HZ(X,Z).

THEOREM B. For a semisimple G-equivariant TFT corresponding to a
finite space-time (X, 60, B) the choice of a mazimal category of D-branes fizes
a G-invariant choice of square roots \/0, as before, and then the category is
equivalent to the category of finite-dimensional B-twisted G-vector bundles
on X, up to an overall tensoring with a G-line bundle.

In this case the category of D-branes is equivalent to that of the “orb-
ifold” theory obtained from the gauged theory by integrating over the gauge
fields, and it does not remember the equivariant theory from which the

group-algebra C[G] of a finite group G, where for a linear combination a = Y A\gg of
group elements we define #(a) = Ai. Another example is the cohomology algebra of a
compact oriented manifold with complex coefficients. For basic material on Frobenius
algebras see, for example, ch.9 of [104], or [142].
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orbifold theory arose. There is, however, a natural enrichment which does
remember the equivariant theory.

This will be explained and proved in §2.6.

When these theorems apply, they provide a complete answer to our
main questions. But, as we will see, the restriction to the semisimple case
makes them of limited applicability, essentially only to the case of a zero-
dimensional target space. Nevertheless, it is worth discussing them in detail,
because this is by far the simplest way to understand the essential structure
of the theory. In subsequent chapters, we will develop the formalism required
to go beyond the semisimple case. Here, we foreshadow this in §2.1 and
§2.5, explaining how the category of boundary conditions is naturally an
A category in the sense of Fukaya, Kontsevich, and others.

2.1. The sewing theorem

2.1.1. Definition of open and closed 2D TFT. Roughly speaking,
a d-dimensional quantum field theory is a particular kind of rule which as-
signs a number — called the partition function of the theory — to each
closed d-dimensional manifold with appropriate structure. What makes the
rule a quantum field theory is the way the partition function behaves when
the closed manifold is subdivided. Mathematically, the structure can be
conveniently formalized as a functor from a geometric category to a lin-
ear category. The simplest example is a topological field theory, where we
choose the geometric category to be the category whose objects are closed,
oriented (d — 1)-manifolds, and whose morphisms are oriented cobordisms
(two such cobordisms being identified if they are diffeomorphic by a diffeo-
morphism which is the identity on the incoming and outgoing boundaries).
The linear category in this case is simply the category of complex vector
spaces and linear maps, and the only property we require of the functor is
that (on objects and morphisms) it takes disjoint unions to tensor prod-
ucts. A closed d-manifold can be regarded as a cobordism from the empty
(d — 1)-dimensional manifold to itself, and the tensoring axiom implies that
the vector space assigned to the empty (d — 1)-manifold is just the complex
numbers, so the theory assigns a 1 x 1 matrix — i.e., a complex number —
to each closed d-manifold. This is the partition function of the theory. The
case d = 2 is of course especially well known and understood.

There are several natural ways to generalize the geometric category. One
may, for example, consider manifolds equipped with some additional struc-
ture such as a Riemannian metric or a spin structure. Bringing in the metric
will quickly involve us in quantum field theory in all of its complexity, so we
postpone this to Chapter 3. One can however go partway by incorporating
spin structure, which we do in §2.1.6.



30 2. D-BRANES AND K-THEORY IN 2D TOPOLOGICAL FIELD THEORY

The main focus in this chapter is on a different kind of generalization,
where the partition function is defined not just for a closed manifold but
for an oriented d-manifold with a boundary whose connected components
have been labelled with elements of a fixed set By, called the set of boundary
conditions. This is formalized by taking the objects of the geometric cate-
gory to be oriented (d — 1)-manifolds with boundary, with each boundary
component labelled with an element of the set By. In this case a cobordism
from Y to Y7 means a d-manifold X whose boundary consists of three parts,
0X = YoUY] U0t X, where the “constrained boundary” Ogg; X is a cobor-
dism from 0Yj to 3Y;. Furthermore, we require the connected components
of Oestr X to be labelled with elements of By in agreement with the labelling
of 3Yy and 0Y;.

Thus when d = 2 the objects of the geometric category are disjoint
unions of circles and oriented intervals with labelled ends. A functor from
this category to complex vector spaces which takes disjoint unions to tensor
products will be called an open and closed topological field theory: such
theories will give us a “baby” model of the theory of D-branes. We shall
always write C for the vector space associated to the standard circle S?,
and Oy, for the vector space associated to the interval with ends labelled by
a,b € By oriented from b to a (i.e., so that it is a cobordism from the point
b to the point a, and NOT the other way round).

CL/E..,.'.
‘n,
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b e ‘N a
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FIGURE 1. Basic cobordism on open strings. In this and all
following open string diagrams we indicate the constrained
boundary by a dot-dash line.

The cobordism of Figure 1 gives us a linear map Oy ® Ope — Oge, O
equivalently a bilinear map

(2.1) Oap X Ope — Oau

which we think of as a composition law. In fact we have a C-linear category
B whose objects are the elements of By, and whose set of morphisms from b
to a is the vector space Oy, with composition of morphisms given by (2.1).
(To say that B is a C-linear category means no more than that the bilinear
composition (2.1) is associative in the obvious sense, and that there is an
identity element 1, € O, for each a € By; we shall explain presently why
these properties hold.)
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For any open and closed TFT we have a map e : C — C defined by the
cylindrical cobordism S* x [0, 1], and a map egp : Oy — Ogp, defined by the
square [0,1] x [0,1]. Clearly €? = e and €2, = eqp. If all these maps are
identity maps we say the theory is reduced. There is no loss in restricting
ourselves to reduced theories, and we shall do so from now on.

2.1.2. Algebraic characterization. The most general 2D open and
closed TFT, formulated as in the previous section, is given by the following
algebraic data:

1. (C,6c,1¢) is a commutative Frobenius algebra.

2a. Oy is a collection of vector spaces for a,b € By with an associative
bilinear product

(2'2) Oap @ Ope — Oge-
2b. The O, have non-degenerate traces
(2.3) 0y : Opq — C.

In particular, each O, is a not necessarily commutative Frobenius algebra.
2c. Moreover,

(2.4) Oup @ Opa — Og 25 C
is a perfect pairing, and
(2.5) Oa(P11p2) = Op(1h2)1)

for ¢y € Ogp, P2 € Opq.

3. There are linear maps:

e :C — Ou
(2.6) 1404 — C
such that
3a. 4 is an algebra homomorphism
(2.7) La(P102) = ta(d1)ta(P2)-

3b. The identity is preserved

(28) La(lc) = 1a-

3c. Moreover, (, is central in the sense that

(2.9) ta(@)Y = Yip(o)

for all ¢ € C and ¢ € Oyp.
3d. ¢, and * are adjoints:

(2.10) 0c (" (¥)9) = Oa(Pia(d))
for all ¢ € Og,.
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3e. The “Cardy conditions.”? Define T, 1 Oaa — Oy as follows. Since
Ogp and Oy, are in duality (using 6, or 6j), if we let 1, be a basis for O,
then there is a dual basis ¥* for Q. Then we define

(2.11) (W) =Y Pyt
w

and we have the “Cardy condition”:

(2.12) m* =1y 0 L%

@,

C—C

@
O

(O C®C—_C

| )
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FIGURE 2. Four diagrams defining the Frobenius structure
in a closed 2d TFT. It is often more convenient to represent
the morphisms by the planar diagrams in the second row. In
this case our convention is that if a circle is oriented so that
the surface lies on its right then it is an ingoing circle.

2.1.3. Pictorial representation. Let us explain the pictorial basis for
these algebraic conditions. The case of a closed 2d TFT is very well-known.
The data of the Frobenius structure is provided by the diagrams in Figure
2. The consistency conditions follow from Figure 3.

In the open case, entirely analogous considerations lead to the construc-
tion of a not necessarily commutative Frobenius algebra in the open sector.
The basic data are summarized in Figure 4. The fact that (2.4) are dual
pairings follows from Figure 5. The essential new ingredients in the open
and closed theory are the open-to-closed and closed-to-open transitions. In
2d TFT these are the maps ¢4, t*. They are represented by Figure 6. There
are five new consistency conditions associated with the open/closed transi-
tions. These are illustrated in Figures 7 to 12. (In checking the topological
assertions about these diagrams, it is usually best to imagine the surfaces as
“flattened out”: thus the two surfaces of Figure 9 are both annuli, with one

2These are actually generalizations of the conditions stated by Cardy. One recovers his
conditions by taking the trace. Of course, the factorization of the double twist diagram in
the closed string channel is an observation going back to the earliest days of string theory.
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(P1-¢2) - d3 =1+ (P2 93)

®1 ~ o1
G2 P2

12 =2 @1
le-op=10

FIGURE 3. Associativity, commutativity, and unit con-
straints in the closed case. The unit constraint requires the
natural assumption that the cylinder correspond to the iden-
tity map C — C.

boundary circle being the incoming closed circle, while the other boundary
circle is subdivided into an outgoing interval and an interval of constrained
boundary. Similarly, the two surfaces in the Cardy diagram 12 are annuli,
while the surfaces of 7 are each discs with two holes — i.e., discs from which
two open subdiscs have been removed.)

2.1.4. Sewing theorem. Geometrically, any oriented surface can be
decomposed into a composition of morphisms corresponding to the basic
data defining the Frobenius structure. However, a given surface can be de-
composed in many different ways. The above sewing axioms follow from the
consistency of these decompositions. The sewing theorem guarantees that
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FIGURE 4. Basic data for the open theory. Constrained
boundaries are denoted with dot-dash lines, and carry a
boundary condition a, b, c,--- € By.

there are no further relations on the algebraic data imposed by consistency
of sewing.

THEOREM 2.1. Conditions 1,2,8 above are sufficient to ensure that the
algebraic data give rise to a well-defined open and closed topological field
theory.

The proof is in §2.7.

2.1.5. The category of boundary conditions. The category B of
boundary conditions of an open and closed TFT is a C-linear category. We
can adjoin new objects to it in various ways. For example, if the category
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FIGURE 6. Two ways of representing open to closed and
closed to open transitions.
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does not possess direct sums, we can define for any two objects a and b a

new object a @ b by

(2.13) Oa@b,c = Oue ® Oy,
(2.14) Oc,a@b = Oeq ® Opp,
and hence?

L Oaa Oab
(215) Oa@b,a@b = <Oba Obb )
with the obvious composition laws, and

(216) ea@b . Oa@b@@b —C

3The matrix notation here is intended to help with understanding the composition
of the morphisms: as a vector space, Ougp,amp is simply the sum of the four spaces

Ouaay Oat, Opa, Ovs.
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1
ta(P1)ta(2)
®2
La(¢1¢2)
FIGURE 7. (4 is a homomorphism.
rermian BRI
rmaimaimal @ ’ ‘i, a
La(1C) =1,

FIGURE 8. ¢, preserves the identity.
given by

(2.17) Do (ﬁz ﬁzg) = Ou(aa) + O ().

The new object is the direct sum of a and b in the enlarged category of
boundary conditions. If there was already a direct sum of a and b in the
category B then the new object will be canonically isomorphic to it. In
the opposite direction, if we have a boundary condition a and a projection
p € O (i-e., an element such that p? = p) then we may as well assume
there is a boundary condition b = im(p) such that for any ¢ we have O, =
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{f €0wp:pf =f}and Op. = {f € Opg : fp = f}. Then we shall have
a = im(p) @ im(1 — p).*

4A linear category in which idempotents split in this way is often called Karoubian.
See the brief related discussion at the end of §8.3.4.
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FIGURE 12. The (generalized) Cardy condition expressing
factorization of the double-twist diagram in the closed string
channel.

One very special property that the category B possesses is that for any
two objects a and b the space O, of morphisms is canonically dual to Oy,
by a pairing which factorizes through the composition in either order. It
is natural to call a category with this property a Frobenius category, or a
Calabi- Yau category.® It is a strong restriction on the category: for example
the category of finitely generated modules over a finite dimensional algebra
does not have the property unless the algebra is semisimple.

ExaMPLE 2.2. Probably the simplest example of an open and closed
theory of the type we are studying is one associated to a finite group G.
The category B is the category of finite dimensional complex representations
M of G, and the trace 0y : Oy = End(M) — C takes ¢ : M — M to
trace(¢))/|G|. The closed algebra C is the center of the group-algebra C[G],
which maps to each End(M) in the obvious way. The trace ¢ : C — C takes
a central element ) A\,g of the group-algebra to A\ /|G].

In this example the partition function of the theory on a surface X with
constrained boundary circles C1, ..., Cy labelled My, ..., M} is the weighted
sum over the isomorphism classes of principal G-bundles P on X of

xan (hp(C1)) -+ X (hp(Cr)),

5The latter terminology comes from the case of coherent sheaves on a compact Kéhler
manifold, where for two sheaves F and F' the dual of the morphism space Ext(FE, F') is
in general Ext(F, F ® w), where w is the canonical bundle. This coincides with Ext(F, E)
only when w is trivial, i.e., in the Calabi-Yau case. (For details see §4.3.) We shall discuss
this example further in §2.5.



2.1. THE SEWING THEOREM 39

where xps : G — C is the character of a representation M, and hp(C)
denotes the holonomy of P around a boundary circle C'. Each bundle P is
weighted by the reciprocal of the order of its group of automorphisms.

Returning to the general theory, we can now ask three basic questions.

(i) If we are given a “closed” TFT, can we enlarge it to an open and
closed theory, and, if so, is the enlargement unique?

(ii) If we are given the category B of boundary conditions of an open
and closed theory, together with the linear maps 0, : O,, — C which define
the Frobenius structure, can we reconstruct the whole theory, i.e., can we
find the closed Frobenius algebra C?

(iii) Is an arbitrary Frobenius category the category of boundary condi-
tions for some closed theory?

For the first question to be well-posed, we should assume that the cate-
gory of boundary conditions is mazimal, in the sense that if B’ is an enlarge-
ment of it then any object of B’ is isomorphic to an object of B. Even so,
we shall see that there are subtleties which prevent any of these questions
from having a simple affirmative answer.

2.1.6. Generalizations: Spin theories. We can obtain many inter-
esting generalizations of the above structure by modifying either the geo-
metrical or the linear category. We shall now survey a few kinds of examples
by way of illustration, sometimes giving only a sketch of the details.

The most general target category we can consider is a symmetric tensor
category: clearly we need a tensor product, and the axiom Hy, .y, = Hy, ®
Hy, only makes sense if there is an involutory canonical isomorphism Hy, ®
Hy, = Hy, ® Hy;.

A very common choice in physics is the category of super vector spaces,
i.e., vector spaces V with a mod 2 grading V = V@ V!, where the canonical
isomorphism VoW 2 W@V is v @ w — (—1)38vde%y; @ 4. One can
also consider the category of Z-graded vector spaces, with the same sign
convention for the tensor product.

In either case the closed string algebra is a graded-commutative algebra
C with a trace 6 : C — C. In principle the trace should have degree zero, but
in fact the commonly encountered theories have a grading anomaly which
makes the trace have degree —n for some integer n.5 The formulae (2.5),
(2.9), and (2.11) must be replaced by their graded-commutative analogues.
In particular if we choose a basis ¥, and its dual ¥* so that

(2.18) Oc(¥"y) = 6",

6t is easy to see that, up to an overall translation of the grading, the most general
anomaly assigns an operator of degree %n(z —0— X) to a cobordism with Euler number
and ¢ incoming and o outgoing boundary circles.
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then
(2.19) () = 3 (— 1)

I

We can also obtain interesting structures by changing the geometrical
category of manifolds and cobordisms by equipping them with extra struc-
ture.

ExXAMPLE 2.3. We define topological-spin theories by replacing “mani-
folds” with “manifolds with spin structure.”

A spin structure on a surface means a double covering of its space of
non-zero tangent vectors which is non-trivial on each individual tangent
space. On an oriented 1-dimensional manifold S it means a double cov-
ering of the space of positively-oriented tangent vectors. For purposes of
gluing it is useful to note that this is the same thing as a spin structure on
a ribbon neighbourhood of S in an orientable surface. Each spin structure
has an automorphism which interchanges its sheets, and this will induce
an involution 7' on any vector space which is naturally associated to a 1-
manifold with spin structure, giving the vector space a mod 2 grading by
its +1-eigenspaces. We define a topological-spin theory as a functor from
the cobordism category of manifolds with spin structures to the category
of super vector spaces with its graded tensor structure. The functor is re-
quired to take disjoint unions to super tensor products, and we also require
the automorphism of the spin structure of a 1-manifold to induce the grad-
ing automorphism 7' = (—1)ngrOO of the super vector space. We shall see
presently that this choice of the supersymmetry of the tensor product rather
than the naive symmetry which ignores the grading is forced on us by the
geometry of spin structures if we want to allow the possibility of a semisim-
ple category of boundary conditions. There are two non-isomorphic circles
with spin structure: S.., with the Mobius or “Neveu-Schwarz” structure,
and S}, with the trivial or “Ramond” structure. A topological-spin theory
gives us state spaces C,, and C,, corresponding respectively to S}, and S!.

There are four cobordisms with spin structures which cover the standard
annulus. The double covering can be identified with its incoming end times
the interval [0,1], but then one has a binary choice when one identifies
the outgoing end of the double covering over the annulus with the chosen
structure on the outgoing boundary circle. In other words, alongside the
cylinders A, = S} . % [0,1] which induce the identity maps of Cys,, there
nsr Which connect S,%s,r
sheets. These cylinders A, , induce the grading automorphism on the state

are also cylinders A to itself while interchanging the
spaces. But because A, = A' by an isomorphism which is the identity
on the boundary circles — the Dehn twist which “rotates one end of the
cylinder by 2n” — the grading on C,s must be purely even. The space C,
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can have both even and odd components. The situation is a little more
complicated for “U-shaped” cobordisms, i.e., cylinders with two incoming
or two outgoing boundary circles. If the boundaries are S}  there is only
one possibility, but if the boundaries are S} there are two, corresponding to
A*. The complication is that there seems no special reason to prefer either
of the spin structures as “positive”. We shall simply choose one — let us
call it P — with incoming boundary S} LI S}, and use P to define a pairing
Cr®C, — C. We then choose a preferred cobordism @ in the other direction
so that when we sew its right-hand outgoing S} to the left-hand incoming
one of P the resulting S-bend is the “trivial” cylinder A;F. We shall need to
know, however, that the closed torus formed by the composition P o () has
an even spin structure. Note that the Frobenius structure 6 on C restricts
to 0 on C,.

There is a unique spin structure on the pair-of-pants cobordism of Figure
2 which restricts to S, on each boundary circle, and it makes C,s into a
commutative Frobenius algebra in the usual way. If one incoming circle
is S!. and the other is S} then the outgoing circle is S}, and there are
two possible spin structures, but the one obtained by removing a disc from
the cylinder A is preferred: it makes C, into a graded module over C,;.
The chosen U-shaped cobordism P, with two incoming circles S}, can be
punctured to give us a pair of pants with an outgoing S} , and it induces
a graded bilinear map C, x C. — Cps which, composing with the trace on
Cns, gives a non-degenerate inner product on C,. At this point the choice
of symmetry of the tensor product becomes important. Let us consider the
diffeomorphism of the pair of pants which shows us in the usual case that
the Frobenius algebra is commutative. When we lift it to the spin structure,
this diffeomorphism induces the identity on one incoming circle but reverses
the sheets over the other incoming circle, and this proves that the cobordism
must have the same output when we change the input from S(¢; ® ¢2) to
T(¢1) ® ¢2, where T is the grading involution and S : C, ® C, — C, ® C, is
the symmetry of the tensor category. If we take S to be the symmetry of
the tensor category of vector spaces which ignores the grading, this shows
that the product on the graded vector space C, is graded-symmetric with
the usual sign; but if S is the graded symmetry then we see that the product
on Cy is symmetric in the naive sense. (We must bear in mind here that
if 11 and 12 do not have the same parity then their product is in any case
zero, as we have seen that C,s is purely even.)

There is an analogue for spin theories of the theorem which tells us that
a two-dimensional topological field theory “is” a commutative Frobenius
algebra. It asserts that a spin-topological theory “is” a Frobenius algebra
C = (Chs®Cy, Oc) with the properties just mentioned, and with the following
additional property. Let {¢x} be a basis for C,s, with dual basis {¢*} such
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that Oc(¢re™) = 0}, and let 5, and B* be similar dual bases for C,. Then
the Euler elements x,s := > ¢x¢" and x, = > B3 are independent of the
choices of bases, and the condition we need on the algebra C is that x,s = X
In particular, this condition implies that the vector spaces C,s and C, have
the same dimension.” In fact, the Euler elements can be obtained from
cutting a hole out of the torus. There are actually four spin structures on
the torus. The output state is necessarily in C,,s. The Euler elements for the
three even spin structures are equal to xe = Xns = Xr. The Euler element
Xo corresponding to the odd spin structure, on the other hand, is given by
Xo = D (—1)%8 %3 3%,

We shall omit the proof that the general spin theory is what we have
just described, but it is almost identical with the proof we shall give in
§2.7 of the theorem of Turaev about G-equivariant theories in the simple
case when the group G is Z/2. Indeed a spin theory is very similar to —
but not the same as — a Z/2-equivariant theory, which is the structure
obtained when the surfaces are equipped with principal Z/2-bundles (i.e.,
double coverings) rather than spin structures. We shall discuss equivariant
theories in §2.6. (One difference is that in the equivariant case the Z/2
action is nontrivial in the sector C; and trivial in C,, precisely the opposite
of what we have found in the spin case.) Comparing with the equivariant
theory, the surprising result that the product on C, is naive-symmetric can
be understood as twisted anticommutativity.

It seems reasonable to call a spin theory semisimple if the algebra C,
is semisimple, i.e., is the algebra of functions on a finite set X. Then C,
is the space of sections of a vector bundle £ on X, and it follows from
the condition x,s = X, that the fibre at each point must have dimension
1. Thus the whole structure is determined by the Frobenius algebra C,
together with a binary choice at each point x € X of the grading of the fibre
E, of the line bundle F at z.

We can now see that if we had not used the graded symmetry in defining
the tensor category we should have forced the grading of C, to be purely even.
For on the odd part the inner product would have had to be skew, and that
is impossible on a 1-dimensional space. And if both C,s and C, are purely
even then the theory is in fact completely independent of the spin structures
on the surfaces.

A concrete example of a two-dimensional topological-spin theory is given
by C = C ® Cn where n?> = 1 and 7 is odd. The Euler elements are y, = 1
and x, = —1. It follows that the partition function of a closed surface with
spin structure is +1 according as the spin structure is even or odd. (To prove
this it is useful to compute the Arf invariant of the quadratic refinement of

7Thus, in a sense, the theory has “space-time supersymmetry.”
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the intersection product associated to the spin structure and to note that it
is multiplicative for adding handles.)

The most common theories defined on surfaces with spin structure are
not topological: they are 2-dimensional conformal field theories with N' =1
supersymmetry. The general features of the structure are still as we have
described, but it should be noticed that if the theory is not topological then
one does not expect the grading on C,,s to be purely even: states can change
sign on rotation by 2w. If a surface ¥ has a conformal structure then a
double covering of the non-zero tangent vectors is the complement of the
zero-section in a two-dimensional real vector bundle L on Y which is called
the spin bundle. The covering map then extends to a symmetric pairing
of vector bundles L ® L. — T'% which, if we regard L and T3 as complex
line bundles in the natural way, induces an isomorphism L ®c L &£ T3. An
N = 1 superconformal field theory is a conformal-spin theory which assigns
a vector space Hg, to the l-manifold S with the spin bundle L, and is
equipped with an additional map

(2.20) I'(S,L) @Hs, — Hs,L

(2.21) (0,9) — Gy,

where I'(S, L) is the space of smooth sections of L, such that G, is real-linear
in the section o, and satisfies G2 = D2, where D, is the Virasoro action
of the vector field o2 related to o ® o by the isomorphism L ®@c L = TY.
Furthermore, when we have a cobordism (X, L) from (Sy, Lg) to (Si,L1)
and a holomorphic section ¢ of L which restricts to o; on S; we have the
intertwining property

(2.22) Go,oUs =Us0Gg,.

ExXaMPLE 2.4. We define topological-spin® theories, which model 2d the-
ories with N/ = 2 supersymmetry, by replacing “manifolds” with “manifolds
with spin€ structure”.

A spin® structure on a surface with a conformal structure is a pair of
holomorphic line bundles L1, Lo with an isomorphism L ® Lo = T of
holomorphic line bundles. A spin structure is the particular case when
L1 = Ly. On a 1-manifold S a spin® structure means a spin€ structure on a
ribbon neighbourhood of S in a surface with conformal structure. An N' = 2
superconformal theory assigns a vector space Hg.r, 1, to each 1-manifold S

with spin® structure, and an operator

(2.23) UsoiL1,Lo * HSoiL1,Ls — HSy5Ly,Ls

to each spin®-cobordism from Sy to S;. To explain the rest of the struc-
ture we need to define the NV = 2 Lie superalgebra associated to a spin®
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1-manifold (S; Ly, Ls). Let G = Aut(Ly) denote the group of bundle iso-
morphisms L; — L; which cover diffeomorphisms of S. (We can identify
this group with Aut(Ls).) It has a homomorphism onto the group Diff*(.9)
of orientation-preserving diffeomorphisms of .S, and the kernel is the group
of fibrewise automorphisms of L, which can be identified with the group of
smooth maps from S to C*. The Lie algebra Lie(G) is therefore an exten-
sion of the Lie algebra Vect(S) of Diff " (S) by the commutative Lie algebra
Q0(S9) of smooth real-valued functions on S. Let A%; L,.L, denote the com-
plex Lie algebra obtained from Lie(G) by complexifying Vect(S). This is the
even part of a Lie superalgebra whose odd part is A}G;Ll,Lg =T'(L1)®I'(La).
The bracket A' ® A! — A® is completely determined by the property that
elements of I'(L;) and of I'(Ls) anticommute among themselves, while the
composite

(2.24) (L) @ T'(Ly) — A — Vectc(S)

takes ()\1,)\2) to Mg € F(TS).

In an N' = 2 theory we require the superalgebra A(S; L1, Ly) to act
on the vector space Hs.r,,1,, compatibly with the action of the group G,
and with a similar intertwining property with the cobordism operators to
that of the NV = 1 case. For an N/ = 2 theory the state space always has
an action of the circle group coming from its embedding in G as the group
of fibrewise multiplications on L and Ls. Equivalently, the state space is
always Z-graded.

An N = 2 theory always gives rise to two ordinary conformal field
theories by equipping a surface ¥ with the spin® structures (C,7%) and
(TE,C). These are called the “A-model” and the “B-model” associated to
the N/ = 2 theory. In each case the state spaces are cochain complexes in
which the differential is the action of the constant section 1 of the trivial
component of the spin®-structure.

2.1.7. Generalizations: Cochain level theories. The most impor-
tant “generalization”, however, of the open and closed topological field the-
ory we have described is of a more fundamental kind. Our topological theo-
ries are intended to be a toy model of the conformal field theories that arise
in string theory. In closed string theory the central object is the vector space
C = Cgq1 of states of a single parametrized string. This has an integer grad-
ing by the “ghost number”, and an operator @) : C — C called the “BRST
operator” which raises the ghost number by 1 and satisfies Q% = 0. In other
words, C is a cochain complex. If we think of the string as moving in a space-
time M then C is roughly the space of differential forms defined along the
orbits of the action of the reparametrization group Diff* (S!) on the free loop
space LM (more precisely, square-integrable forms of semi-infinite degree).
Similarly, the space C of a topologically-twisted N/ = 2 supersymmetric
theory, as just described, is a cochain complex which models the space of
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semi-infinite differential forms on the loop space of a Kéhler manifold — in
this case, all square-integrable differential forms, not just those along the or-
bits of Difft(S1). In both kinds of example, a cobordism ¥ from p circles to
q circles gives an operator Us; ;, : C®P — C®? which depends on a conformal
structure p on 3. This operator is a cochain map, but its crucial feature
is that changing the conformal structure p on 3 changes the operator Uy ,
only by a cochain homotopy. The cohomology H(C) = ker(Q)/im(Q) — the
“space of physical states” in conventional string theory — is therefore the
state space of a topological field theory. (In the usual string theory situation
the topological field theory we obtain is not very interesting, for the BRST
cohomology is concentrated in one or two degrees, and there is a “grad-
ing anomaly” which means that the operator associated to a cobordism X
changes the degree by a multiple of the Euler number x(X). In the case of
the N = 2 supersymmetric models, however, there is no grading anomaly,
and the full structure is visible.)

A good way to describe how the operator Uy, , varies with i is as follows.

If My is the moduli space of conformal structures on the cobordism ¥,
modulo diffeomorphisms of ¥ which are the identity on the boundary circles,
then we have a cochain map

(2.25) Us : C®? — Q*( My, C%7)

where the right-hand side is the de Rham complex of forms on My with
values in C®7. The operator Uy, is obtained from Us; by restricting from
My to {u}. The composition property when two cobordisms ¥; and ¥, are
concatenated is that the diagram

(2.26)

cop . Q(My,,C%9)
! !
Q(szozlvc(gr) - Q(le X MZ2,C®T) = Q(ME17Q(M227C®T))

commutes, where the lower horizontal arrow is induced by the map My, X
My, — My, ox, which expresses concatenation of the conformal structures.

Many variants of this formulation are possible. For example, we might
prefer to give a cochain map

(2.27) Us: : C’.(ME) — (C®p)* ® C®q,

where Co(My) is, say, the complex of smooth singular chains of My. We
may also prefer to use the moduli spaces of Riemannian structures instead
of conformal structures.

There is no difficulty in passing from the closed string picture just pre-
sented to an open and closed theory. We shall not discuss these cochain
level theories in any depth in this work, but it is important to realize that
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they are the real objective. We shall now point out a few basic things about
them. A much fuller discussion can be found in Costello’s work [100].

For each pair a,b of boundary conditions we shall still have a vector
space — indeed a cochain complex — O, but it is no longer the space of
morphisms from b to a in a category. Rather, what we have is, in the ter-
minology of Fukaya, Kontsevich, and others, an A..-category. The notion
of As.-category will appear a number of times throughout the book, but
is discussed in greatest detail in Chapter 8. Summarizing briefly here, this
means that instead of a composition law Ogp X Op. — O, We have a family
of ways of composing, parametrized by the contractible space of conformal
structures on the surface of Figure 1. In particular, any two choices of a
composition law from the family are cochain homotopic. Composition is
associative in the sense that we have a contractible family of triple compo-
sitions Oy, X Ope X Opg — Oguq, which contains all the maps obtained by
choosing a binary composition law from the given family and bracketing the
triple in either of the two possible ways.

REMARK 2.5. This is not the usual way of defining an A, -structure.
According to Stasheff’s original definition, an A.-structure on a space X
consists of a sequence of choices: first, a composition law ms : X x X — X;
then, a choice of a map

ms:[0,]] x X x X xX — X
which is a homotopy between
(ﬂj‘,y, Z) = mg(mg(:n,y),Z) and (ZE,y,Z) = m2($7m2(y7 Z))a

then, a choice of a map
my Sy x X 10X ,

where Sy is a convex plane polygon whose vertices are indexed by the five
ways of bracketing a 4-fold product, and my4|((0S;) x X*) is determined by
mgs; and so on. There is an analogous definition — in fact slightly simpler —
applying to cochain complexes rather than spaces. (See §8.1 for the precise
definitions.) These definitions, however, are essentially equivalent to the one
above coming from 2-dimensional field theory: the only important point is
to have a contractible family of k-fold compositions for each k. (A discussion
of the relation between the definitions can be found in [412].)

Apart from the composition law, the essential algebraic properties we
have found in our theories are the non-degenerate inner product, and the
commutativity of the closed algebra C. Concerning the latter, when we
pass to cochain theories the multiplication in C will of course be commu-
tative up to cochain homotopy, but, unlike what happened with the open
string composition, the moduli space My of closed string multiplications,
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i.e., the moduli space of conformal structures on a pair of pants ¥, mod-
ulo diffeomorphisms of ¥ which are the identity on the boundary circles, is
not contractible: it has the homotopy type of the space of ways of embed-
ding two copies of the standard disc D? disjointly in the interior of D? —
this space of embeddings is of course a subspace of Msyx. In particular, it
contains a natural circle of multiplications in which one of the embedded
discs moves like a planet around the other, and there are two different natu-
ral homotopies between the multiplication and the reversed multiplication.
This might be a clue to an important difference between stringy and clas-
sical space-times. The closed string cochain complex C is the string theory
substitute for the de Rham complex of space-time, an algebra whose mul-
tiplication is associative and (graded-)commutative on the nose. Over the
rationals or the real or complex numbers, such cochain algebras are known
by the work of Sullivan [434] and Quillen [400] to model® the category of
topological spaces up to homotopy, in the sense that to each such algebra
C we can associate a space X¢ and a homomorphism of cochain algebras
from C to the de Rham complex of X¢ which is a cochain homotopy equiv-
alence. If we do not want to ignore torsion in the homology of spaces we
can no longer encode the homotopy type in a strictly commutative cochain
algebra. Instead, we must replace commutative algebras with so-called Fo-
algebras, i.e., roughly, cochain complexes C over the integers equipped with
a multiplication which is associative and commutative up to given arbitrar-
ily high-order homotopies. An arbitrary space X has an F.-algebra Cx of
cochains, and conversely one can associate a space X¢ to each E.-algebra
C. Thus we have a pair of adjoint functors, just as in rational homotopy
theory. A long evolution in algebraic topology has culminated in recent the-
orems of Mandell [346] which show that the actual homotopy category of
topological spaces is more or less equivalent to the category of E.-algebras.
The cochain algebras of closed string theory have less higher commutativity
than do E-algebras, and this may be an indication that we are dealing with
non-commutative spaces in Connes’s sense: that fits in well with the inter-
pretation of the B-field of a string background as corresponding to a bundle
of matrix algebras on space-time. At the same time, the non-degenerate
inner product on C — corresponding to Poincaré duality — seems to show
we are concerned with manifolds, rather than more singular spaces.

For readers not accustomed to working with cochain complexes it may
be worth saying a few words about what one gains by doing so. To take
the simplest example, let us consider the category K of cochain complexes
of finitely generated free abelian groups and cochain homotopy classes of
cochain maps. This is called the derived category of the category of finitely
generated abelian groups. (Derived categories will be discussed in detail in

8In this and the following sentence we are overlooking subtleties related to the fun-
damental group.
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Chapter 4.) Passing to cohomology gives us a functor from K to the category
of Z-graded finitely generated abelian groups. In fact the subcategory Ky
of IC consisting of complexes whose cohomology vanishes except in degree 0
is actually equivalent to the category of finitely generated abelian groups.’
But the category K inherits from the category of finitely generated free
abelian groups a duality functor with properties as ideal as one could wish:
each object is isomorphic to its double dual, and dualizing preserves exact
sequences. (The dual C* of a complex C is defined by (C*)! = Hom(C ¢, Z).)
There is no such nice duality in the category of finitely generated abelian
groups. Indeed, the subcategory Ky is not closed under duality, for the
dual of the complex C4 corresponding to a group A has in general two non-
vanishing cohomology groups: Hom(A,Z) in degree 0, and in degree +1
the finite group Ext!(A,Z) Pontrjagin-dual to the torsion subgroup of A.
This follows from the exact sequence (not to be confused with the cochain
complex):

(2.28) 0 — Hom(A,Z) — Hom(Fy4,Z) — Hom(R4,Z) — Ext'(A,Z) — 0
derived from an exact sequence
0—Rpg—F4—A—0

The category K also has a tensor product with better properties than
the tensor product of abelian groups (which does not preserve exact se-
quences), and, better still, there is a canonical cochain functor from (locally
well-behaved) compact spaces to K which takes Cartesian products to ten-
sor products. (The simplicial, Cech, and other candidates for the cochain
complex of a space are canonically isomorphic in K.)

We shall return to this discussion in §2.5.

2.2. Solutions of the algebraic conditions: The semisimple case

2.2.1. Classification theorem. We now turn to the question : given a
closed string theory C, what is the corresponding category of boundary con-
ditions? In our formulation this becomes the question: given a commutative
Frobenius algebra C, what are the possible O,’s?

We can answer this question in the case when C is semisimple. We will
take C to be an algebra over the complex numbers, and in this case the most
useful characterization of semisimplicity is that the “fusion rules”

(2.29) budy = N,

9To an abelian group A one can associate the cochain complex
Ca=(+ =0—=Ra—Fa—-0— ---),

where F4 is a free abelian group (in degree 0) with a surjective map Fa4a — A, and R4 is
the kernel of Fi4 — A. The choice of F4 is far from unique, but nevertheless the different
choices of C'4 are canonically isomorphic objects of K.
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are diagonalizable.!® That is, the matrices L(¢,) of the left-regular repre-
sentation, with matrix elements IV, w)/\’ are simultaneously diagonalizable.
Equivalently, there is a set of basic idempotents ¢, such that

C=9,Ce,

2.30
(2:30) ExEy = OgyEy-

Equivalently, yet again, C is the algebra of complex-valued functions on the
finite set X = Spec(C) of characters of C.

The trace 0¢ : C — C, which should be thought of as a “dilaton field”
on the finite space-time Spec(C), is completely described by the unordered
set of non-zero complex numbers

(2.31) 0, := 0Oc(cs)

which is the only invariant of a finite dimensional commutative semisimple
Frobenius algebra.

It should be mentioned that the most general finite dimensional com-
mutative algebra over the complex numbers is of the form C = &C,, where
x runs through the set Spec(C), and C, is a local ring, i.e., C, = Ce, @ my,
with €, as in (2.30) , and m, a nilpotent ideal. If C is a Frobenius algebra,
then so is each C,, and there is some v, for which 6¢ : m¥* — C is an isomor-
phism, while m%+! = 0. Let us write w, € m% for the element such that
Oc(w,) = 1. The element w of C with components w, can be regarded as a
“volume form” on space-time. (A typical example of such a local Frobenius
algebra C,, is the cohomology ring — with complex coefficients — of complex
projective space P" of dimension n. The cohomology ring is generated by a
single 2-dimensional class t which satisfies t"T! = 0. The trace is given by
integration over P", and takes t* to 1 if k = n, and to 0 otherwise. Thus
wy = t" here.)

A useful technical fact about Frobenius algebras — not necessarily com-
mutative — is that, in the notation of (2.11) , the “Euler” element y =
> Yt is invertible if and only if the algebra is semisimple'!, which in the
general case means that the algebra is isomorphic to a sum of full matrix

10The structure constants Nuﬁ need not be integral, though in many interesting ex-

amples there is a basis for the algebra in which they are integral.

Uy see this, one observes that for any element 1 of the algebra we have 0(x) =
tr(¢), where tr(¢)) denotes the trace of v in the regular representation. (This holds
because 0(V*pp,) = (b, p*) is the (u,v) matrix element of the matrix representing
1 in the regular representation.) As the pairing (¢1,%2) — 0(1)1%2) is non-degenerate,
it follows that the trace-form (¢1,2) — tr(w112) is non-degenerate if and only if x is
invertible, and non-degeneracy of the trace-form is well-known to be a criterion for a finite
dimensional algebra to be semisimple. There are several definitions of semisimplicity, and
their equivalence amounts to the classical theorem of Wedderburn. For our purposes, a
semisimple algebra is just a sum of full matrix algebras.
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algebras. The element x always belongs to the center of the algebra; in the
commutative case it has components dim(Cy,)w,.

In the semisimple case we have the following complete characterization
of the possible open algebras O,, compatible with a fixed closed algebra C.

THEOREM 2.6. If C is semisimple then O = Og, is semisimple for each
a and necessarily of the form O = Ende¢(W) for some finite dimensional
representation W of C.

PROOF. The images t,(¢,) = P, are central simple idempotents. There-
fore O, = P,O = P,OP, is an algebra over the Frobenius algebra C, =
€:C =2 C, and so it suffices to work over a single space-time point. Then
1“(1p,) = ale, for some element a € C. By the Cardy condition

(2.32) alo, = X0, = > i

Applying 0 we find o = dim O,, and hence xp, is invertible if O, # 0. It
follows that O, is semisimple at each point z, i.e. a sum of matrix algebras
®;End(W;). In fact, the Cardy condition shows that there can be at most
one summand W, at each point, i.e. the algebra is simple. For the map
m: Op — Op must take each summand End(W;) into itself, and cannot
factor through the 1-dimensional C, if more than one W; is non-zero. O

According to Theorem A, the most general O,, is obtained by choosing
a vector space W, , for each basic idempotent e, i.e., a vector bundle on
the finite space-time X = Spec(C), and forming;:

(2.33) Oua = B2End(Wy.0).

But let us notice that when we have an algebra of the form End(W) the
vector space W is determined by the algebra only up to tensoring with an
arbitrary complex line: any irreducible representation of the algebra will do
for W.

Elements ¢ € O,, will be denoted ) = ®1,. We have seen above that
the projection operator P, onto the z-th summand is given by

(2.34) ta(es) = Py

From the adjoint relation and the Cardy condition we readily deduce the
relations:

(2.35) Ou()) = Y V0. Trw, ()

(2.36) S(y) = @xTer,awx)j—;—

(one must use the same square root in the formula for §p» and ¢*.) Note that
Oc(S=—L) = §,,, i.e., the elements 2 form a natural orthonormal basis

Vi /6, Vo
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for C. Thus, a boundary condition a gives us a tuple of positive integers
w,; = dim W, one for each basic idempotent, as well as a choice of the
square root v/8,. The relation (2.5), however, shows that these square roots
are an intrinsic property of the Frobenius category B, and do not depend on
which particular object in it we are considering.

Let us now determine the O, x Op, bimodules O, associated to a pair
of boundary conditions a,b. These are again fixed by the Cardy condition.

LEMMA 2.7. When C is semisimple we have
(2.37) O = @ Hom(W, p,, Wa )
PROOF. Restricting to each O,, we can invoke Theorem 2.6. Then the
ta(€2)Oab = Oaptv(ex)

are bimodules for the simple algebras O, 4, and O, ;. We restrict to a single
idempotent and drop the x, that is, we take C = C. The only irreducible
representation of O,, = End(W,) is W, itself, and the only irreducible
Oaa X Opp-bimodule is W, ® W}, Therefore, Oy, = ngy W, @ W', where ng,
is a nonnegative integer. Let us work out the Cardy condition. If v,, is a
basis for W, and wj, is a basis for W, then a basis for Ogp is v, ® Wy, ,
where a = 1,...,n4. Then m,%(¢)) = ngTrw, (¢)P,/v/0;. Comparing to
(1)) we get ngp = 1. O

A consequence of this Lemma is that

(2.38) Wba(l/f) = @x\/%—xTer,a (wx)Pm,b

We can now describe the maximal category B of boundary conditions.
We first observe that if p € O, is a projection —i.e., p> = p —we can
assume that a = b @ ¢ in B, where b is the image of p. For we can adjoin
images of projections to any additive category in much the same way as we
adjoined direct sums. If the closed algebra C is semisimple we can therefore
choose an object a, of B for each space-time point = so that a, is supported
at x — i.e., Lo, (€3)O0apa, = Oapa, — and is simple, i.e., Op, 4, = C. For any
object b of B we then have a canonical morphism

(2.39) @mobax ® ag — b,

where on the left we have used the possibility of tensoring any object of a
linear category by a finite dimensional vector space. Furthermore, it follows
from the lemma that the morphism (2.39) is an isomorphism, for both sides
have the same space of morphisms into any other object c. Finally, notice
that a, is unique up to tensoring with a line L,, for if a!, is another choice
then al, = a, ® L,, where L, = Og 4, .
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THEOREM 2.8. Suppose C is semisimple, corresponding to a space-time
X. Then
(i) the category B of boundary conditions is equivalent to the category
Vect(X) of vector bundles on X, by the inverse functors

(2.40) Wi @, Wy ® ag,
where W is a vector bundle on X, and W, is its fibre at © € X,
and

(2.41) a— {Ou,a},

where the right-hand side denotes the vector bundle on X whose
fibre at x is Og,q-
(ii) The equivalence of B with Vect(X) is unique up to transformations

Vect(X) — Vect(X)

given by tensoring with a line bundle L = {L,} on X.

(iii) The Frobenius structure on B is determined by choosing a square
root {\/590} of the dilaton field. It is therefore unique up to multi-
plication by an element o € C such that o = 1.

REMARK 2.9. (1) A boundary condition a has a support
(2.42) supp(a) = {z € X : W, # 0}

contained in X = spec(C). If two boundary conditions a and b have the

same support then O, is a Morita equivalence bimodule between O,, and

Opp. The reader might wish to compare this discussion to §6.4 of [418]. Note

that it is necessary to invoke the Cardy condition to draw this conclusion.
(2) Examples of semisimple Frobenius algebras in physics include:

(a) The fusion rule algebra (Verlinde algebra) of a RCFT.

(b) The chiral ring of an N/ = 2 Landau-Ginzburg theory for generic
superpotential W (that is, as long as all the critical points of W
are Morse critical points). This is the case when the IR theory is
massive.

(¢) Generic quantum cohomology of manifolds.

2.2.2. Comment on B-fields. We can see from this discussion just
where the idea of a B-field would appear,'? though in fact on a 0-dimensional
space-time any B-field must be trivial. We showed that there is a category
of boundary conditions associated to each point of space-time, and that it
is isomorphic to the category of finite dimensional vector spaces, though
not canonically. More precisely, it contains minimal — i.e., irreducible —

12\We are going to discuss the standard physics definitions of the B-field in §§3.2.6,
3.3.2 and 3.5.2.7.
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objects from which any other object can be obtained by tensoring with a
finite dimensional vector space.

Now a B-field is in essence a bundle of categories on space-time in which
the fibre-categories are all isomorphic but not canonically. We can suppose
that each fibre is isomorphic to the category of finite dimensional vector
spaces. The crucial feature is that the ambiguity in identifying each fibre
with the standard fibre is a “group” — in this case actually a category —
of equivalences whose elements are complex lines and in which composition
is given by the tensor product. Our category of boundary conditions is pre-
cisely the category of “sections” of a bundle of categories with this structural
group.

It may be helpful to think of this in the following way. An electromag-
netic field is a line bundle with connection on space-time. It is something
we can think of as part of the structure of space-time, and makes sense in
the absence of fermions. But in a theory with fermions there is a spinor
space at each point of space-time, and the electromagnetic field is “really”
the information about how the spinor spaces are connected together from
point to point of space-time. In this sense the electromagnetic field “is” the
spinor bundle with its connection. A B-field similarly “is” the bundle of
boundary conditions.

On a general topological space X the classes of B-fields are classified by
the elements of the cohomology group H?(X,Z), which can be understood
as H'(X,G), where G is the “group” of line bundles under tensor product,
which in algebraic topology is an Eilenberg-MacLane object of type K(Z,2).
We shall return to this topic in §2.6.

2.2.3. Reconstructing the closed algebra. When we have an open
and closed TFT each element £ of the closed algebra C defines an endomor-
phism £, = i,(§) € Ouq of each object a of B, and no &, = &, on for each
morphism 1 € Oy, from a to b. The family {¢,} thus constitutes a natural
transformation from the identity functor 1z : B — B to itself. (See also
Definition 4.10).

For any C-linear category B we can consider the ring £ of natural trans-
formations of 15. It is automatically commutative, for if {£,},{n,} € &€ then
€4 0 Mg = Mg © & by the definition of naturality. (A natural transformation
from 15 to 1p is a collection of elements {{, € Oy, } such that {,0 f = fo&,
for each morphism f € Oy, from b to a. But we can take a = b and f = 7,.)
If B is a Frobenius category then there is a map 7Tab : Opy, — Oy for each pair
of objects a, b, and we can define j° : Oy, — & by j°(n)e = 7,2(n) for n € Op,.
In other words, j° is defined so that the Cardy condition g 0 j® = 7,? holds.
But the question arises whether we can define a trace 6 : £ — C to make £
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into a Frobenius algebra, and with the property that
(2.43) Oa(a(§)n) = 0(£5(n))

for all £ € £ and n € O,y. This is certainly true if B is a semisimple
Frobenius category with finitely many simple objects, for then & is just
the ring of complex-valued functions on the set of classes of these simple
elements, and we can readily define § : £ — C by 0(g,) = 0,(14)%, where
a is an irreducible object, and ¢, € £ is the characteristic function of the
point a in the spectrum of £. Nevertheless, a Frobenius category need not
be semisimple, and we cannot, unfortunately, take £ as the closed string
algebra in the general case. If, for example, B has just one object a, and
Ogq 1s a commutative local ring of dimension greater than 1, then £ = O,
and 80 1y : € — Ogyq is an isomorphism, and its adjoint map j* ought to
be an isomorphism too. But that contradicts the Cardy condition, as 7,*
is multiplication by 3 1;1%, which must be nilpotent. In §2.6 we shall give
an example of two distinct closed string Frobenius algebras which admit the
same open string algebra Q.

The commutative algebra £ of natural endomorphisms of the identity
functor of a linear category B is called the Hochschild cohomology H H(B)
of B in degree 0. The groups HHP(B) for p > 0, whose definition will be
given in a moment, vanish if B is semisimple, but in the general case they
appear to be relevant to the construction of a closed string algebra from
B. Let us notice meanwhile that for any Frobenius category B there is a
natural homomorphism K (B) — HH°(B) from the Grothendieck group'3
of B, which assigns to an object a the transformation whose value on b
is m,%(1q) € Opp. In the semisimple case this homomorphism induces an
isomorphism K (B) @ C — HH(B).

For any additive category B the Hochschild cohomology is defined as the
cohomology of the cochain complex in which a k-cochain F' is a rule that to
each composable k-tuple of morphisms

(2.44) Vo Ay, B %y,

assigns F'(¢1,...,¢r) € Hom(Yp, Ys). The differential in the complex is de-
fined by

(dF)(QSl)"'aqbk-‘rl) = F(¢27"'a¢k+l)o¢1+
k
(2.45) + () (1, hix1 0 Gire o, Brpr) +
i=1
H(=1) i1 0 F1, ..., d).-

131.6., the group formed from the semigroup of isomorphism classes of objects of B
under .
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(Notice, in particular, that a 0-cochain assigns an endomorphism Fy to each
object Y, and is a cocycle if the endomorphisms form a natural transfor-
mation. Similarly, a 2-cochain F gives a possible infinitesimal deformation
F(¢1,¢2) of the composition law (¢1, ¢p2) — ¢2 0 @1 of the category, and the
deformation preserves the associativity of composition if and only if F'is a
cocycle.)

In the case of a category B with a single object whose algebra of endomor-
phisms is O the cohomology just described is usually called the Hochschild
cohomology of the algebra O with coefficients in O regarded as a O-bimodule.
This must be carefully distinguished from the Hochschild cohomology with
coefficients in the dual O-bimodule O*. But if O is a Frobenius algebra
it is isomorphic as a bimodule to O*, and the two notions of Hochschild
cohomology need not be distinguished. The same applies to a Frobenius
category B: because Hom(Yy,Y)) is the dual space of Hom(Yp, Yy) we can
think of a k-cochain as a rule which associates to each composable k-tuple
(2.44) of morphisms a linear function of an element ¢y € Hom(Y%,Yp). In
other words, a k-cochain is a rule which to each “circle” of k+ 1 morphisms

(2.46) LBy By R
assigns a complex number F'(¢g, ¢1, ..., dk).
Y:
2“ Y,
'.'.'~.._,_,. Y5
SRS £1
My
Yo

FIGURE 13. A cyclic pairing of a closed string state ¢ with
k + 1 open string states.

If in this description we restrict ourselves to cochains which are cycli-
cally invariant under rotating the circle of morphisms (¢q, ¢1, ..., dx) then
we obtain a sub-cochain complex of the Hochschild complex whose cohomol-
ogy is called the cyclic cohomology HC*(B) of the category B. The cyclic
cohomology — which evidently maps to the Hochschild cohomology — is a
more natural candidate for the closed string algebra associated to B than
is the Hochschild cohomology (because, for example, a state represented by
the vector (2.46) pairs in a cyclically invariant way with a closed string state



56 2. D-BRANES AND K-THEORY IN 2D TOPOLOGICAL FIELD THEORY

to give a number, in virtue of Figure 13. In our baby examples the cyclic and
Hochschild cohomology are indistinguishable, but it is worth pointing out'*
that while HH?(B) is, as indicated above, the space of infinitesimal defor-
mations of B as a category, the group HC?(B) is its space of infinitesimal
deformations as a Frobenius category.

A very natural Frobenius category on which to test these ideas is the
category of holomorphic vector bundles on a compact Calabi-Yau manifold:
that example will be discussed in §2.5.

2.2.4. Spin theories and mod 2 graded categories. Let us give a
brief outline, without proofs, of the modifications of the preceding discussion
which are needed to describe the category of boundary conditions for a
topological-spin theory as defined in §2.1.6.

There is just one spin structure on an interval, and its automorphism
group is (£1), so for each pair of boundary conditions a, b the vector space
Ogp will have an involution, i.e. a mod 2 grading. The bilinear composition
Oup ® Ope. — Oy will preserve the grading. There is a non-degenerate trace
0o : Oy — C which satisfies the commutativity condition (2.5) (without
signs).

If the closed theory is described by a Frobenius algebra C = C,s ©C,, as
in §2.1.6, there will be adjoint maps

1y 1 Cps — Oggq
12t Oaa — Cps
th 2 Cr — Ogq
te: Coq — Cy
which preserve the grading. Moreover, the maps ¢;° and ¢ fit together

to define a homomorphism of algebras C — O,,. The centrality condition
becomes

(2.47)

(00 = b (0)
(O = (1) OBy ),

Thus, (™ maps into the naive center of the algebra O,,. The reason we
get the naive centre here, rather than the graded-algebra centre, and also
the reason that the trace is naively commutative, is the same as that given
in §2.1.6 for the naive commutativity of the algebra C. The sign for (" is
obtained by carefully following the choices of sections of the spin bundle one
chooses under the diffeomorphism in Figure 9.

There are two Cardy conditions

s () = (W) =) (—1)IeB v der iy, i
L () = F() =Y _(~1) A8 vulde vy, gy,

(2.48)

(2.49)

A5 we learned from Kontsevich.
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If we assume the closed algebra is semisimple then, just as before, we
can assume that C,, is the algebra of functions on a finite set X, and we
can determine the category of boundary conditions point-by-point. In other
words, we can assume that C = C[n], where the generator n of C, satisfies
n? = 1, but may have either even or odd degree. In either case, the argument
we have already used shows (by means of the first Cardy formula) that
the algebra O, is the full matrix algebra of a vector space W. If the
degree of 1 is even then ("(n) = P with P even, P> = 1, and PyP =
(—1)48 %4, In this case the category of boundary conditions at the point
is equivalent to the category of mod 2 graded vector spaces. If, on the
other hand, the degree of 1 is odd, then P is odd, P? =1 and P is (naive)
central. The involution of the algebra O, corresponds to an involution of
the module W, and the action of P is an isomorphism between the two
halves of the grading. The even subalgebra of O, is a full matrix algebra.
Thus the category of boundary conditions is equivalent to the category of
graded representations of the superalgebra C[n], which in turn is equivalent
simply to the category of ungraded vector spaces. The Frobenius structure
of the open algebra determines that of the closed algebra by taking the
square, as in the ungraded case. The two cases degn = 0 and degn =1
are roughly analogous to the distinction between the even and odd degree
Clifford algebras over the complex numbers.

Suppose, conversely, that we have an arbitrary semisimple mod 2 graded
category B, i.e., a linear category equipped with an involutory functor S
which one thinks of as the flip of the grading. Such a category has two
kinds of simple object P: those such that S(P) = P, and those for which
this is not true. The first kind of object generates a subcategory of B
isomorphic to the category of vector spaces, and the second kind generates
a subcategory isomorphic to the category of graded vector spaces. Thus any
semisimple graded category B is the category of boundary conditions for a
unique topological-spin theory.

2.3. Vector bundles, K-theory, and “boundary states”

In the semisimple case there is a nice geometrical interpretation of the
category B of boundary conditions: the possible objects correspond to the
vector bundles over the “space-time” X = Spec(C) associated to C, which is
just a finite set of points. The fibre above a point x is just the vector space
W.

Let us now make some comments on “boundary states”. As we will dis-
cuss in §3.5, in conformal field theory one associates to a boundary condition
a a corresponding “state” B, in the closed string state space. (Strictly, B,
is an element of the algebraic dual.)
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FIGURE 14. Correlations on the upper half plane with
boundary condition a are the same as the closed string am-
plitude for an insertion of a boundary state B,.

Translated to the present context, B, € C. The defining property of the
boundary state is that the correlation functions of operators on a disk with
the boundary condition a are equal to the correlation functions of the closed
theory on the sphere obtained by capping off the disk with another disk and
inserting the state B, at the center of the cap. This is illustrated in Figure
14.

In equations,

(250) ea(La (¢1) T La(¢n)) =0c (Ba¢1 T ¢n)

for all ¢q, ..., ¢,. Using the adjoint relation and non-degeneracy of the trace
we find that

(2.51) B, =(10,,)

The map a — B, is a natural homomorphism
(2.52) K(B) — C.

More generally, if x is the Euler element of C, we can think of the element
X9 [1(Ba)" of C as the operator which “adds g handles and h = 3~ h, holes,
where h, of the holes have the boundary condition a”, in the sense that the
correlation functions of a collection of operators on a surface of genus g with
h holes with the given boundary conditions are the same as the correlation
functions of the same operators on a sphere with the additional insertion of
X9 T1(Ba)e.

Let us record one simple property of these boundary states. First, using
the Cardy condition we have

(2.53)
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In the semisimple case the formulae (2.35) give an explicit formula for
the “boundary state” in terms of the basic idempotents:

a . €ZE
(2.54) B, = 1*(1¢,,) Zm:(dlm Wx)m.
The formula shows that the boundary states form a positive cone in the
unimodular lattice Lp spanned by the orthonormal basis \%Lz in the closed
algebra C. In particular it follows from (2.54) that boundary states can
only be added with positive integral coefficients. They are therefore not like
quantum mechanical states of branes. The fundamental integral structure

is a result of the Cardy condition.

It is natural to speculate whether there should be an operation of “mul-
tiplication” of boundary conditions. There are arguments both for and
against. The original perspective on D-branes, according to which they
are viewed as “cycles” in space-time on which open strings can begin and
end, suggests that there should be a multiplication, corresponding to the
intersection of cycles. As no multiplication seems to emerge from the toy
structure we have developed in this chapter one may wonder whether an
important ingredient has been omitted. Against this there are the following
considerations. Our boundary conditions seem to correspond more closely to
vector bundles — i.e., to K-theory classes — on space-time than to homol-
ogy cycles: that will be plainer when we consider the equivariant situation
in §2.7. Now the K-theory classes of a ring have a product, coming from
the tensor product of modules, only when the ring is commutative; and we
have already remarked that the B-fields which are part of the closed string
model of space-time seem to encode a degree of noncommutativity. More
precisely, D-branes seem to define classes in the twisted K-theory of space-
time, twisted by the B-field, and the twisted K-theory of a space does not
form a ring: the product of two twisted classes is a twisted class correspond-
ing to the sum of the twistings of the factors. But in string theory there is no
concept of “turning off” the B-field to find an underlying untwisted space-
time. For example, the conformal field theory corresponding to a torus with
a non-zero B-field can be isomorphic by “T-duality” to a theory coming
from another torus with no B-field.

Another reason for not expecting a multiplication operation on D-branes
also comes from T-duality in conformal field theory. There the closed string
theories defined by a Riemannian torus 1" and its dual 7™ are isomorphic,
and we do indeed have a K-theory isomorphism K(T') = K(T™*), but it is
not compatible with the multiplication in K-theory. On the other hand, in
some examples of TFTs coming from N = 2 supersymmetric sigma models
the category of boundary conditions does seem to be a tensor category.
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The formula (2.54) for the boundary state shows that the lattice Lp,
which is picked out inside C by the dilaton field @, is not closed under multi-
plication in C unless #,, = 1 for all points x; but the lattices corresponding to
different dilaton fields multiply into each other just as happens with twisted
K-classes. Nevertheless, in the semisimple case, if we define an element
S:=3",v0.c,, then the operation

(2.55) (By, By) — SB1 B,

does define a multiplication on boundary states, though its significance is
unclear.

2.3.1. “Cardy states” versus “Ishibashi states”. The formula for
the boundary state (2.54) is reminiscent of the relation between the “Cardy
states” and the “Ishibashi states” in boundary conformal field theory [86,
87]. For readers familiar with this relation, let us comment briefly on this
resemblance, as the two sides of (2.54) do in fact correspond to these two
bases.

As we will review in §3.5.2, the Cardy and the Ishibashi states are two
natural bases for the boundary states. The Cardy states are physical bound-
ary states, for which all correlation functions are single-valued. On the other
hand, the “Ishibashi states” are defined as the simplest solutions of the con-
sistency condition (3.136), and are in direct one-to-one correspondence with
the closed string primary fields. The distinction between the two is in how
left-moving and right-moving components of the boundary state are glued
together; diagonally for the Ishibashi states, and satisfying the Cardy rela-
tions for the Cardy states.

Our analogy is that ¢;, ¢ = 1,..., N, correspond to Ishibashi states while
the basis ¢, is analogous to a basis of primary fields of definite conformal
weight and is characterized by

(2.56) budy = N,d»

with positive integral IV, wé‘

The analogy should not be pushed too far since in the topological theory
there is no chiral algebra, and we should think of every element of C as a
solution to (T — T) = 0, and its generalizations. There are no left-movers
or right-movers. Nevertheless, using these formulae we recover, essentially,
Cardy’s formula for Cardy boundary states in terms of character boundary
states. Note that there is no need to use any relation to the modular group.

We close with one further brief remark. It is nice to see the standard
relation that the closed string coupling is the square of the open string cou-
pling in the present context. If we scale fc — A720c then o = > y Oudt —
At2xe. We may therefore interpret A2 as the closed string coupling. On
the other hand, the square root of #; in B» shows that Bp — ABp, and
therefore M is the open string coupling. Indeed, the partition function for a
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surface with ¢ handles and h holes is Z(X) = 0¢((xc)?(Bo)"), and therefore
scales as Z(X) — A XZ) Z(%), as expected, where x(X) = 2 — 29 — h is the
Euler number of 3.

2.4. Landau-Ginzburg theories

D-branes can be defined in general two-dimensional N' = 2 Landau-
Ginzburg theories [241]. Such theories can be topologically twisted, pro-
ducing topological Landau-Ginzburg theories. It is interesting to compare
with the D-branes obtained from our results applied to the resulting closed
topological theory. Here we confine ourselves to a few very elementary re-
marks. In the past few years, following an initial suggestion by Kontsevich,
an elaborate theory of categories of topological Landau-Ginzburg branes has
been developed. See §3.6.8 and references therein for details. These cate-
gories are thought to capture more physical information about the D-branes.
In the case when all the critical points of the superpotential are Morse there
is a functor to the category of branes we construct.

Let us recall the definition of a topological LG theory. One begins with
a superpotential W (X;) which is a holomorphic function of chiral superfields
X1,...,X,. When W is a polynomial the Frobenius algebra is simply the
Jacobian algebra

(2.57) C=ClXy,...,Xn]/(W,...,0,W).

The Frobenius structure is defined by a residue formula. For example, in
the one-variable case we define

(2.58) 0(¢) := Resx—co 7o

If the critical points of W are all Morse critical points then the algebra
(2.57) is semisimple. Physically, Morse critical points correspond to massive
theories, while non-Morse critical points renormalize to nontrivial 2d CFT’s
in the infrared.

If all the critical points are Morse then the trace is easily written in
terms of the critical points p, as

(2.50) 9= D Fw@o L

In the semisimple one-variable case we can construct the basic idempo-
tents as follows. Let

(2.60) W =T[(X -ra)
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where we assume all the roots are distinct. Then it is easy to check that

(2.61) =[] (X —ra)

a:atf (TIB - Ta)
are basic idempotents. (To prove this, write (X —74) = (X —7r3)+(r3—7a))-
ExAMPLE 2.10. W = %t?’ — gt. For n = 2 we can explicitly write

Va+t
27

Va—t
N

Note that 6; = 1/(2,/q) and 0y = —1/(2,/q)-

Then from the general result above one finds O, = End(W7)®End(W3)
and

(2.63) 00(¥) = VOiTe(Ty) + /0, Te(Ty)

(2.64) S(T) = \/—19_1Tr(\lfl)61—|—\/%_2Tr(\I’2)62

Thus, the general boundary state is

g1 =
(2.62)
E9 =

(2.65) B=w—4+wy—

NN
where wi,wo are integers. It is interesting to work out the monodromy in
the boundary states as ¢ circles counterclockwise around the origin along
the curve q(t) = |q|e*™™, 0 < t < 1. Under this operation e; and ey are
exchanged. Moreover, v/f; = e~"™/2/\/2 and /B, = ie"""/?/\/2. Thus
branes of type (w1, ws) evolve into branes of type (wq, —w1).

Clearly there will be similar phenomena for general Landau-Ginzburg
theories. The space of superpotentials W has a codimension one “discrim-
inant locus” where it has non-Morse critical points. Analytic continuation
around this locus will permute the ;, but will only permute the v/8; up to
sign. One may understand in this elementary way some of the brane permu-
tation/creation phenomena discussed in numerous places in the literature.

The “vector bundles on space-time” that we have found can be taken
quite literally in the context of the theory of strings moving in less than
one dimension which was worked out in 1988-1991. (For reviews [180, 122,
118].) Strings moving in a space-time of n disjoint points can be modelled
by matrix chains or by topological field theory. The latter point of view
is described in, for example, [122, 118]. In the latter point of view, one
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considers topological gravity coupled to topological matter. For n space-
time points the topological matter can be taken to be the N' = 2 Landau-
Ginzburg theories associated to W given by the unfolding of A,, singularities:

$n+1

For generic W we find vector bundles on n space-time points. This is of
course what we expect for the branes in such space-times!

It is worth mentioning that in these simplest of string theories (the
“minimal string theories”) considerable progress has been made in recent
years in understanding the full spectrum of D-branes, going beyond the
topological field theory truncation. See [417] for a review.

2.5. Going beyond semisimple Frobenius algebras

The examples of topological field theories coming from N = 2 conformal
field theories — Landau-Ginzburg models and the quantum cohomology
rings of Calabi-Yau manifolds — suggest that it is of interest to understand
the possible solutions of the algebraic conditions in the case when C is not
semisimple. In this section we shall make some partial progress with this
problem, and we shall also explain how it should perhaps be viewed in a
wider context.

2.5.1. Examples related to the cohomology of manifolds. A nat-
ural example of a graded commutative Frobenius algebra is the cohomology
with complex coefficients of an even-dimensional compact oriented mani-
fold X. Thus, for C we can take the algebra C = H*(X,C) with trace
0(¢) = [y . What are the corresponding O’s?

A natural guess, which turns out to be wrong, but for interesting reasons,
is that we should take O = C ® Maty(C) = Maty(C) for some N > 0,
together with

(2.67) bo () = /X Te(y).

While O is indeed a Frobenius algebra, the only natural candidate for the
map Ly i 1« (¢) = ¢ ® 1. However, this fails to satisfy the Cardy condition:
one computes (*(¢)) = Tr(¢)) from the adjoint relation, and hence ¢t (1)) =
Tr(¢) ® 1. On the other hand, one also finds

() = Y (—1)dereildesviden ) (o, @ e )b (W @ )
= ((TX)Tr()) ® 1.

Here w; and w’ are dual bases for H*(X,C) with respect to the Poincaré
inner product, e, are matrix units, and x(Tx) € H*P(X,C) is the Euler
class of the tangent bundle T, which is given by x(Tx) = Y, ww?, and,

(2.68)



64 2. D-BRANES AND K-THEORY IN 2D TOPOLOGICAL FIELD THEORY

finally, we have used the matrix identity 3 epne™ = Tr(¢) ® 1y. The
map 7 annihilates forms of positive degree, and cannot agree with ¢,.*.
This example can be modified to give an open and closed theory by
taking O to be associated with a submanifold of X. This is, after all, the
standard picture of D-branes! Let us work in the algebraic category of Z-
graded vector spaces, and continue to take C = H*(X, C), with X a compact
connected oriented n-dimensional manifold, and the trace 0c(¢) = [ &, of
degree —n as above. Let us look for an open algebra of the form O =
Matn (Qp), with Oy commutative. Then Oy is a Frobenius algebra, and we
may as well assume that it is H*(Y, C) for some compact oriented manifold'®
Y of dimension m, and that ¢, : C — Op is f* for some map f:Y — X.
Thus O = H*(Y,C) ® Maty(C) with open string trace

(2.69) 0o (V) = 90/ Tr(0)
Y
of degree —m, where 0, is a constant. This is a non-commutative Frobenius
algebra.
The adjoint relation determines ¢*:
(2.70) F(U) = 0, fi (T (1)),

where f, is the adjoint of the ring homomorphism f* : H*(X) — H*(Y) with
respect to Poincaré duality. Thus ¢* has degree n — m. On the other hand,
one sees at once that 7 : O — O has degree m, so if the Cardy condition
is to hold we must have n = 2m. If that is true, then we can assume, by
making a small generic perturbation of f, that f is an immersion of Y in
X. We can now make the adjoint map f, more explicit:

(2.71) fe() = pr(¥) A Py,

where pr : Ny — Y is the projection of the normal bundle (identified with a
tubular neighbourhood of Y in X') and @y, is the Thom class of the bundle,
compactly supported in the tubular neighbourhood, which represents the
cohomology class of Y in X. One easily finds that

(2.72) LM (T) = 0, (Ny) A Te(0) @ 1.

where x(Ny) is the Euler class of the normal bundle of Y < X ie. the
homological self-intersection of Y in X.
On the other hand, from (2.68) and (2.70), we have

(2.73) ") = T (U)X(Ty) ® 1,

where x(Ty') € H*P(Y,C) is the Euler class of the tangent bundle Ty, whose
integral is the Euler number of Y.

1511 fact we need to allow Y to have orbifold singularities to ensure this.
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Evidently the Cardy conditions are satisfied if we choose 6, so that
x(Ty) = 02x(Ny). This is always possible if x(Ny), which is the self-
intersection number of Y in X, is non-zero, and also possible if Y is a
Lagrangian submanifold of a symplectic manifold X, for then Ny = Ty.
The boundary state is B = 0,N®y,, .

One immediate consequence of this discussion is that if we start, say, with
O = H*(CP?,C) as our open algebra then we can easily find two different
closed algebras compatible with it, by regarding Y as a submanifold either
of X = CP* or of X' = HP2

Unfortunately we do not know how to describe the category of boundary
conditions for C = H*(X,C). But it seems likely, in any case, that to get a
significant result one would have to consider the theory on the cochain level.
We next turn our attention to that case.

2.5.2. The Chas-Sullivan theory. There is an interesting example —
due to Chas and Sullivan [91] — on the cochain level of a structure a little
weaker than that of our open and closed theories which may illuminate the
use of cochain theories. Let us start with a compact oriented manifold X,
which we shall take to be connected and simply connected. We can define a
category B whose objects are the oriented submanifolds of X, and whose vec-
tor space of morphisms from Y to Z is Oy z = Extj. ) (H*(Y), H*(Z)) —
the cohomology, as usual, has complex coefficients, and H*(Y) and H*(Z)
are regarded as H*(X)-modules by restriction. The composition of mor-
phisms is given by the Yoneda composition of Ext groups. With this defi-
nition, however, it will not be true that Oy is dual to Ozy. (To see this
it is enough to consider the case when ¥ = Z is a point of X, and X is a
product of odd-dimensional spheres; then Oy is a symmetric algebra, and
is not self-dual as a vector space.)

We can do better by defining a cochain complex Oy of “morphisms”
by

(2.74) Oyyz = Baox)(Q(Y),Q2(2)),

where Q(X) denotes the usual de Rham complex of a manifold X, and
Ba(B,C), for a differential graded algebra A and differential graded A-
modules B and C, is the usual cobar resolution

(2.75)  Hom(B,C) - Hom(A® B,C) - Hom(A® A® B,C) — ---,
in which the differential is given by
df(am1 ® - - ®@ap®@b) =a1f(a2® -+ @a®b)
(2.76) ) (D) a1 @ ®aiai @ ®ap @ D)
FC)F flar - ® apy © agh)
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whose cohomology is Ext4(B,C). This is different from
Oy z = Exti. x)(H"(Y), H*(Z)),

but related to it by a spectral sequence whose Fo-term is Oy and which
converges to H*(Oy ) = Extox)(2(Y), 2(Z)). But more important is that
H *(@yz) is the homology of the space Py z of paths in X which begin in
Y and end in Z. To be precise, Hp(@yz) = Hpira,(Pyz), where dz is
the dimension of Z. On the cochain complexes the Yoneda composition
is associative up to cochain homotopy, and defines a structure of an A..-
category B. The corresponding composition of homology groups

(2.77) Hi(Pyz) x Hi(Pzw) — Hitj_a,(Pyw)

is the composition of the Gysin map associated to the inclusion of the codi-
mension dz submanifold M of pairs of composable paths in the product
Py z X Pzw with the concatenation map M — Py .

Let us try to fit a “closed string” cochain algebra C to this Ay, category.
The algebra of endomorphisms of the identity functor of B, denoted & in
§2.2, is easily seen to be just the cohomology algebra H*(X). We have
mentioned in §2.1 that this is the Hochschild cohomology H H°(B).

The definition of Hochschild cohomology for a linear category B was
given at the end of §2.2. In fact the definition of the Hochschild complex
makes sense for an A, category such as 5’, and it is one candidate for the
closed algebra C.

In the present situation C is equivalent to the usual Hochschild complex
of the differential graded algebra Q(X), whose cohomology is the homol-
ogy of the free loop space £X with its degrees shifted downwards'® by the
dimension dx of X, so that the cohomology H*(C) is potentially non-zero
for —dx < i < oco. This algebra was introduced by Chas and Sullivan in
precisely the present context — they were trying to reproduce the struc-
tures of string theory in the setting of classical algebraic topology. There
is a map H'(X) — H~(C) which embeds the ordinary cohomology ring
of X in the Chas-Sullivan ring, and there is also a ring homomorphism
H'(C) — H;(LoX) to the Pontrjagin ring of the based loop space LoX,
based at any chosen point in X.

The other candidate for C mentioned in §2.1 was the cyclic cohomology of
the algebra Q(X), which is well-known [176] to be the equivariant homology
of the free loop space £LX with respect to its natural circle action. This may
be an improvement on the non-equivariant homology.

The structure we have arrived at is, however, not a cochain-level open
and closed theory, as we have no trace maps inducing inner products on

16Thus the identity element of the algebra, in H°(C), is the fundamental class of X
regarded as an element of H,(L£X) by thinking of the points of X as constant loops in
LX.
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H *(@YZ). When one tries to define operators corresponding to cobordisms
it turns out to be possible only when each connected component of the
cobordism has non-empty outgoing boundary. (A theory defined on this
smaller category is often called a non-compact theory.) The nearest theory
in our sense to the Chas-Sullivan one is the so-called “A-model” defined for
a symplectic manifold X. There the A, category is the Fukaya category
(see Chapter 8 for many more details), whose objects are the Lagrangian
submanifolds of X equipped with bundles with connection, and the cochain
complex of morphisms from Y to Z is the Floer complex which calculates
the “semi-infinite” cohomology of the path space Py z. In good cases the
cohomology of this Floer complex has a vector space basis indexed by the
points of intersection of Y and Z, and the cohomology of the corresponding
closed complex is just the ordinary cohomology of X. From our perspective
the essential feature of the Floer theory is that it satisfies Poincaré duality
for the infinite dimensional manifold £X.

2.5.3. Remarks on the B-model. Let X be a complex variety of
complex dimension d with a trivialization of its canonical bundle. That
is, we assume there is a nowhere-vanishing holomorphic d-form 2. The B-
model [468] is a Z-graded topological field theory arising from the N' = 2
supersymmetric o-model of X. The natural boundary conditions for the
theory are provided by holomorphic vector bundles on X.

The category of holomorphic vector bundles is not a Frobenius category.
There is, however, a very natural Z-graded Frobenius category associated to
X: the category Vx whose objects are the vector bundles on X, but whose
space of morphisms from F to F is

(2.78) Opr = Ext%(E,F) = H**(X,E* ® F).
The trace g : Opg — C, of degree —d, is defined by

(2.79) 0p() = /X Te(T) A Q.

This is non-degenerate by Serre duality, but the category is still not semisim-
ple — in fact the non-vanishing of the groups Ext’ for i > 0 precisely
expresses the non-semisimplicity of the category. (A non-zero element of
EX’E}((E,F ) corresponds to an exact sequence 0 — F — G — E — 0
which does not split, i.e., to a vector bundle G with a subbundle F' with no
complementary bundle.)

What are the endomorphisms of the identity functor of Vx 7 Multipli-
cation by any element of H**(X) clearly defines such an endomorphism.
A holomorphic vector field £ on X also defines an endomorphism of degree
1, for any bundle F has an “Atiyah class”!" ap € ExtY(E,E @ T%) — its

17Corresponding to the extension of bundles 0 - E® T% — J'E — E — 0, where
J'E is the bundle of 1-jets of holomorphic sections of E.
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curvature — which we can contract with § to give ez = 1cap € Exty (E; E).
More generally, a class

p Pk
ne H(X, \ Tx) = Ext4 (/\ T, C)
can be contracted with (ag)? € Exty (E,E ® (T%)%F) to give
en = ty(ap)? € ExthI(E, E).

Now Witten has shown in [468] that H**(X, A" Tx) is indeed the closed
string algebra of the B-model. To understand this in our context we must
once again pass to the cochain-level theory of which the Ext groups are the
cohomology. A good way to do this is to replace a holomorphic vector bundle
E by its d-complex F = Q%*(X, E), which is a differential graded module
for the differential graded algebra A = Q%*(X). Then we define Opp as the
cochain complex Hom A(E F ), whose cohomology groups are Ext’ (F, F). If
we are going to do this, it is natural to allow a larger class of objects, namely
all finitely generated projective differential graded A-modules. Any coherent
sheaf F on X defines such a module: one first resolves £ by a complex & of
vector bundles, and then takes the total complex of the double complex E.
The resulting enlarged category is essentially the bounded derived category
(one of the main topics of Chapter 4) of the category of coherent sheaves
on X. In this setting, we find without difficulty that the endomorphisms of
the identity morphism are given, just as in the topological example above,
by the Hochschild complex

C={A-ARA-ARARA— ..},

whose cohomology is H*(X, A" T'x). There is still, however, work to do to
understand the trace maps on ¢ , and the adjoint maps ¢ and &, We feel
that this has not yet been properly elucidated in the literature. For some
progress on this question see [348, 81, 82], as well as more recent progress
in [80].

2.6. Equivariant 2-dimensional topological open and closed
theory

An important construction in string theory is the “orbifold” construc-
tion. Abstractly, this can be carried out whenever the closed string back-
ground has a group G of automorphisms. There are two steps in defining
an orbifold theory. First, one must extend the theory by introducing “ex-
ternal” gauge fields, which are G-bundles (with connection) on the world
sheets. Next, one must construct a new theory by summing over all possible
G-bundles (and connections).

We begin by describing carefully the first step in forming the orbifold
theory. The second step — summing over the G-bundles — is then very
easy in the case of a finite group G.
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2.6.1. Equivariant closed theories. Let us begin with some general
remarks. In d-dimensional topological field theory one begins with a cate-
gory & whose objects are oriented (d — 1)-manifolds and whose morphisms
are oriented cobordisms. Physicists say that a theory admits a group G
as a global symmetry group if G acts on the vector space associated to each
(d—1)-manifold, and the linear operator associated to each cobordism is a G-
equivariant map. When we have such a “global” symmetry group G we can
ask whether the symmetry can be “gauged”, i.e., whether elements of G can
be applied “independently” — in some sense — at each point of space-time.
Mathematically the process of “gauging” has a very elegant description: it
amounts to extending the field theory functor from the category S to the
category Sg whose objects are (d — 1)-manifolds equipped with a principal
G-bundle, and whose morphisms are cobordisms with a G-bundle.'® We
regard S as a subcategory of S¢ by equipping each (d — 1)-manifold S with
the trivial G-bundle S x G. In Sg the group of automorphisms of the trivial
bundle S x G contains G, and so in a gauged theory G acts on the state
space H(S): this should be the original “global” action of G. But the gauged
theory has a state space H(S, P) for each G-bundle P on S: if P is non-
trivial one calls H (S, P) a “twisted sector” of the theory. In the case d = 2,
when S = S! we have the bundle P, — S ! obtained by attaching the ends
of [0,27] x G via multiplication by g. (The fibre of P, at the basepoint of
S is by definition the group G.) Any bundle is isomorphic to one of these,
and P, is isomorphic to Py if and only if ¢’ is conjugate to g. But note that
the state space depends on the bundle and not just its isomorphism class,
so we have a twisted sector state space C, = H(S, P,) labelled by a group
element g rather than by a conjugacy class.

We shall call a theory defined on the category Sg a G-equivariant TE'T.
It is important to distinguish the equivariant theory from the corresponding
“gauged theory,” described below. In physics, the equivariant theory is
obtained by coupling to nondynamical background gauge fields, while the
gauged theory is obtained by “summing” over those gauge fields in the path
integral.

An alternative and equivalent viewpoint which is especially useful in the
two-dimensional case is that Sg is the category whose objects are oriented
(d — 1)-manifolds S equipped with a map p : S — BG, where BG is the
classifying space of GG. In this viewpoint we have a bundle over the space
Map(S, BG) whose fibre at p is H,. To say that H, depends only on the
G-bundle p*EG on S pulled back from the universal G-bundle EG on BG
by p is the same as to say that the bundle on Map(S, BG) is equipped with
a flat connection allowing us to identify the fibres at points in the same con-
nected component by parallel transport; for the set of bundle isomorphisms

18We are assuming here that the group G is discrete: if G is a Lie group we should de-
fine S as the category of manifolds equipped with a principal G-bundle with a connection.
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poEG — piEG is the same as the set of homotopy classes of paths from
po to p1. When S = S! the connected components of the space of maps
correspond to the conjugacy classes in G: each bundle P, corresponds to
a specific point p, in the mapping space, and a group element h defines a
specific path from pg to ppgp—1.

The second viewpoint makes clear that G-equivariant topological field
theories are examples of “homotopy topological field theories” in the sense
of Turaev [452]. We shall use his two main results: first, an attractive gen-
eralization of the theorem that a two-dimensional TFT “is” a commutative
Frobenius algebra, and, secondly, a classification of the ways of gauging a
given global G-symmetry of a semisimple TFT. We shall now briefly review
his work.

$102 € Cyy g,

FIGURE 15. Definition of the product in the G-equivariant
closed theory. The heavy dot is the basepoint on S'. To
specify the morphism unambiguously we must indicate con-
sistent holonomies along a set of curves whose complement
consists of simply connected pieces. These holonomies are al-
ways along paths between points where by definition the fibre
is GG. This means that the product is not commutative. We
need to fix a convention for holonomies of a composition of
curves, i.e., whether we are using left or right path-ordering.
We will take h(y1 0 v2) = h(71) - h(72).

A G-equivariant TFT gives us for each element g € G a vector space
Cy, associated to the circle equipped with the bundle P, whose holonomy is
g. The usual pair-of-pants cobordism, equipped with the evident G-bundle
which restricts to Py, and Py, on the two incoming circles, and to P, 4, on
the outgoing circle, induces a product

192

(2.80) Cgy @ Cgy — Cyyg,
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(b) ¢®\9 ) ) an(6) € Crgn1
h

FIGURE 16. (a) The action of aj on a state ¢ € C,. This
can also be represented by the cylinder as in (b).

making C := @®4eqCy into a G-graded algebra, as shown in Figure 15.

As in the usual case there is a trace 6 : C; — C defined by the disk dia-
gram with one ingoing circle. Note that the holonomy around the boundary
of the disk must be 1. Making the standard assumption that the cylin-
der corresponds to the unit operator we obtain a non-degenerate pairing
Cy®Cy1 — C.

A new element in the equivariant theory is that G acts as an automor-
phism group on C. That is, there is a homomorphism « : G — Aut(C) such
that

(281) Qp Cg — Chghfl'

Diagramatically, ay, is defined by the surface in Figure 16.

Now let us note some properties of . First, if ¢ € Cp, then ap(¢) = ¢.
The reason for this is explained in Figure 17.

Next, while C is not commutative, it is “twisted-commutative” in the
following sense. If ¢1 € C4, and ¢ € Cgy, then

(2.82) g, (01)d2 = P201.

The necessity of this condition is illustrated in Figure 18.

The last property we need is a little more complicated. The trace of the
identity map of C,4 is the partition function of the theory on a torus with
the bundle with holonomy (g,1). Cutting the torus the other way, we see
that this is the trace of ay on Cq. Similarly, by considering the torus with a
bundle with holonomy (g, k), where g and h are two commuting elements of
G, we see that the trace of o, on Cy, is the trace of o, on Cy-1. But we need
a strengthening of this property. Even when g and hA do not commute we
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FicUre 17. If the holonomy along path Py is h then the
holonomy along path P; is 1. However, a Dehn twist around
the inner circle maps P; into Pa. Therefore, ap(¢) = a1(¢) =
o, if ¢ € Cp,.

gy (d1) - P2 P2 - P1

FIGURE 18. Demonstrating twisted centrality.

can form a bundle with holonomy (g, h) on a torus with one hole, around
which the holonomy will be ¢ = hgh~'¢~'. We can cut this torus along
either of its generating circles to get a cobordism operator from C. ® Cj, to
Cp or from Cy-1 ®@ Cc to Cy-1. If P € Chgp—14-1 let us introduce two linear
transformations L, Ry, associated to left- and right-multiplication by 1. On
the one hand, Lyog @ ¢ — ay(¢) is a map C, — Cp. On the other hand
Ryayp : ¢ +— ap(¢) is amap Cy-1 — Cy-1. The last sewing condition states
that these two endomorphisms must have equal traces:

(2.83) Tre, <L¢o¢g> = Trcf1 <Rw04h>-
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h g
hgh—!
(a) ey (::5 Lol = p <::5 L
hgh—lg—l
h gt
hgh 1 -1
(0

(b) L4
)

FIGURE 19. Deforming the LHS of (a) into a space-time evo-
lution diagram yields (b), whose value is Tre, (Lyporg). Simi-
larly deforming the RHS of (a) gives a diagram whose value
is Tngq (Rwo&h).

The reason for this can be deduced by pondering the diagram in Figure 19.

=

(hgh™1) - g1

- / \ J

FIGURE 20. A simpler axiom than Turaev’s torus axiom.

The equation (2.83) was taken by Turaev as one of his axioms. It can,
however, be reexpressed in a way that we shall find more convenient. Let
Ay € Cy ® Cy1 be the “duality” element corresponding to the identity
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cobordism of (S', P;) with both ends regarded as outgoing. We have A, =
Y& ® & where & and ¢ run through dual bases of Cy and Cy-1. Let us
also write

Ah:Zm@ni €Cp®Cp-1.

Then (2.83) is easily seen to be equivalent to

(2.84) D an(€)E = mag(n),

in which both sides are elements of Cpgp-1,-1. This equation is illustrated
by the isomorphic cobordisms of Figure 20.

In summary, the sewing theorem for G-equivariant 2d topological field
theories is given by the following theorem:

THEOREM 2.11. ([452]) To give a 2d G-equivariant topological field
theory is to give a G-graded algebra C = ®,Cy together with a group homo-
morphism « : G — Aut(C) such that

(1) There is a G-invariant trace 0 : C; — C which induces a non-
degenerate pairing Cqy @ Cy—1 — C.

(2) The restriction of ay, to Cyp, is the identity.

(3) For all ¢ € Cg, ¢ € Ch, an(d)¢' = ¢'¢.

(4) For all g,h € G we have

(2.85) D an(€)E = mag(n') € Cgp-1g-1,

where Ay =Y & ®E € Cy ®Cy1 and Ap =Y n; ®@n' € ChpRCh
as above.

REMARK 2.12. (1) We will give a proof of the sewing theorem in
§2.7.3.

(2) Warning: Turaev calls the above a crossed G Frobenius algebra, but
it is not a crossed-product algebra in the sense of C* algebras (see
below). We will refer to an algebra satisfying the conditions of the
theorem as a Turaev algebra.

(3) Axioms 1 and 3 have counterparts in the non-equivariant theory,
but axioms 2 and 4 are new elements.

2.6.2. The orbifold theory. Before going any further, let us describe
how we obtain the orbifold theory from the Turaev algebra.

Let us return to the general discussion at the beginning of §2.6.1, where
we outlined the definition of an equivariant theory. Roughly speaking, the
gauged theory is obtained from the equivariant theory by summing over the
gauge fields. More precisely, the state space which a gauged theory associates
to a (d—1)-manifold S consists of “wave-functions” 1) which associate to each
G-bundle P on S an element ¢ p of the state space Hg p of the equivariant
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theory. The map 1) must be “natural” in the sense that when 6 : P — P’ is
a bundle isomorphism the induced isomorphism Hg p — Hg pr takes 1p to
1pr. This is often referred to as the “Gauss law.” In the two-dimensional
case, the Gauss law amounts to saying that the state space C,,, for the circle
is the G-invariant part of the Turaev algebra C = ©C,. In other words,

(286) Corb - @{Cg}zga

where now ¢ runs through a set of representatives for the conjugacy classes
in GG, and we take the invariant part of C; under the centralizer Z; of g in
G. The algebra Cg, is not a graded algebra if G is non-abelian. One must
check that the product in C,, is simply the restriction of the product in
C. The trace C,, — C is the restriction of the trace C — C which is the
given trace on C; and is zero on C4; when g # 1. Then C,,, is a commutative
Frobenius algebra which encodes the orbifold theory.

2.6.3. Solutions of the closed string G-equivariant sewing con-
ditions. Having found the sewing conditions in the G-equivariant case we
can try to classify examples of the structure. The Frobenius algebra C;
with its G-action corresponds to a topological field theory with a global G-
symmetry. In the case when C; is a semisimple Frobenius algebra — and
therefore the algebra of functions on a finite G-set X — Turaev finds a
nice answer: ways of gauging the symmetry, i.e., of extending C; to a Tu-
raev algebra, correspond to equivariant B-fields on X, i.e., to equivariant
2-cocycles of X with values in C*. Furthermore, two such B-fields define
isomorphic Turaev algebras if and only if they represent the same class in
H%(X,C*) = H(X,Z). We now review this result and take the oppor-
tunity to introduce a more geometric picture of Turaev’s algebra C (in the
semisimple case). We shall first recall some very general constructions.

2.6.3.1. General constructions. Whenever a group G acts on a set X we
can form a category X//G, whose objects are the points z of X, and whose
morphisms zg — 1 are

(2.87) Hom(zg,z1) := {9 € G : gzog = x1}.

g1
Te ——3 oJ1T
9291\‘ /92

[ ]

(g201)x

FIGURE 21. An oriented two-simplex A, 4, g, in the space | X//G|.
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€ g291

i 939291 9392

939291
g1z

92

g291x

FIGURE 22. An oriented 3-simplex in |X//G].

Next, for any category C, one can form the space of the category, denoted
|C|. This is an oriented simplicial complex whose p-simplices are in 1-1
correspondence with the composable p-tuples of morphisms in the category.
To be specific, the vertices are the objects of the category. The edges are the
morphisms. Triples of morphisms (f1, f2, f3) with f3 = fao fi correspond to
2-simplices, and so forth. In the present case, when we form the simplicial
complex |X//G| the 2-simplices are the triples (g1, g2, z) illustrated in Figure
21. Three-simplices are shown in Figure 22, etc.

The space |X//G| is a model for (X x EG)/G. Hence the (cellular)
cohomology of this space H*(|X//G|,C*) is the equivariant cohomology
H{(X,CX).

Another object which we can associate to any category C' is its algebra
A(C) over the field C. This has a vector space basis {e¢} indexed by the
morphisms of C, and the product is given by e er, = €05, When f; and
fo are composable, and ef,e5, = 0 otherwise. For the category X//G the
algebra A(X//QG) is the usual crossed-product algebra A(X) x G in the sense
of operator algebra theory, where A(X) is the algebra of complex-valued
functions on the set X.!9

The construction of the category-algebra A(C') can be generalized. A
B-field on a category C is a rule which associates a complex line L to each
morphism f of C, and associative isomorphisms

Ly ® Ly, — Ly,

to each pair (fi, f2) of composable morphisms . In concrete terms, to give
such a product is to give a 2-cocycle on the space |C|. Indeed, choosing
basis elements ¢y € Ly, we must have

(2.89) Cp - Lpy = b(f1, f2, f3)l s

gor any commutative algebra A with G-action, A x G is spanned by elements a ® g
with a € A and g € G, and the product is given by

(2.88) (a1 ® g1)(a2 ® g2) = a1g1(az2) ® g192.

The isomorphism A(X//G) — A(X)XG takes €45 to X ¢-®g, where X, is the characteristic
function supported at x.
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where b(f1, f2, f3) € C* defines a 2-cochain on |C|. (We choose values
in C* rather than C so the product is non-degenerate.) Associativity of
(2.89) holds iff b is a 2-cocycle. A change of basis of the L; modifies b by
a coboundary. Hence the isomorphism classes of B-fields on C are in 1-1
correspondence with cohomology classes [b] € H?(|C|,C*). When we have
a B-field b on C we can form a twisted category-algebra A,(C'), which as a
vector space is ©Ly, and where the multiplication is defined by means of
the associative maps Ly ® Ly, — Ly of,-

Applying the above construction to the category X//G, an associative
product on the lines L, is the same thing as a 2-cocycle in HZ(X,C>).
In terms of the basis elements ¢, , for the lines L,, we shall write the
multiplication

bei (92, 91)0gogr e if T2 = g1
290 g g — 1 ? g291,T1
( ) 92 E2gLE {0 otherwise

Here by, (92,91) = b(Agzg1,9.) is the value of the cocycle on the oriented
2-simplex of Figure 21.

Notice that if G, is the isotropy group of some point x € X then re-
stricting (2.90) to the elements ¢, , with g € G, shows that b, defines an
element of the group cohomology H?(G,, C*), corresponding to the central
extension of G, by C* whose elements are pairs (g, \) with ¢ € G, and
A € L, —{0}. This central extension of the isotropy group G, does not
in general extend to any central extension of the whole group G. It does
so, however, in the particular case when the B-field b is pulled back from a
2-cocycle of G by the map X — (point), i.e. when b,(g2,¢91) is independent
of z. In general the cocycle b : GX G x X — C* can be regarded as a cocycle
of the group G with values in the abelian group A(X)* = Map(X,C*) with
its natural G-action. Thus it defines a (non-central) extension

1 - AX)* -G -G —1.

One technical point to notice is that for any B-field we have Ly = C
canonically when f is an identity morphism. Thus Ly, = C when g = 1.
We shall always choose £, , = 1 when g = 1, thereby normalizing the cocycle
so that b;(g1,92) = 1 if either g, or g9 is 1.

The algebra Ay(X//G) = @gecarex Ly with the multiplication rule
defined by (2.90) can be identified with the twisted crossed-product algebra
A(X ) Xp G via

eg,x = Xgr @ 9,

where Y, is the characteristic function supported at . The twisted crossed-
product is defined by

(2.91) (f1 ®91)(f2 ® g2) = gy 4,(b(g1, 92)) f1 g, (f2) @ G192,
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where b(g1, g2) denotes the function = — b, (g1, g2) in A(X)*, and the group
G acts on A(X) in the natural way

ag(f)(z) = flg~'x),

so that g - Xz = Xgz-

If we wish to apply these considerations to the spin case described in
§2.1.6 and §2.2.4 then we must consider the lines Ly to be Z/2 graded. In
this case the theory will admit a further twisting by H'(|C|,Z/2). However,
we will not discuss this generalization further.

O
o O

FIGURE 23. The algebra of little loops for X = S3/55, where
Sy, is the permutation group on n letters.

2.6.3.2. The Turaev algebra associated to a G-space. The algebra
Ap(X//G)

does not satisfy the sewing conditions and is not a Turaev algebra. In par-
ticular (2.82) is usually not satisfied for a crossed-product algebra. However,
the subcategory defined by the morphisms with the same initial and termi-
nal object does lead to a Turaev algebra for any B-field b on X//G. We call
this the “algebra of little loops”. Thus we define C = ®,C, C Ay(X//G) by

(292) Cg = @x:gw:ng,x
and define the trace by
(2.93) 0(Lgz) = dg10(cz)

where on the right 6 is the given G-invariant trace on C;, and the ¢, are
the usual idempotents in the semisimple Frobenius algebra C; = A(X), i.e.,
€z =1 € L1, = C. The algebra of little loops can be visualized as in Figure
23.

An equivalent way to describe C is as the commutant of C; = A(X) in

Ay(X//G) = A(X) x;, G.

As A(X) is in the centre of C, it is natural to think of C as the sections of
a bundle of algebras on X; the fibre of this bundle at x € X is the twisted
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group algebra Cy, [G,], where G, is the isotropy group of x. Furthermore,
the bundle of algebras has a natural G-action, covering the G-action on X.
To see this, notice that the extension G = {(f,g) : f € A(X)*,g € G} of
the group G by the multiplicative group A(X)* defined by the B-field sits
inside the multiplicative group of A(X) x; G, normalizing the subalgebra
A(X). As A(X) is in the center of C, this means that G acts by conjugation
on the algebra C. Notice, however, that only G, and not G, acts on the
larger algebra A,(X//G).

In terms of explicit formulae, the action of G on the algebra C is given
by

(2.94) gy (byy) = gy alysa 6571 x = Zw(g?’gl)gmgzgfl,gw’
where
ba (g1, 92)be (9192, 97 ")
ba(g1,97 ") .
In this way we obtain a Turaev algebra, which we shall denote by C =

T(X,b,0). The only non-trivial point is to verify the “torus” axiom (2.83).
But in fact it is easy to see that both sides of the equation are equal to

Z Chalgely nlyhs

(2.95) 2e(92,91) =

where x runs through the set {x € X : ha = gx = z}.

Turaev has shown that the above construction is the most general one
possible in the semisimple case.

THEOREM 2.13. ([452], Theorem 3.6) Let C be a Turaev algebra. If
Cy1 is semisimple then C is the twisted algebra T(X,b,0) of little loops on
X = Spec(Cy) for some cocycle b € ZZ(X,C>).

PRrOOF. If Cy is semisimple we may decompose it in terms of the ba-
sic idempotents €,. Then C, is a module over C;, and hence it should be
identified with the cross sections of the vector bundle over the finite set X
whose fibre at = is Cy, = €,C4. (This is a trivial case of what is called the
Serre-Swan theorem.) Now we consider the torus axiom (2.83) in the case
h=1. We have A; =Y 0(e;) 'e, ® 4, and hence

Eﬁsw agemem—gﬁsx Exs

where the second sum is over x such that gr = . On the other hand we
readily calculate that if {a;;} is a basis of Cy, and {aj ;} is the dual basis
of Cg-1 , then ag,a; ; = 0(cz) ‘ez, so that the other side of the torus axiom
is

Z 0(es)” dlm 9.)Ex-
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Thus the axiom tells us that C,, is a one-dimensional space L, when
gr = x, and is zero otherwise. The multiplication in C makes these lines
into a G-equivariant B-field on the category of small loops in X//G. Finally,
it is not hard to show that the category of B-fields on X//G is equivalent
to the category of G-equivariant B-fields on the category of small loops; but
we shall omit the details. O

Let us now consider the orbifold theory coming from the gauged theory
defined by the Turaev algebra C = T(X,b,0). We saw in §2.6.2 that it is
defined by the commutative Frobenius algebra C,,1, which is the G-invariant
subalgebra of C. In the case of the Turaev algebra of a G-space X we have

THEOREM 2.14. The orbifold algebra Copp, is the center of the crossed-
product algebra A(X) xp G. It is the algebra of functions on a finite set
(X/G)string which is a “thickening” of the orbit space X/G with one point
for each pair &, p consisting of an orbit & and an irreducible projective rep-
resentation p of the isotropy group G, of a point x € £, with the projective
cocycle b, defined by the B-field.

PROOF. The Turaev algebra C consists of the elements of A(X) x; G
which commute with A(X). But an element of A(X) x; G belongs to its
centre if and only if it commutes with A(X) and also commutes with the
elements of G, i.e., is G-invariant.

Now we saw that C is the product over the points x € X of the twisted
group-algebras Cy, [G;]. The invariant part is therefore the product over the
orbits £ of the Gy-invariant part of Cp,[G,], i.e. of the centre of Cp, [G4],
which consists of one copy of C for each irreducible representation p with
the cocycle b,. O

The Turaev algebra C = T(X,b,0) sits between Cop and A(X) x; G.
We shall see in Theorem 2.16 that A(X) x; G is semisimple, and hence
Morita equivalent®® to its centre Copp. But the Turaev algebra retains more
information than the orbifold theory: it encodes X and its G-action. The
difference is plainest when G — of order n — acts freely on X; then A(X)xG
is the product of a copy of the algebra of n x n matrices for each G-orbit
in X, and provides us with no way of distinguishing the individual points
of X. We shall see in §2.6.5 that the category of boundary conditions for
the gauged theory C is a natural enrichment of the category for the orbifold
theory, at least in the semisimple case.

20This means that the category of representations of A(X) X, G is equivalent to the
category of representations of Cor,, uniquely up to tensoring with a “line bundle” — a
representation L of Cop1, such that L ®c_. L' 22 Copp, for some L.

orb
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It might come as a surprise that the crossed-product algebra of space-
time A(X) x G is not the appropriate Frobenius algebra for G-equivariant
topological field theory, in view of the occurrence of the crossed-product
algebra as a central concept in the theory of D-branes on orbifolds developed
in [141, 308, 352]. In fact, this fits in very nicely with the philosophy of
this chapter. The Turaev algebra remembers the points of X, and so allows
only the “little loops” above. In this way the sewing conditions - which
are meant to formalize worldsheet locality - also encode a crude form of
space-time locality.

We shall conclude this section by making contact with the usual path
integral expression for the orbifold partition function on a torus. To do this
we compute dim Cy, by computing the projection onto G-invariant states
in C. Note that ay(¢y ) is only proportional to £}, when [g,h] = 1 and
gxr = x, and then

(2.96) g (lhg) = b:(9,1)

h,x
ba(h,g) ™
where we have combined (2.95) with the cocycle identity. Thus we find

(2.97) dim Coypp = ’—(1;’ o>

gh=hg x=gx=hx r

bz(g,h)
be(h,g)

G .
P m I m I E e - g

FIGURE 24. The wavy line is a constrained boundary. If
there is holonomy ¢ along the dotted path P then this mor-
phism gives the G-action on O.

2.6.4. Sewing conditions for equivariant open and closed the-
ory. Let us now pass on to consider G-equivariant open and closed theories.
We enlarge the category Sg so that the objects are oriented 1-manifolds
with boundary, with labelled ends, equipped with principal G-bundles. The
morphisms are the same cobordisms as in the non-equivariant case, but
equipped with G-bundles. Up to isomorphism there is only one G-bundle
on the interval: it is trivial, and admits G as an automorphism group. So an
equivariant theory gives us for each pair a, b of labels a vector space Oy, with
a G-action. The action of ¢ € G on Oy, can be regarded as coming from
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FIGURE 26. Showing that G acts on O as a group of automorphisms.

the “square” cobordism with the bundle whose holonomy is g along each of
its “constrained” edges. There is also a composition law Ogp X Ope — Oge,

which is G-equivariant. These are illustrated in Figures 24 and 25.

In the open/closed case the conditions analogous to equations (2.2) to

(2.12) are the following.

Focusing first on a single label a, we have a not necessarily commutative
Frobenius algebra (Oy, = O, 00) together with a G-action p : G — Aut(O):

(2.98) pg(V1¢2) = (pgtn) (pg¥b2)
which preserves the trace 8o (pg10) = 0o (¢). See Figure 26.

There are also G-twisted open/closed transition maps
tga =tg :Cqg = Ogq = O

(2.99) =19 040 =0 —Cy4
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FIGURE 27. The open/closed transitions ¢, and ¢9.

which are equivariant:

Qgo

(2.100) Co —=Chagigo
tgy \L \ngzngl
O—F5—0
Qg
(2.101) Coo1g1go S Coy
L92719192 T TLgl
0O—F5—0

These maps are illustrated in Figure 27. The open/closed maps must satisfy
the G-twisted versions of conditions 3a-3e of §2.1.2. In particular, the map
¢ : C — O obtained by putting the ¢, together is a ring homomorphism, i.e.,

(2.102) Lgr (01) gy (D2) = tgagi (D201) Vo1 € Cgy, d2 € Cys.

Since the identity is in C; the condition (2.8) is unchanged. The G-twisted
centrality condition is

(2.103) Lg(9)(pgh) = Yig(d) Vo eCy9p €O,

and is illustrated in Figure 28.
The G-twisted adjoint condition is

(2.104) b0 (vy-1(9)) = be (9 (1)8)) Vo e Cyr
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F1GURE 28. The G-twisted centrality axiom.

and is shown in Figure 29.

The G-twisted Cardy conditions place restrictions not only on the al-
gebras O, but also on the spaces of morphisms Oy, for all a,b. For each
g € G we must have

(2.105) Ty = Lgpth".

Here 7%, is defined by

(2.106) Th(1) = > P (pgtby),
“w

where we sum over a basis 1), for Oy, and take ¥* to be the dual basis of
Opa- See Figure 30.
We may now formulate

THEOREM 2.15. The above conditions form a complete set of sewing
conditions for G-equivariant open/closed 2d TFT.

This will be proved in §2.7. Note that the above axioms are slightly
redundant since (2.100) and (2.104) together imply (2.101).
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Oc(9()p)

FIGURE 29. The G-twisted adjoint relation. The upper fig-
ure is a sphere with two disks removed — the outer circle is
not meant to be a boundary.

2.6.5. Solution of the sewing conditions for semisimple C. We
now show that, when C is semisimple, the solutions of the above sewing
conditions are provided by G-equivariant bundles on X = Spec(C;) twisted
by the B-field defined by C.

Let us first say a word about these bundles. To give a finite dimensional
representation of the crossed-product algebra A(X) x G is to give a rep-
resentation of A(X) — i.e., a vector bundle £ on X — together with an
intertwining action of G. Thus representations of A(X) x G are precisely
G-vector bundles on X. For a finite group G there are many equivalent
ways of defining the notion of a twisted G-vector bundle on X, twisted by a
B-field b representing an element of H?;(X ,C*): the simplest for our pur-
poses is to say that a twisted bundle is just a representation of A(X) x; G.
(Unfortunately this description does not work when G is not finite, and so
it is not the one used in [26]. We shall explain the relationship with the
description of [26] at the end of this subsection.)

The problem is easily reduced to consideration of a single G-orbit, so we
may assume X = G/H for some subgroup H of G. Accordingly, the closed
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FicURE 30. The G-twisted Cardy condition. In the double-
twist diagram the holonomy around P; is 1 and the holonomy
around Ps is g.

string Frobenius data is specified by a 2-cocycle b and a single constant
§. € C* defining the trace: 6({y,) = 64,10.. As usual, the isomorphism
class only depends on [b] € H?(H,C*).

THEOREM 2.16. LetC = T'(X,b,0.) be a Turaev algebra with C; semisim-
ple and X = G/H. For a single label a the most general solution O = Qg of
the sewing constraints is determined by a choice of square root 8, = /0. and
a projective representation V of H with the cocycle b, which is the restriction
of b.

The algebra O is the algebra of sections of the G-equivariant bundle of
algebras over X :

(2.107) 0 :=T(G xg (End(V))) = Ind% (End(V)),
and the trace is determined by 0,:
(2.108) 0o(¥) =0, > Try(¥(z)).

x€G/H

PrROOF. Let us suppose that we are given the Turaev algebra C with C;
semisimple, together with O, 00, ¢4, 9 satisfying the sewing conditions. Let
X be the G-space Spec(Cy). Then, from our results in the non-equivariant
case, we know that O = Ende, (I'(E)) = I'(End(F)) for some vector bundle
E — X, unique up to tensoring with a line bundle L — X. Thus O = &0,
where O, = End(E,). We also know that the trace on O must be given
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by (2.35). The same square root 6, of 6, must be taken for each x € X to
make 6 : O — C invariant under G. Now G acts compatibly on C; and O by
algebra isomorphisms, so g € G maps O, to O, by an algebra isomorphism.
This proves (2.107), where V = E,,. Finally, the Turaev algebra C is the
product ®C;, where C, is the twisted group-ring of G, with the twisting
br. The algebra homomorphism C — O makes C, act on E,, and so V is a
projective representation of H = G, with the cocycle b,,.

This proves that O is of the form stated. One must still check that the
definition (2.107) does provide a solution of the sewing conditions, but that
presents no problems. O

REMARK 2.17. Although in the hypothesis of the theorem we were given
a cocycle b representing an element of H g‘;(X ,C*), the conclusion uses only
its restriction b,,. This should not surprise us, as cohomologous cocycles b
define isomorphic Turaev algebras, and H% (X, C*) is canonically isomorphic
to the group cohomology H %I(point; C*) when X = G/H.

We can now deduce a complete description of the category of boundary
conditions, using exactly the same arguments by which we obtained Theorem
2.8 from Theorem 2.6.

THEOREM 2.18. IfC is a Turaev algebra with C1 semisimple, correspond-
ing to a space-time X with a B-field b, then the category of boundary condi-
tions for C is equivalent to the category of b-twisted G-vector bundles on X,
uniquely up to tensoring with a G-line bundle on X. Its Frobenius structure
is determined by a choice of the dilaton field 6.

The meaning of this theorem needs to be explained. The linear category
of equivariant boundary conditions for a given Turaev algebra is an example
of what is called an “enriched” category: for each pair of objects a,b the
vector space Oy, has an action of the group G. Now the category Vectg of
finite dimensional vector spaces with G-action is a symmetric tensor cate-
gory, with the neutral object C. To say that we have a category enriched in
a tensor category such as Vects means that we have

(i) a set of objects,
(ii) for each pair a,b of objects an object Oy, of Vectg, and
(iii) for each triple a,b,c of objects an associative “composition” mor-
phism
Ouwp @ Ope = Oge

of G-vector spaces.
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The axioms are almost identical to the axioms for a category, but the
space of morphisms has extra structure. In such a situation the category
is said to be an enrichment of the ordinary linear category in which the
morphisms from b to a are F(Oyp), where F' : Vectg — Vect is the functor
defined by F(V) = Homg(C, V) = V. There is, however, another ordinary
category associated to the enriched category by simply forgetting the G-
action, so that the morphisms from b to a are simply O, as a vector space.

An example of a category enriched in Vectq is the category of finite di-
mensional representations of G, where G is a central extension (with a fixed
cocycle) of G by the circle, where the central circle acts by scalar multipli-
cation. Indeed, given two such representations V* ® V, is a representation
of G.

Theorem 2.18 should really be expanded as follows. The category of
b-twisted G-vector bundles on X has a natural enrichment in Vectg, in
which the G-vector space of morphisms consists of the homomorphisms of
b-twisted vector bundles which are not necessarily equivariant with respect
to the G-action. This enrichment is equivalent to the category of equivariant
boundary conditions. The underlying ordinary category is the category of
boundary conditions for the orbifold theory.

Theorem 2.18 has a converse, which is the G-equivariant extension of
the discussion of §2.2.3.

THEOREM 2.19. If B is a linear category enriched in Vectg, with G-
equivariant traces making it a Frobenius category, and the linear category
obtained from B by forgetting the G-action is semisimple with finitely many
irreducible objects, then B is equivalent to the category of equivariant bound-
ary conditions for a canonical equivariant topological field theory. The Tu-
raev algebra defining the theory is ©4C4, where an element of C4 is a family
@a € Oua, indexed by the objects a of B, satisfying

(2.109) $aof=1(g-f)od
for each f € Og.

To prove this, one must show that (2.109) really does define a Turaev
algebra. The details are straightforward and we will omit them.

2.6.6. Equivariant boundary states. To conclude our discussion, let
us consider the equivariant analogues of the “boundary states” discussed in
§2.3. Our notion of the category of boundary conditions for a G-gauged
theory is intrinsically G-invariant, and we have already pointed out that it
gives us exactly the same category as we would obtain from the orbifold
theory in which we have summed over the gauge fields. To reformulate this
in terms of boundary states we begin with the definition.
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In the gauged theory associated to a Turaev algebra C = T'(X,b,0) the
observables at any point of the world sheet are precisely the elements of
C. The boundary state B, € C associated to a boundary condition a is
characterized by the property that the correlation function of observables
®1,. .., ¢ evaluated at points of a surface ¥ with boundary S' and boundary
condition a (with arbitrary holonomy around the boundary) is equal to that
of the same observables on the closed surface obtained by capping-off the
boundary, with the additional insertion of B, at the center of the cap. It
suffices (because of the factorization properties of a field theory) to check
the case when ¥ is a disc. The correlation function on the disc is obtained by
propagating ¢ - - - ¢ € Cy to H(0) = C by the annulus whose non-incoming
boundary circle is constrained by the condition a, along which the holonomy
is necessarily g. Our rules tell us that the result is

Hoaa(Lgya(¢1 T (bk))
Equating this to ¢, (¢1 - - - ¢ Ba), we see that

By = tga(l).

The map a — B, evidently has its image in the G-invariant part — i.e.,
the center — of the Turaev algebra. It extends to a homomorphism

KG,h(X) - T(Xv b7 O)Gv

and we have

THEOREM 2.20. The G-invariant boundary states generate a lattice in
T(X,b,0)% related to the twisted equivariant K -theory via

(2.110) Kon(X)®zC=T(X,b,0)C.

REMARK 2.21. (1) Equation (2.110) is related to an old observa-
tion of [121]. If X = G, with G acting on itself by conjugation,
then T'(X,0)¢ is the Verlinde algebra occurring in the conformal
field theory of orbifolds for chiral algebras with one representation
[121]. The different orbits are the conjugacy classes of G. Focusing
on one conjugacy class [g] we can compare with the above results.
One basis of states is provided by a choice of a character of the
centralizer of g. These are just the G-invariant boundary states
found above.

(2) The translation of the above results to the language of branes at
orbifolds is the following. The boundary states corresponding to
the different b-irreps V; are the “fractional branes” of [141]. The
use of projective representations was proposed in [141], and argued
to correspond to discrete torsion in [132, 136]. A different proof of
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the fact that the cocycle for the open sector and that of the closed
sector b are cohomologous can be found in [15].

To conclude this section, let us return to explain the relation between
the definition of twisted equivariant K-theory by A(X) x; G-modules and
the definition given in [26].

In [26] the elements of the twisted equivariant theory are described as
follows. First, the twisting class b € H, g’;(X ,Z) is represented by a bundle P
of projective Hilbert spaces on X equipped with a G-action covering the G-
action on X. Then elements of K p(X) are represented by families {7} } ,ex
of fibrewise Fredholm operators in the bundle P. Let us show how to asso-
ciate such a pair (P,{T,}) to a finitely generated A(X) x;, G-module. Such
a module is the same thing as a finitely generated A(X)-module equipped
with a compatible action of the extended group G associated to b which
we have already described. Equivalently, it is a finite dimensional vector
bundle E on X with an action of G on the total space which covers the
action of G on X. Let us choose a fixed infinite dimensional Hilbert space
H. Then F = E ® H is a Hilbert bundle on X , and the associated bundle
P = P(E) of projective spaces has a natural action of GG, and it represents
the class of b in H3(X,Z). (Cf. the proof of Proposition 6.3 in [26].) If
T :H — H is a fixed surjective Fredholm operator with a one-dimensional
kernel, then idg ® T': P — P represents an element of K p(X) according
to the definition of [26].

If the cocycle b is a coboundary — or even if b, (g1, g2) is independent of
x € X — it is plain that the two rival definitions of equivariant K coincide.
A Mayer-Vietoris argument can then be used to show that they coincide for
all b.

The essential point here is that, when X and G are finite, the twisting
class b is of finite order, and that makes it possible to represent the K-
classes by families of Fredholm operators of constant rank, and hence by
finite dimensional vector bundles.

2.7. Appendix: Morse theory proof of the sewing theorems

In this appendix we shall use Morse theory to give uniform proofs of four
theorems. The first is the very well-known result that a two-dimensional
topological field theory is precisely encoded in a commutative Frobenius
algebra. The second is the corresponding statement for open and closed
theories: this is Theorem 2.1 of §2.1. The third and fourth are the equivari-
ant analogues of the first two, i.e., Theorems 2.11 and 2.15 of §2.6.
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2.7.1. The classical theorem. We wish to prove that when we have
a commutative Frobenius algebra C we can assign to an oriented cobordism
Y from Sy to S a linear map

Us, : C®P — C®,

where the oriented 1-manifolds Sy and S; have p and ¢ connected compo-
nents respectively.

We can always choose a smooth function f : ¥ — [0,1] C IR such that
f~10) = Sy and f~(1) = Sy, and which has only “Morse” singularities,
i.e., the gradient df vanishes at only finitely many points z1,...,x, € X,
and

(i) the Hessian d?f(z;) is a non-degenerate quadratic form for each i,
and

(ii) the critical values ¢; = f(x1),...,¢, = f(xy,) are distinct, and not
equal to 0 or 1.

Each critical point has an index, equal to 0, 1, or 2, which is the number of
negative eigenvalues of the Hessian d?f(x;).

The choice of the function f gives us a decomposition of the cobordism

into “elementary” cobordisms. If

O=th<a<ti<c<t<---<c,<tp, =1,

and S; = f~1(t), then each Sy, is a collection of, say, m; disjoint circles,
with m; = m;_1 £ 1, and X; = f~1([ti_1,%]) is a cobordism from Sy, ,
to S, which is trivial (i.e., a union of cylinders) except for one connected
component of one of the four forms of Figure 2.

For a given Frobenius algebra C we know how to define an operator

UEZ- . C®m1'71 N C®Mi

in each case. (In the third case the map we assign is

b= o ¢,

where {¢;} and {¢'} are dual bases of C such that 0¢(¢'¢p;) = &;;.) We
should notice two points. First, we need C to be commutative, for otherwise
we would need to have an order on the two incoming circles of a pair of
pants, and no such order is given. Secondly, the assignments we make have
the property that reversing the direction of time in a cobordism replaces the
operator by its adjoint with respect to the Frobenius inner product on the
state spaces. This property will be a firm principle in all our constructions,
and it reduces the number of cases we have to check in the tedious arguments
below.

The important task now is to show that the composite operator Us,, o
---0 Uy, is independent of the chosen Morse function f.
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FiGURE 31

Two Morse functions fy and f; can always be connected by a smooth
path {fs}o<s<1 in which fs is a Morse function except for a finite set of
parameter values s at which one of the following two things happens:

(i) fs has one degenerate critical point where in local coordinates (u, v)
it has the form f,(u,v) = +u® +v3, or

(ii) two distinct critical points z;, z; of fs have the same critical value

fs(xi) = fs(zj) = c.
In the first case, two critical points of adjacent indices are created or an-
nihilated as the parameter passes through the non-Morse value s, and the
cobordism changes by Figure 31, or vice-versa, or by the time-reversal of
these pictures. The well-definedness of Us; under this kind of change is
ensured by the identity 1-a = a in the algebra C.

Case (ii) is more problematical. Because operators of the form U ® 1
and 1 ® U’ commute, we easily see that there is nothing to prove unless the
two critical points x; and x; are connected in the “bad” critical contour S,
in which case they must both have index 1.

Let us consider the resulting two-step cobordism which is factorized in
different ways before and after the critical parameter value s. It will have
just one non-trivial connected component, which, because an elementary
cobordism changes the number of circles by 1, must be a cobordism from
p circles to ¢ circles, where (p,q) = (1,1),(2,2),(1,3) or (3,1). We need
to check only one of (1,3) and (3,1), as they differ only by time-reversal.
Because the Euler number of a cobordism is the number of critical points of
its Morse function (counted with the sign (—1)9%)  the non-trivial compo-
nent has Euler number —2, so is a 2-holed torus when (p,q) = (1,1) and a
4-holed sphere in the other cases.

In the case (1,1), depicted in Figure 32, a circle splits into two which
then recombine. There is nothing to check, because, though a torus with
two holes can be cut into two pairs of pants by many different isotopy classes
of cuts, there is only one possible composite cobordism, and we have only
one possible composite map C - C®C — C.

In the case (3,1), two circles of the three combine, then the resulting
circle combines with the third. The picture is Figure 33. Clearly this case
is covered by the associative law in C.
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Ficure 32. The diagram depicts a torus truncated by two
horizontal planes which are level surfaces of the Morse func-
tion. The two critical points are at the top and bottom of
the inner circle. If the torus is tilted— as a rigid body— then
the two critical points of the height function can be made to
lie in the same horizontal plane.

FIGURE 33

FIGURE 34. Ways of embedding a cobordism with two crit-
ical points in R®. The right-hand diagram depicts the situa-
tion whose contour lines are drawn in Figure 35, (i).

In the case (2,2) we are again factorizing a 4-holed sphere into two
elementary cobordisms. This can be done in many ways, as we see from the
pictures Figure 34. The best way of making sure we are not overlooking
any possibility is to think of the contour just below the doubly-critical level,
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FIGURE 35

which, if it consists of two circles, must have one of the two forms (i) or
() in Figure 35. (Consider the possible ways of connecting the “terminals”
inside the dotted circles.) But, whatever happens, the only algebraic maps
the cobordism can lead to are

CRC—-C—-C®C

and

CRC—-CRCR®C—-CRC,
given by

dR¢ ¢ — > oo @ ¢
and

$R¢ =Y iR ¢ =Y ¢d @ '¢
respectively, where {¢;} and {¢'} are dual bases of C such that fc(¢'¢;) =
;5. These two maps are equal because of the identity

(2.111) Y biwd = ¢iwd'd,
which holds in any Frobenius algebra because the inner product of each side
with ¢/ ® ¢y, is Oc(¢’ &' o).

That completes the proof of the theorem. Notice that we have used all
the axioms of a commutative Frobenius algebra.

2.7.2. Open and closed theories. As in the preceding argument we
consider a cobordism X from Sy to S7, but now Sy and S; are collections of
circles and intervals, and the boundary 0% has a constrained part Oconstrs,
which we shall abbreviate to @'Y, which is a cobordism from 95, to 9S1. We
choose f : ¥ — [0,1] as before, but now there are two kinds of critical points
of f: interior points of ¥ at which the gradient df vanishes, and points of &'%
at which the gradient of the restriction of f to the boundary vanishes. For
an internal critical point, “non-degenerate” has its usual meaning. A critical
point = on the boundary is called non-degenerate if it is a non-degenerate
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critical point of the restriction of f to @'Y, and in addition the derivative of
f normal to the boundary does not vanish at z.

As before, we say f is a Morse function if all its critical points are non-
degenerate, and all the critical values are distinct and # 0,1. We can always
choose such a function.

There are now four kind of boundary critical points, which we can denote
0+, 14, recording the index and the sign of the normal derivative. Six things
can happen as we pass through one of them. At those of type 0+ or 1—, an
open string is created or annihilated. At type 0— either two open strings
join end-to-end, or else an open string becomes a closed string. Type 14 is
the time-reverse of 0—. If we have a Frobenius category B, we know what
to do in each of the six cases.

a4 a e c ., o d c + s d
o o {\/.‘ R "
O- -
‘om.' N .
~ . - ‘ N
b~ b b’ < a b v o a
~ ~
FIGURE 36

An internal critical point has index 0,1, or 2, as before. Only if the index
is 1 can the corresponding cobordism involve an open string. Up to time
reversal, there are three index 1 processes: two closed strings can become
one, an open string can “absorb” a closed string, and two open strings can
“reorganize themselves” to form two new open strings as in Figure 36.

For a given Frobenius category B, we assign to (open)+(closed)— (open)
the map

Oab ®C— Oab
given by ¢ ® ¢ — ¢1». Here, as we usually do, we are regarding O as a
C-module, writing

Ph = 1a(@)Y) = 1p()1)-
To (open)+(open)— (open)+(open) we assign the map

Oap @ Ocg — Oug @ Oy

given by
YU = Y Y @YY,
where 1; and 9" are dual bases of Opg and Og.

We must now consider what happens when we change the Morse func-
tion. As before, two Morse functions can be connected by a path {fs} in
which each f; is a Morse function except for finitely many values of s at
which either one critical point is degenerate or else two critical values co-
incide. We begin with the degenerate case. There are now three kinds of
degeneracy which we must allow, for besides internal degeneracies which are
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just as in the closed string case we can have two kinds of degeneracy on the
boundary: either f|0’% has a cubic inflexion, or else the normal derivative
vanishes at a boundary critical point.

a ._hb a —<— b
a-:'éib a .+ b
FI1GURE 37

When s passes through a boundary inflexion, two non-degenerate bound-
ary critical points of opposite index but with normal derivatives of the same
sign are created or annihilated. This means that the cobordism changes
between the two figures of Figure 37 (or the time-reversal). These changes
are covered by the axiom that the category B has identity morphisms.

When the normal derivative vanishes at a boundary critical point what
happens is that an internal critical point has moved “across the boundary of
>, i.e. it moves into coincidence with a boundary critical point and changes
the sign of the normal derivative there. There are four cases:

(0—) + (index 0) — (0+4),

(0+) 4+ (index 1) — (0—),
and the time-reversals of these. In the first case, the composite cobordism in
which a small closed string is created and then breaks open is replaced by the
elementary cobordism in which an open string is created. This corresponds
to the axiom that C — O, takes 1¢ to 1,. In the second case, in the
composite cobordism, an open string is created, and then it either “absorbs”
an existing closed string or else “rearranges” itself with an existing open
string; these composites are to be equivalent, respectively, to the elementary
breaking of a closed or open string. Putting ¢ = 1, in the formulae above
we see that this is allowed by the Frobenius category axioms.

When we have an internal degenerate critical point, what happens, up
to time-reversal, is that a closed string is created and then joins an existing
open or closed string, this should be the same as the trivial cobordism.
Again, the unit axioms cover this.

Finally, we have to consider what happens when two critical values cross.
They can be two boundary critical points, two internal ones, or one of each.

If two boundary critical points are linked by a critical contour, it has
the form in Figure 38. These give us four cases to check, where the contour
below the critical level is as in Figure 39.

Case (i)q is accounted for by the associativity of composition in the
category B; case (i), by the open string analogue of the identity (2.111); case
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(ii), by the trace axiom (*(¢11h2) = 1P(91p1), which follows by combining
(2.5),(2.9),and (2.10); and case (ii), by the Cardy identity.

When we have one boundary and one internal critical point at the same
level we may as well assume the boundary point is of type 0— and the
internal critical point is of index 1, and that they are joined in the critical
contour,which must have one of the four forms in Figure 40.

At the boundary point either an open string becomes closed, or else two
open strings join. We shall consider each possibility in turn. In the first
case, if the boundary point is encountered first, then at the interior point
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FIGURE 40

three things can happen: the closed string can split into two closed strings,
or it can combine with another closed or open string. Thus the possibilities
are

o — c¢c — ¢+ c
o+ ¢c —c¢c+ c — c
o+ o — c + o — o.

When the internal point is encountered first there is only one possibility in
each case, and the three sequences are replaced respectively by

o — o0+ c —c+c
o+ c¢c — 0o — ¢
o +o0o — o+ o — o.

We have to check three identities. The first two reduce to the fact that
1% : Oyq — C is a map of modules over C. The third is the Cardy condition.

Now let us consider the case where two open strings join at the boundary
critical point. If we meet the boundary point first, there are again three
things that can happen at the internal critical point: the open string can
emit a closed string, or else it can interact with another closed or open string.
The possibilities are

o+ o0 — o0 — o+ ¢
o+ o0o+c¢c — 0 +c¢c — o
o+o0o+ 0 — 0o+ 0o — o+ o

In the second and third of these cases there is only one thing that can happen
when the order of the critical points is reversed: they become

o+ 0o+ ¢ — 0+ 0o — o
o+ o+ 0 — o+ o0+ 0 — o+ o.

The identities relating the corresponding algebraic maps Qg Q@ Op.RC — Oge
and Ogp Q@ Ope @ Oge — Oge @ Oy, are immediate.
The first sequence, however, can become either

o+o0 — 0+ o0+ c¢c — 0+ c
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or
o+ o — o+ o — o+ c

The first of these presents nothing of interest algebraically, but to deal with
the second we need to check that

S olei @ = Yyt @ ()

for 1 € Oy, V' € O, and dual bases ¢, ¢; of C and Y*, ¥y, of Ope, Opp. This
relation holds because the inner product of the left-hand side with v, ® ¢;
is 0 (Y1)’ ¢4, ), while the inner product of the right-hand side with v, ® ¢;

1S

D0 )0 W) G;) = DOm0 (it
k k

(2.112) = Op(m;¥") = Op(V G0m).

FIGURE 41

Finally, we must consider what happens when there are two internal
critical points on the same level. Here we have the possibilities which we
have already discussed in the closed case, but must also allow any or all of
the strings involved to be open. We can analyse the situation according to
the number of connected components of the part of the contour immediately
below the doubly critical level which pass close to the critical points. There
must be one, two, or three such components. If there are three they can
form five configurations (apart from the case when all three are closed), as
depicted in Figure 41. The well-definedness of the composite map in all
these cases follows immediately from the associative law of composition in
the Frobenius category.
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FI1GURE 42

If there are two components below the critical level then they can again
form five configurations (for either the two components meet twice, or else
they meet once, and one of them has a self-interaction), depicted in Figure
42. But we have only three cases to check, as the second is the time-reversal
of one from Figure 41, and the last two are time-reversals of each other.
Figure 42, (i) corresponds to the fact that the composition

Oab®c_’0ab—>0ab®c

can be effected by cutting the composite cobordism in different ways, but
there is nothing to check, as there is only one possible algebraic map.
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FIGURE 43

In Figure 42 case (iii), one order of the critical points gives us the same
composition

Op R®C — Opp — Oy @C

as before, while the other order gives
O R@C = Op @CRC — Oy, RC;

but it is very easy to check that both maps take 1 ® ¢ to 3. ¥¢@; ® ¢ in
the notation we have already used.
In Figure 42 case (iv), we must again compare compositions

O Q®C —>0pCRC — Ogp ®C

and
O @C — Oy — Opp @C.
This time we must check that
D hhi @ bip = o @ ¢

This is the same formula which we met at the end of our discussion of closed
string theories.

Finally, suppose that the contour below the critical level has only one
connected component. There are three possible configurations, correspond-
ing to the three ways of pairing four points on an interval. They are in

Figure 43. The first two of these are time-reversals of cases we have already
treated. The last one leads — in either order — to a factorization

Oap — Ogp @ C — Oy,
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There is only one possibility for this, so there is nothing to check.

That completes the proof of the theorem about open and closed theories.

FIGURE 44

g1
g4

93 g2
FI1GURE 45
FIGURE 46

94

o g3
g2
g1

FIGURE 47
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2.7.3. Equivariant closed theories. We must now redo the discus-
sion in the first part of this appendix, but for surfaces and circles equipped
with a principal G-bundle, where G is a given finite group.

The first observation is that any circle with a bundle is isomorphic to
a standard bundle S, with holonomy g € G on the standard circle St
Furthermore the set of morphisms from S, to Sy is {h € G: hgh™' = ¢'}.
In other words, the category of bundles on S! is equivalent to the category
G/ /G formed by the group G acting on itself by conjugation. An equivariant
theory therefore gives us a vector space C, for each g, and together the C,
form a G-vector bundle on G. Conversely, given the G-vector bundle {C,}
and a circle S with a bundle P on it, the theory gives us the vector space
H(S, P) whose elements are rules which associate 1, ; € Cg, , to each z € S
and trivialization ¢ : P, — G, where g, ; is the holonomy of P with base
point (z,t), and we require that

¢x',t’ = g%c,t

if g is the holonomy of P along the positive path from (z,t) to (2/,t'). For
this to be well-defined we need the condition that g, ; acts trivially on Cg, ,,
whose necessity we have already explained in §2.6.

Next we consider the trivial cobordism from S; to Sy. The possible
extensions of the bundles on the ends over the cylinder correspond to the
possible holonomies from the incoming base point to the outgoing base point,
i.e., to the set of morphisms {h € G : hgh™! = ¢’} in G//G. Clearly these
cylinders induce the isomorphisms C; — C, which we already know. But two
such cobordisms are to be regarded as equivalent if there is a diffeomorphism
from the cylinder (with its bundle) to itself which is the identity on the
ends. The mapping class group of the cylinder is generated by the Dehn
twist around it, so the morphism corresponding to h is equivalent to that
for hg = ¢’h. This means that g must act trivially on C4, as we already
know.

Now we come to the possible bundles on the four elementary cobordisms
of Figure 2. The bundle on a cap must of course be trivial. The pair-of-
pants cobordisms that are relevant to us arise as the regions between nearby
level curves separated by a critical level. We can draw them as in Figure
44, where the solid contour is below the critical level, and the dashed one is
above it. We can trivialize the G-bundle in the neighbourhood of the critical
point (i.e., within the shaded area), and then the bundle on the cobordism
is determined by giving the holonomies g;, go along the ribbons (i.e., the
unshaded part of the surface), as indicated. The operator we associate to
case (i) is the multiplication map

Mgy g5 : Cgy ® Cgy — Cyg,

of (2.80). In writing it this way we are choosing an ordering of the ribbons,
i.e., a base point on the outgoing loop. The two orderings are related by the
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conjugation
gy < Cgigo = Cyagys

so the consistency condition for us to have a well-defined assignment is that

Mgs,91 (1/}2 ® 1/}1) = Qg (mgl 192 (1/}1 ® 1/}2))

We see that this holds in any Turaev algebra by combining (2.82) with the
facts that G acts on the algebra by algebra-automorphisms, and that ayg,
acts trivially on Cg4,. As the mapping class group of the pair of pants is
generated by the three Dehn twists parallel to its boundary circles, there
are no new conditions needed to make the assignment of the operator to the
pair of pants well-defined.

The homomorphism

Cg1,92  Cgigs — Cgy @ Cy,

corresponding to the cobordism in Figure 15 is fixed by the requirement of
adjunction, bearing in mind that the dual space to C, is C,-1. It is given by

Car.go(0) = Y 69" © ¢,
where {¢;} is a basis for Cy,, and {¢'} is the dual basis of C ot

Any cobordism with a bundle can be factorized by Morse theory just as
before; bundles are inherited by the elementary cobordisms. The difficult
part of the discussion is considering what happens when we change the Morse
function. But in fact the only step which presents anything significant is
the consideration of the interchange of two critical points of index 1 on the
same level, i.e., the cobordisms of Figures 32, 33, 34.

Let us consider the case in Figure 32, where a string divides and then
rejoins — i.e., a torus with two holes, one incoming and one outgoing. We
draw the picture in the form in Figure 45. (We do not draw it in the
apparently more perspicuous form in Figure 46, as then the neighbourhoods
of the two critical points would have opposite orientation in the plane.)

The cobordism corresponds to a map C4321 — Caz41, where, as in the
following, we have abbreviated Cy,g,9.9; t0 Caz21. If the left-hand critical
point is encountered first, the map we obtain is

Ci321 — Ca3 ® Co1 = C34 ® C12 — C3412 = Casa1,

Gy 00 @i — Y az(¢d’) @ai(d) — Y as(¢e)an(er)
=Y as(as(¢d)ar(en),

where ¢; runs through a basis for Ca1, and we write a3 for ay,, and so on.
~Y

(The maps indicated by = in the previous line correspond to moving the
choice of base point on the various strings.)
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With the other order, we get

Ci321 = C3214 — C32 @ C1g = Caz ® Ca1 — Cazar,

¢'_’O‘21(¢)'_}Za21( 71) ®Y; ZOQ 044 )¢Z)®a4(¢z)
= as(ar (@) )au (),

where 1; runs through a basis of Cy4.
Thus we must prove that

ZOQ?, $¢")pi = 20424 1 V") (7).

We can deduce this from the axiom (2.84) of §2.6, with h = 9294_191_192_1
and g = g7 ! 95 1 as follows. We rewrite the right-hand side of the equation

as
Za24 1 Thag n )

where 7; is the basis ao (%) of Cy, so that n' = as(¢;) and
ag(1') = o (%) = aa().
By the axiom this equals
Z a1 (@) (&)E' = Z g1 (@)an(¢')¢i.

Finally,

agg-1(@)an(9') = ags-1(d¢") = azs(de’),
because ¢¢' € Cy3, and 50 qgy—1(d') = agg—1043(d¢") = anz(pg?). Thus we
have dealt with the case of Figure 32.

In fact this case is decidedly the most complicated of the set. We shall
do one more, namely case (i) of Figure 35, in which two strings join and
then split. We draw the diagram as in Figure 47, corresponding to the two
compositions

Ca3 ® Ca1 — Cu321 = Cra32 — C14 @ C32 = Cq1 @ Ca3
Ci3 ® Co1 = C34 @ C12 — C3412 = Cyh123 — Ca1 ® Ca3.

The first sequence gives us
bRV = Py - o (Y)Y ar ()’ ® ¢
=) au(or (Py)¢') @ aa(ei),
where ¢; is a basis for C3s. The second sequence gives
Y @Y = a3(¥) ® a1 (¥') — az(®)ar ()
= oy () = Y a1 (V)Y @b,
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where 9; is a basis for Co3. But we can assume that 1; = as(¢;), and hence
that 1’ = as(¢'). So, noticing that a1 (7)')¢’ € C14, and hence that

a(ar (Py)¢') = ar-1(ar (Py')¢),
what we need to prove is just that
Y'ay-1(¢) = ag-1(ar(y')e).

This is true because a; ()¢’ € Ci3-1, and so is fixed by ay5-1.
We shall leave the remaining verifications to the reader.

FIGURE 48

FI1GURE 49

2.7.4. Equivariant open and closed theories. We now have to redo
the open and closed case taking account of G-bundles on the cobordisms.

We assign the vector space O to an open string from b to a equipped
with a trivialization of the bundle on it. Changing the trivialization by
an element g € G corresponds to the action p; of g on O, which also
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corresponds to the map induced by a rectangular cobordism with holonomy
g along its constrained edges.

We must consider the maps to be associated to the elementary cobor-
disms corresponding to the critical points of a Morse function. Up to time-
reversal, two interesting things can happen at a boundary critical point:
either two open strings join end-to-end or an open string becomes closed.
We have the pictures of Figure 48. As before, the solid line is the contour
below the critical point, and the dashed line that above it. In Figure 48
(1), 9a, b, ge are the holonomies between nearby points on the respective
D-branes, expressed in terms of the chosen trivializations on the strings.
(They satisty gcgp = ga-) The map Oy @ Ope — Og that we associate to
this situation is

YRY - Pga (w)pgb (¢/)
The dual operation Oy — Ogp @ Oy is

(e Zpgl (1/151) @ Pga (52)7

where & and &' are dual bases of Oy, and Og,.

In case (ii) of Figure 48, the open string becomes a closed string whose
holonomy is g with respect to the indicated base point and the trivialization
coming from the beginning of the open string. The corresponding map is ¢9,
with adjoint ¢4.

There are also the two kinds of operation coming from internal critical
points which involve open strings. They are illustrated in Figure 49. The
map Cg ® Ogp, — Oy corresponding to Figure 49 (i) is @ +— pg, (14(P)1)),
while the map Ogp @ Opg — Oyq @ Oy, corresponding to Figure 49 (ii) is

DY =Y g, ()1 @ g ()pg, 41 (B1),
where {1;} is a basis of Opg.

We now have all the same verifications to make as in the non-equivariant
case. They are very tedious, but are in 1-1 correspondence with what we
have already done, and present nothing new. As an example of the modifica-
tions needed, let us point out that the very frequently used formula (2.111),
which holds in any Frobenius category when ¢/ € Oy and ¢’ and ¢; are dual
bases for Oy, and Oy, generalizes — with the same proof — when there is
a G-action on the category to

D Hhi@ag(d) = ¢ ®ay(¢'d)
for any g € G.

We shall say no more about the proof.
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2.8. Notes

There is a rather large literature on 2d TFT and it is impossible to
give comprehensive references. Here we just indicate some closely related
works. The 2d closed sewing theorem is a very old result implicit in the
earliest papers in string theory. The algebraic formulation was perhaps first
stated by Friedan. Accounts have been given in [117, 410, 401] and in the
Stanford lectures by Segal [413]. Sewing constraints in 2D open and closed
string theory were first investigated in [332]. Extensions to nonorientable
worldsheets were described in [74, 7, 71, 244].

The work in this chapter was first described at Strings 2000 [361] and
summarized briefly in [362]. It was described more completely in lectures
at the KITP in 2001 and at the 2002 Clay School [360]. In [359] one
can find alternative (more computational) proofs and examples to those
we give here, together with the original figures. Some of our results were
independently obtained in the papers of C. Lazaroiu [325, 323, 322, 324)|
although the emphasis in these papers is on applications to disk instanton
corrections in low energy supergravity. Regarding G-equivariant theories,
there is a very large literature on D-branes and orbifolds not reflected in
the above references. In the context of 2D TFT two relevant references are
[299, 341]. Alternative discussions on the meaning of B-fields in orbifolds
(in TFT) can be found in [152, 155, 428, 427, 426]. Our treatment
of cochain-level theories and A-algebras has been developed considerably
further by Costello [100].



CHAPTER 3

Open strings and Dirichlet branes

In this chapter we will begin our treatment of Dirichlet branes from the
point of view of two-dimensional conformal field theory (CFT), and take
this as far as we can without calling on modern representation theory.

To warm up, in §3.1 we review the relations between quantum mechanics
and various cohomology theories: de Rham, Dolbeault, their embeddings in
Hodge theory, and so on. The structures we will get from CFT can for many
purposes be considered to be deformations of these well understood theories.

The discussion of CFT begins in §3.2 with a brief overview of how CFT is
defined physically, as a special case of two-dimensional quantum field theory.
Most of the discussion is rather conceptual, but we discuss the case of free
field theory in some detail, so that we can give the standard arguments for
T-duality in §3.2.3.6.

We continue in §3.3 with a brief overview of superconformal field theory
and its topological twistings, as discussed in MS1, Chapters 12 and 13.
This includes the physics definitions of the “A-model” and “B-model,” the
chiral ring and the structure of the N = 2 superconformal algebra. Since
these definitions are not based on target space geometry, physics allows
making conjectures which go beyond standard mathematical frameworks
such as algebraic or differential geometry. However, making contact with
mathematics requires us to assume that these models also have geometric
definitions, namely the nonlinear sigma model. We review this in detail in
§3.4.

We then discuss boundary conditions and open strings. Again, we start
with a general physical discussion in §3.5, and then restrict attention to
boundary conditions in the topologically twisted A- and B- models in §3.6.
We finally explain the relation to the calibrated submanifolds of Chapter 1,
and develop just enough of the formalism (boundary conditions associated
to holomorphic vector bundles and to the structure sheaf of a point) to
support the more general discussion to come in Chapter 5.

Besides MS1, other standard references on (2,2) SCFT include [192,
119] and Chapter 19 of [394]. A nice introduction to supersymmetry for
mathematicians is [153].

109
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3.1. Topological quantum mechanics and cohomology theories

While the standard physics definitions of local quantum field theory
look rather different from the definition we used for TFT in Chapter 2,
we can use that definition to motivate the physics definitions. Thus, let us
again define QFT as a functor from a geometric category, namely a category
of manifolds with boundary, to a category of complex vector spaces and
linear maps. Now, however, we take our manifolds to carry a Riemannian
metric. Thus, objects in the geometric category are closed (d — 1)-manifolds
with metric, while morphisms are d-manifolds with metric which provide
cobordisms between the objects. Of course, the corresponding linear objects
and morphisms will be parameterized by this metric information as well.

Let us briefly review the case of d = 1 before moving on to field theory.
This is the well-known relation between supersymmetric quantum mechan-
ics and Hodge theory. Now, an object is a zero-dimensional manifold; in
other words a finite set of points. We denote the complex vector space cor-
responding to a point as H. The simplest morphism is the interval [0, ],
which corresponds to a linear operator on H for each ¢t. The consistency of
gluing now follows from the requirement that these operators form a semi-

group,
(3.1) exp(—tH) : H — H.

Normally one can take H to be a Hilbert space and the semigroup action to
be self-adjoint and bounded, and we do so. In this case, we can define the
Hamiltonian H, a self-adjoint (and typically unbounded) operator H which
generates the semigroup.

To get analogs of the interesting cobordisms of d > 1, we can allow
arbitrary graphs as morphisms. The metric data consists of an assignment
of positive real lengths to edges. Any such graph can be built by gluing
together intervals using a cubic vertex

(3.2) ViHxH—-H

which defines a commutative associative product. Thus we have an algebra
with a semigroup action. Finally, to get a Frobenius algebra, we choose a
trace 0 : H — C, compatible with the inner product:

(a,b) = 0(a™d).

FIGURE 1. QM and graphs
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The example of primary interest for us is the algebra of complex-valued
functions on a manifold with metric (M, g). Thus, let H be L?(M,C), the
product (3.2) be multiplication of functions, and the trace to be integration
with the measure being the volume form Vol,. Finally, we take (3.1) to be
the evolution operator for the heat equation on M,

—%exp(—tH) -f=Aexp(—tH) - f

with A the scalar Laplacian, in coordinates

A= —%82-\/5_]9”8]-.

Of course this is solved by H = A. Since the Schrodinger equation is the
same equation with ¢ pure imaginary, this is often called “imaginary time
quantum mechanics.”! So far there is no restriction on M; in particular it
need not be Ricci-flat. Such restrictions will appear when we consider d > 2.

The physical observables in this theory are the spectrum of the Lapla-
cian, and matrix elements of other operators. The most important other
operator is that of multiplication by a function; in other words given f €

C*(M,C) we define
Of:H—H: v — f-.
These operators clearly form a commutative associative algebra, essentially

the same as that defined by (3.2).
Another example is the derivative operator along a vector field v € T M,

0
T
v] = —iv 5%

Physically, the special case of v an isometry is called a “momentum opera-
tor.” It gives rise to a “conserved charge,” meaning that since

[H, II(v)] = 0,

the two operators can be simultaneously diagonalized, so that momentum
eigenvalues (or more simply, momenta) are independent of time.

While there are relations between this data and simpler invariants of
(M, g), they are very subtle and intricate (e.g., see [41]). To obtain theories
with more direct relations to topology, we consider supersymmetric quantum
mechanics.

3.1.1. Supersymmetric quantum mechanics. By definition, this
is a theory with a set of IV linearly independent Hermitian operators Q)
satisfying

(3.3) {Q1,Q,} =4d17H,

10r “Euclidean time,” by analogy to quantum field theory.
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where H is the Hamiltonian. The case N > 1 is sometimes referred to as
“extended supersymmetry.”

The basic N = 1 supersymmetric quantum mechanics (SQM) is the
theory of the Dirac equation. We take

(3.4) H=T(M,S),

the sections of S a spinor bundle over M. Over each point x € M, the
fiber S, admits the action of a Clifford algebra CI(7,M) with dim M real
generators, called the “fermions”, which span T, M. The defining relations
of Ci(T, M) are

1[)2 = (¢7¢)17 V¢€TmM
Choosing an explicit basis e; in T, M and denoting the corresponding lin-

ear coordinates on T, M by v, the defining relations can be recognized as
canonical anticommutation relations:

(3.5) {0, 47} = 297,
We can take the supercharge @ to be the Dirac operator:
Q=D =—iy*Dy,

where Dy is a covariant derivative. Then (3.3) is satisfied, with H the
Laplacian on sections of the spinor bundle.

Another important operator, denoted (—1), can be defined (up to an
overall sign) by the property that it has eigenvalues £1 and anticommutes
with all 9%

(3.6) (—DFypt = —i(-1)F.

If dim M is even, its +1 eigenspaces define the splitting of the spinor bundle
S into the two irreducible spinor representations,

(3.7) S=S, @S,

which are intertwined by the Dirac operator (). The irreducible spinor rep-
resentations are referred to as “chiral” in physics, and the £1 eigenvalues as
chirality.

3.1.1.1. N = 2 supersymmetry. A naive attempt to construct a theory
with N-extended supersymmetry by taking N fermions 1} and letting them
act on the tensor product of several spinor bundles fails, because [D;, D;] #
0, and as a result different supercharges do not anticommute. But in the
special case N = 2 there is a modification of this construction that does
work.

In the N = 2 case the supersymmetry algebra can be written in terms
of a complex supercharge QQ = Q1 + iQs:

(3.8) {Q.Q'y=2H, {Q.Q}={Q",Q'}=0.
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The Clifford algebra is
{vi,0f) = (Wb, v} =297, {¥i,vg) =0
It is useful to define complex fermions

o1, 1 .
dxl = 5 (w?i + 2'1/12) N Lj = §gjk (w]f - Z¢§>

which satisfy the algebra of differential forms and their adjoints,

(3.9) {da:i, L} = 5;-, {da:i,da:j} = {4,;} =0.
Thus, in this case, we can take the vector space H to be the space Q*(M, C)
of complex-valued differential forms on M. It has a Z-grading by form
degree, in physics called “fermion number.” The grading is defined by the
action of the operator

(3.10) F = dz'y;

(note that this is consistent with (3.6)).

We now identify the operators @ and Q' as follows:

0

ox’

Q=d=dx'
and
Q =dl = (1)« dx
where x is the Hodge star and m = dim M. These satisfy (3.8) where H is
the Laplacian acting on differential forms
(3.11) 2H = dd' +d'd.

In the physics literature, the operator () is often called the “BRST op-
erator”, by analogy to other discussions (e.g., covariant quantization of the
string). One sometimes sees Q' referred to as the “B ghost,”

B= QT.
In any case, the key point is that
Q*=0,

and thus we can use ) to define a cohomology theory;

N _ Ker@
HH(M,C) = mo
In the case at hand, () = d, and we see that the de Rham complex arises
physically in N = 2 supersymmetric quantum mechanics.
One also has the standard argument that the algebra structure deter-
mines a graded product on the cohomology: if Qa = @b = 0, then

(a+Qzx)(b+ Qy) = ab+ Q(ay + bx + %(Qaz)y + %x@y)

The theory obtained from N = 2 supersymmetric quantum mechanics
by restricting to the @-cohomology is sometimes referred to as “topological
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quantum mechanics” (or even the “topologically twisted theory,” by analogy
to the field theory case below). The terminology does not originate in the
fact that this theory encodes de Rham cohomology, but rather because the
QFT functor to the linear category does not depend on the metric we place
on our graphs, and thus is “topological” in the sense of Chapter 2. This
is because the Hamiltonian (3.11) is identically zero on the cohomology, so
time evolution (3.1) is trivial.

While @) can be defined solely using the algebra of differential forms on
M, defining B and H requires additional choices, in this case a metric. In
this sense, supersymmetric quantum mechanics contains not just de Rham
cohomology, but its realization using Hodge theory. As is standard there
[197], for a compact manifold M one can choose a canonical representative
for each Q-cohomology class, the harmonic form a satisfying

Qa = Ba =0,

and this establishes an isomorphism between the zero eigenspace of H and
QQ-cohomology. This result is important from the physical point of view: it
shows that in N = 2 SQM the space of ground states depends only on the
topology of M, and not on its Riemannian metric. Similar results hold in
higher-dimensional field theories [464].

3.1.2. Functional integral approach. So far we have simply cast the
de Rham and Hodge theories into a more physical language. As first realized
by Witten in the early 1980’s, by borrowing more from physics, we get a
powerful new approach to many mathematical problems.

The key ingredient in most of these developments is the functional in-
tegral definition of QFT. A heuristic introduction to this as well as many
of its applications appears in MS1. Here we briefly review it for quantum
mechanics. For a recent rigorous discussion, see [89].

The simplest problem we can treat in this way arises if we consider
the morphism in the geometric category which is a closed loop. As this
has no boundary, its image under the QFT functor is simply a complex
number, called the “partition function” (or “one-loop partition function”)
and denoted Z(t). Given an explicit representation of (3.1), it could be
computed as

(3.12) Z(t)="Tre ™ =" (ile”"i)
i€l
where the sum is taken over the index set I of an orthonormal basis.

Let us use the semigroup property to decompose the time evolution
operator into t - k operators, each acting for time 1/k:

Z) =Y (ile”"Mlia)(inle™ " Fi) - - (icle™ ¥ i)

Uyt €1
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We then consider the large k£ limit. One expects that, in this limit, the
kernels

(ile= /5

will concentrate on the diagonal,
1
e H/k =1 EH + negligible,

allowing us to write them explicitly. This can be proven, and thus we can
write the partition function as a multiple integral with a known integrand.
For the specific case of quantum mechanics with target M, this becomes

t-k
3.13 Z(t :/ da; e~ Sl
(3.13) (t) Mk];[l

where x; € M and the integrand is written as an exponential of a function
S[z;], the “action.”

Finally, we can try to think of the & — oo limit as resulting in a con-
tinuous form of this integral, an integral over continuous “paths” S — M.
This is of course the tricky step mathematically, as the nature of the limit-
ing measure is not entirely obvious. In general, this depends on the specific
Hamiltonian and thus on the action functional S.

In the case d = 1, this step is well understood. In the case at hand in
which H is a Laplacian on a Riemannian manifold, and in its supersymmetric
generalizations, the limit leads to Wiener measure and its generalizations,
supported on continuous but almost nowhere differentiable paths. Using
this, one can draw rigorous conclusions from the path integral. We discuss
the situation in d > 2 below.

Following these arguments, one finds that in ordinary quantum mechan-

dx(s)
S

ics, the action is
t
S = ds
I

where s parameterizes S', and the norm is defined using the metric on M.
Thus, we have an integral representation of (3.12).

A similar formal argument can be made in any dimension, using a series
of simplicial approximations which converges on a d-dimensional manifold
with metric. This leads to functional integrals of the general form

(3.14) 7 - / (D] =514,

2

)

in which the “field” ¢ : ¥ — M is a map from a d-dimensional manifold >
to a target space M. The action takes the form

(3.15) 5= /Z dof?,
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where ¢ are local coordinates on M, and the norm now depends on metrics
on both ¥ and M. We will be more explicit in the case of d = 2 below.

3.1.2.1. Functional integral and sewing. In principle, the functional in-
tegral offers a direct definition of the QFT functor, in which the sewing
theorem of §2.1 is manifest. We now explain this very powerful point of
view, keeping in mind that its mathematical utility is presently rather lim-
ited by the lack of any general and rigorous definition of the functional
integral which would make the following claims precise.

The key property of the action functional S is that it is local — it is
an integral of a function on X, constructed from the field ¢(o) and a finite
number of its derivatives evaluated at a point o € ¥. The functional measure
[D¢] has a similar independence property — joint expectations of products
of fields at distinct points of X factorize.

To see why this implies the sewing theorem, let us briefly explain how
the functional integral defines the QFT functor. In physics, this is called
going to the canonical formulation. Recall that given a morphism ¥ in the
geometric category, namely a d-manifold with boundary, and an element v of
the Hilbert space H associated to the boundary 0%, the functor is supposed
to give us a number. Now it is clear that an integral will (in principle) result
in a number; what remains to be explained is how the choice of v is taken
into account.

This is done through the choice of boundary conditions. While for a
closed manifold ¥, we perform the functional integral (3.14) over “all” fields
¢ : X — M, for a manifold with boundary we need to specify the behavior
of the fields on the boundary. We might do this by specifying a measure?
wul¢p] on the space of maps ¢ : 9% — M . Now a priori, there are many
possibilities, ranging from an atomic measure with support on a constant
map to a single point on M, to a “free” measure with support on all maps.
In any case, there is a choice here.

We then define the functional integral with boundary by defining a con-
ditional path integral measure [D¢|u], which agrees with p on the boundary:

/ (DS|u] F(6los) = / dul6) F().
Then
(3.16) Uslul = [ Dol e

Now, if we can identify the Hilbert space H with some linear space of mea-
sures p, the functional integral with boundary (3.16) will provide the mor-
phisms Uy, of the QFT functor in a form in which gluing is manifest.

2More precisely, to make the constructions which follow, this should be the “square
root” of a measure, or “half-density.”
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Consider a connected sum decomposition X = 31 U ¥ along a subman-
ifold I' C 9%;, ¢ = 1,2. We want to show that the linear map corresponding
to ¥ produced by the integral (3.16) can be obtained by contracting the
linear maps corresponding to the ¥; along a component corresponding to
their common boundary. Define a basis u; (with ¢ € I) for the space of
measures ([¢], corresponding to the orthonormal basis |i) € H then

(3.17) Us =S Us,y (oo i) Us, (- o),
el

Now, locality of the action functional S implies that the weight exp(—.S5)
decomposes into a product of two terms, one the weight exp(—S) associated
to X1, the other the weight for Yo. Locality also implies that the functional
measure on X will factorize as a product measure, up to its dependence on
the common boundary I'. The remaining step is to see that (3.17) holds for
the measure; in other words to write the functional measure on X as a sum
over the basis u; as

[Dglls = > _[Doluils, [Do|pils,
i€l

If this is true for arbitrary decompositions ¥ = 31 U X5, then the equality
of different decompositions of the same ¥ will imply the sewing theorem.

In the case of QM, making this precise is not hard. If we regard the
kernel (3.1) as a bilinear functional on measures and take the ¢ — 0 limit,
we get the standard inner product on H =2 L?(M,C). However, at present
the analog for d > 2 can only be done rigorously in very special cases (exactly
solvable theories). Doing this in more generality would be a major advance.

3.1.3. Index theorem. An excellent example of Witten’s point of view
on supersymmetric quantum mechanics is provided by the following rederiva-
tion and proof of the Atiyah-Singer index theorem for the Dirac operator
[472, 43].

It is a standard result in quantum mechanics that the evolution operator
(3.1), and thus the partition function, has a small ¢ expansion,

_ Vol M

Z(t) = =5 (14 0(1).

To see this from the functional integral, we observe that in the limit ¢ — 0,
(3.13) heuristically reduces to an integral over M. Of course, one must
first take the limit & — oo, so this is too naive, but one can show that the
corrections from properly taking this limit reduce to the leading correction
to a saddle point approximation for the functional integral, in other words
a Gaussian integral over the tangent space to the space of loops, leading to
the 1/t%? factor.

This is interesting, and becomes even more so if we can find a quantity
which (unlike the partition function) is independent of t. The prototypical
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example is the index of the Dirac operator, which can be realized as a
modified partition function in N = 1 supersymmetric quantum mechanics,

(3.18) I(t) = Tre M (—D)F

where (—1) is defined in (3.6). To see this, first note that the ¢ dependence
comes from the subspace of H on which H > 0. But, since H = Q?, any
eigenvector v of H in this subspace will be paired with another eigenvector
Qu of equal eigenvalue but opposite (—1)¥, and will cancel out of (3.18) (see
MS1 §10.2 for a detailed explanation). Finally, since (—1) anticommutes
with the Dirac operator, the two chiralities of spinor are weighted by opposite
signs, leading to

I(t) = dimker D — dimker )_ = ind D.

Because of this, I(t) must equal the leading (t-independent) term in its
small ¢ asymptotics. By essentially the same arguments we outlined for
Z(t), this can be computed by Gaussian functional integration, leading to
an expression for (3.18) as the integral of a local density constructed from the
curvature of the metric and connection— in other words the Atiyah-Singer
index formula.

Another path integral approach to the same result is the argument from
localization. See [47] for an introduction, as well as MS1 Chapter 9. This
starts from the supersymmetric QM path integral. There are several ways
to write this, either in terms of maps from a 1|1-dimensional superspace to
M, or in components. We will follow the second approach, and introduce,
along with the local coordinates X* on M, fermionic maps 1’ from X to
TM)|,. The action is then

5= [ 10XIE + g9 (D'
where D, is a covariant derivative on T'M, explicitly
(D) = 8" + (0, X )Ty0

in terms of the Levi-Civita connection I' ; . compatible with the metric g.
Now, supersymmetry of the functional integral follows from the invari-
ance of the action under the following infinitesimal change of variables,

X' =, St = 9, X",

Next, one can argue that integrals with such odd symmetries localize on
the fixed points of the symmetry, the configurations which “preserve super-
symmetry.” Thus, the functional integral reduces to an integral over these
supersymmetric configurations, each weighted by a Gaussian (or “one-loop”)
factor.

In the proof of the index theorem, the supersymmetric configurations are
simply the constant loops 9;X? = 0, and this argument leads very directly
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to the index formula. Even better, if the moduli spaces of supersymmet-
ric configurations which appear are finite dimensional, then since Gaussian
functional integrals are tractable, the argument generalizes fairly straight-
forwardly to d > 1. Again, we refer to MS1 for a discussion of applications
of localization to mirror symmetry.

3.1.4. Dolbeault cohomology and extended supersymmetry. A
different way to obtain extended N = 2 supersymmetry is to postulate a
restricted geometry for the target manifold M. Let us start with N =1
SQM and consider the ansatz

Q2 = —iJJY*D;,

where J,z is a tensor field. If we ask what restrictions the relations (3.3) for
I =1,2 place on J, we find two algebraic conditions

g T+ gt T =0
and
JET] = —6l,
as well as a differential condition:
() =TT — JLOTE — Ji0; Tk + JjowT! = 0.

The algebraic conditions say that J is an almost complex structure compat-
ible with the metric. The differential condition is equivalent to the integra-
bility of J. Thus we have an extra supersymmetry provided M is a Kahler
manifold. The space of states of this SQM is still I'(M, S), but can also be
written in terms of differential forms:

H = Q" (M, K?),

where K = Q™0(M) is the canonical line bundle on M.
Another way to see what is going on is to use the decomposition of the
complexified tangent bundle

TeM =TMC=T"M e T M
to rewrite the Clifford algebra CI(T, M) as the complex analog of (3.9),

W d gt =
Then in terms of differential forms the operator @@ = ()1 4+ i{Q)2 becomes
Q = —id# D,

where D; is the antiholomorphic covariant derivative on the holomorphic
line bundle K2, From this formula and the fact that [D;,Dg] = 0 it
follows immediately that @2 = 0. The Q-cohomology will be the Dolbeault
cohomology

Ho(M) = HY" (M,K'7),
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and H = {Q,Q'} will again be a Laplacian. We can also define the Z-
grading

(3.19) R=d# s,

which is simply the (antiholomorphic) form degree.

One can replace the line bundle K£/2 with any holomorphic line bundle
L. For example, one can take £ to be trivial; then () becomes an ordinary
Dolbeault operator on forms of type (0,p), and H becomes an ordinary
Laplacian on forms. One can go further and relax the condition that M be
Kahler and only require that M be a complex manifold with a Hermitian
metric. To realize the N = 2 supersymmetry algebra on forms of type (0, p),
possibly tensored with a holomorphic line bundle £, one again takes Q = 0
and B = Qf. The corresponding Hamiltonian is the Dolbeault Laplacian,
which even for trivial £ is different from the standard de Rham Laplacian
on forms (they agree when M is Kahler [197, 249]).

The above construction of N = 2 supersymmetry algebra generalizes:
a target space with £ linearly independent complex structures compatible
with the metric has k + 1 supersymmetries. The most interesting additional
case is M hyperkéhler, which gives rise to N = 4 supersymmetry. We refer
to [239].

3.1.4.1. Notations for extended supersymmetry. We have discussed two
different types of systems with N = 2 supersymmetry. The first type was
based on an arbitrary Riemannian manifold M and made use of complex
fermions taking values in T M, while the second type was based on a Kéhler
manifold and made use of real fermions taking values in M. To distinguish
these two realizations of the N = 2 supersymmetry algebra, we will refer to
them as N = (1,1) and N = (2,0) models. The terminology arises from 2d
field theory, where supercharges can have either positive or negative spinor
chirality: the N = (1,1) model can be obtained by dimensional reduction
from a 2d field theory with one real supercharge of each chirality, while
the N = (2,0) model is similarly obtained from a 2d field theory with
two real supercharges of the same chirality. Similarly, quantum-mechanical
models with NV = 4 supersymmetry can be obtained either by reduction of
2d models with N = (2,2) supersymmetry (in which case the manifold M
must be Kéhler and the fermions take values in Tc M), or by reduction of
2d models with N = (4,0) supersymmetry (in which case the manifold M
must be hyperkéahler and the fermions take values in T'M).

3.1.4.2. R symmetry. The N-extended supersymmetry algebra (3.3) can
be naturally combined with a linear action of the group SO(N) on the
supercharges (7, as a semidirect product. If this action can be lifted to an
action on the Hilbert space H which preserves all the other structures of
the quantum mechanics (such as the algebra (3.2)), then we speak of it as a
“symmetry of the theory.”
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DEFINITION 3.1. The R symmetry group is the subgroup Gr C SO(N)
of symmetries of the theory.

For example, the N = (1,1) model has a U(1) R symmetry whose gen-
erator is the fermion number F. The N = (2,0) model also has a U(1) R
symmetry whose generator R acts trivially on the bosonic fields ¢’ and acts
on the fermion 1 as the complex structure tensor:

R =iJy.

The N = (2,2) model has U(1) x U(1) R-symmetry, while the N = (4,0)
model has SU(2) R-symmetry.

3.1.5. Bundle-valued cohomology. We can generalize N = 2 mod-
els by choosing a vector bundle V' with structure group G and connection
V, taking

H=Q"(M,V),
and covariantizing all derivatives appropriately. Choosing a frame e! €
I'(M,V), we can write the covariant differential D in terms of a connection
one-form A taking values in V ® V*:

D =d+ A
In general, the supersymmetry algebra has a curvature term,
Q> ~ F.

To get a cohomology theory (and the correct supersymmetry algebra), this
must vanish. In the N = (1,1) SQM, which could be defined for any Rie-
mannian target space M and where Q = D, the only general way to achieve
this is to take a flat connection on V. Q-cohomology in this case is isomor-
phic to the twisted de Rham cohomology of the flat vector bundle V. (See
§6.2.2 for further discussion of this twisted cohomology.) In the N = (2,0)
SQM, where M is complex, the curvature term is proportional to F%2, and
we can take a connection with F%2 = 0. The resulting Q-cohomology is the
bundle-valued Dolbeault cohomology

0,%
HY(M,V).

Again we can identify ()-cohomology with the space of zero-energy states,
which corresponds to considering harmonic representatives of cohomology
classes.

In physics terms, this SQM is the quantum mechanics of a particle with
“color.” Let us describe its functional integral definition, as the same for-
malism is used to define the coupling of the end of an open string to the
connection on a Dirichlet brane. Consider the time evolution operator (3.1)
as an element of Hom(H,H) = H ® H*. The corresponding functional in-
tegral will be a complex-valued function of an “initial” boundary condition
(#(0),e) € (M, Vy(o)) and a “final” boundary condition (¢(t), e) € (M, Vy))-
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It is defined as an integral over paths similar to what we discussed in 3.1.2,
but now weighted by the holonomy of V along the path, a matrix-valued
functional of the path. A standard way to write the holonomy is as a path-
ordered exponential,

1

/[d¢]e—50[¢] (peifdf‘A)

J

One may question this formula on the grounds that such a functional
integral is not local. This can be remedied by introducing additional quan-
tum mechanical degrees of freedom, ¥, and representing the holonomy as a
local path integral in terms of these. To do this, we need a system whose
quantization produces a finite dimensional Hilbert space, analogous to the
quantization of fermions. In fact the simplest way to get this is to embed the
general case in a fermionic system. Thus, we embed G in SO(N,) for some
N., and introduce a new Grassmann algebra with N. generators A;. The
quantization of this system will produce fermionic operators A; which act
in the spinor representation of SO(INV;). One can then write a local action

S =i / ds (MO + 050" AH (9) A1 ).

The first term is a kinetic term, while the second is the infinitesimal form of
the holonomy, acting in the spinor representation. One can then decompose
this into G representations and restrict attention to the desired one; see
[334] for details.

3.2. Two-dimensional QFT, CFT and TFT

All of the d = 1 theories we just reviewed have generalizations to d = 2.
We again start with the categorical framework, and gradually shift over to
the more standard physical approaches.

We first need to choose a simple set of objects and morphisms for the
closed theory. As in the arguments leading to the functional integral, we
would like to think of the morphisms as built up by concatenation of some
elementary morphisms. For example, given a (d — 1)-manifold Y, a natural
morphism to consider is Y x [0,¢] for ¢ € R*, with the product metric. This
generates a semigroup action on a Hilbert space Hy analogous to (3.1),
which is again referred to as Euclidean time evolution. We can also write
this as the exponential of a self-adjoint operator, the Hamiltonian H (which
implicitly depends on Y').

We can now state several of the most important physical axioms of QFT.
Strictly speaking these apply to “unitary QFT” as physicists do consider



3.2. TWO-DIMENSIONAL QFT, CFT AND TFT 123

more general QFT’s, in which the “Hilbert space” H carries an indefinite
metric.® However, in this book we will only discuss unitary QFT.

Axiom 1: Hy is a Hilbert space.

Axiom 2: The spectrum of H is bounded from below. H eigenvalues
are usually called “energies.”

Axiom 3: The eigenspace of H with the minimum energy is one-
dimensional. It is called the “vacuum” or “ground state,” and is
often denoted |0).1

Axiom 4: For any E € R, the subspace of Hy with H < F is finite
dimensional.

3.2.1. Two dimensions. We now take Y = S'. Its metric is param-
eterized by a single real number, the circumference £. We let H, be the
corresponding complex vector space.

The semigroup of time evolution morphisms is now given by the annuli
carrying the product metric on Y x [0,¢]. Of course, these do not suffice to
generate all cobordisms with metric.

We can get a sufficient generating set by considering two larger families.
The first family of morphisms is topologically Y x [0, 1], but with a more
general metric g, such that the circumference of the “incoming” bounding S*
is ¢, and that of the “outgoing” bounding S! is #. We denote this morphism
as Dy.

X7

Dy Oy

FIGURE 2. Two-dimensional QFT morphisms

The second family is obtained from the first by removing a small disc of
radius r around a marked point pt. Denote this as O,. We regard the new
bounding S as incoming.

One might think that we will need another family of morphisms to con-
struct a general 3, namely the disks with general metrics. We will argue
shortly that these can be obtained by taking the limit of Dy in which one

3For example, in the standard covariant world-sheet quantization of string theory, the
state space has an indefinite metric. This has two origins: first, the target space-time M
has indefinite metric, and second, from gauge fixing of local symmetries.

41f the (d — 1)-manifold is R~ with a flat metric, it is conventional to define the
Hamiltonian H so that the vacuum has zero energy. In general, the vacuum energy depends
nontrivially on the metric of the spatial slice. This is known as the Casimir effect.
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boundary shrinks to a puncture, and placing a definite state (the vacuum)
on that boundary.
Any morphism of the type O, can be used to define a product,

(3.20) Vg it He X Hy — Hypr.

In a bit more detail, given states in Hy and H,., we use the first to determine
the boundary conditions on the incoming S* of the annulus, and the second
to determine boundary conditions on the S' obtained by excising the disk.
The state on the outgoing boundary then lives in H.

Given a fixed ¢ € H,, one can also think of this as defining a linear
operator,

(3.21) Ogld] : He — Mo

The map from H, to this space of linear operators is called the state-operator
correspondence. Its image is the subspace of local operators.

Of course, there are many possible metrics g which could be used in O,.
Since one can attach morphisms D, to “grow” the metric, one is tempted to
use as the fundamental definition of local operator the operator obtained by
taking the limit of “zero volume” g. More precisely, one can define Ojoca1[Q)]
by taking (3.20) with ¢ = ¢, with O, obtained by starting with a product
metric on Y X [0, t], excising a disc centered at a fixed point pt, say (x,t/2),
and then taking the limits ¢ — 0 and » — 0.

A4

F1cURE 3. A local operator as a limit of a geometric morphism

3.2.1.1. Comparison with QM. Given a geometric category of this type,
one might imagine that one could always extract a quantum mechanics as
defined in §3.1. One would take Y = S' with circumference ¢ — 0, and
consider morphisms associated to “approximately one-dimensional” surfaces
Y. For example, the time evolution morphisms are products Y x [0,¢] with
t held fixed as ¢ — 0.

Without going into details, one can show that in such a limit most of
the Hilbert space ‘H “is lifted to infinite energy;” in other words the time
evolution operator becomes a projector on some subspace H' C H. The
simplest conjecture for what remains is that it is an L?(M,C) for some
finite dimensional manifold M.

If this limit really were a QM, the next step would be to identify M by
using the cubic vertex (3.2) to define a commutative associative algebra. We
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would then define the spectrum of this algebra, and show that this is the
manifold M. That this can be done is the core of the argument that quantum
mechanics is not a “fundamentally new” mathematical structure, but rather
a different way of thinking about known structures such as function spaces
and metrics on manifolds.’

However, if we try to take the limit of (3.21) to obtain a cubic vertex,
we will find that the resulting operators Ojoca1[¢] are unbounded and their
products are almost always singular. Thus, there is no natural commutative
associative algebra in the problem.

This is not just a technical obstacle but is fundamental to the structure
of QFT. It is the main reason that we have as yet nothing as simple as the
relation C°(M) < M which is the foundation for the QM discussion.

3.2.1.2. Local operators and the OPE. A good deal of formal develop-
ment is needed to get past this difficulty. While we are not going to go deeply
into this, let us at least define the operator product expansion (OPE). For
some CFT’s, this can be made rigorous using the formalism of vertex alge-
bras.

If we grant the gluing axioms, then to work with local operators it is
simpler not to cut up a surface X into D,’s and O,’s and take limits, but
rather to think of each local operator as associated to a puncture on 3.
Thus a local operator is parameterized by a point p € X. Furthermore, the
definition of such an operator is usually made by choosing a coordinate x in
the neighbourhood of p; thus we write the operator as ¢(x).

We then take as the basic observables, the correlation functions of a
product of local operators,

(3.22) F(z1,m2,...,7,) = (p1(z1) d2(x2) -+ dn(Tn))ys-

These can be defined in various ways. In the categorical language, if we can
assemble ¥ from the Dy’s and Oy’s, we have

(3.23)
F(z1,22,...,75) = ¢1 - Dg1.2 Olocal[p2] D23
b Dgn72,n71 Olocal [(an_l] Dgnfl,n . (2577,
We will refer to such a quantity as an unnormalized correlation function.

In the functional integral formalism, such functions are averages under the
functional measure,

(3.24) F(:El,:ng,...,a:n):/[dqﬁ]e_sm 1(1) ba(s) -+ dulan).

50f course, this is a very ahistorical way of phrasing the relation. The mathemati-
cal development of these structures was strongly influenced by thinking about quantum
mechanics.
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To be precise, the term “correlation function” is more often used for nor-
malized expectation values,

(3.25)  Fla1,a9,. . 1) = %/[dme—sw b1(1) () -+ dulan),

with Z as defined in (3.14) (so that [d¢]/Z is a probability measure). In any
case, for a given set of operators, the correlation functions are well-defined
on X" minus the diagonal.

Given the complete set of correlation functions, one can reconstruct
‘H and the other categorical data using arguments based on the Gel’fand-
Naimark-Segal construction, so this is an equally valid presentation of the
QFT.S

Let us now discuss the product of local operators. It was first postulated
by Wilson that such a product can be written as an infinite series expansion
in local operators, the operator product expansion or OPE. It takes the form

(3.26) P1(z1) d2(z2) = 2012,i|5171 — o] 2121 ¢ (1)

with universal coefficients C12; and Aj; depending only on the choice of
operators; all of the position dependence is explicit.

One can show from the QFT axioms that while in general some A1y ; <
0, expressing the singular nature of the product, the number of divergent
terms is finite. Furthermore, the most singular possible term is the one
in which ¢; = ¢9 = |0), the vacuum. Its image under the state-operator
correspondence is (up to the overall coefficient) the identity operator, and
thus one often writes ¢g = 1 as well. In this case, A1z is determined by the
eigenvalues of the Hamiltonian H acting on ¢1, ¢ (which must be equal).

In (3.24), all the operators appear symmetrically. To get a form of (3.23)
with this property, we can replace the “caps” ¢1 and ¢, with the identity
¢g. Up to the overall coefficient, this is the same as using disk morphisms
to close off each of the two ends.

Conversely, given a functional integral representation, the local function-
als of the fields define a preferred set of local operators, defined as follows.
Let X be a disk with boundary a circle of radius r and a standard metric.
We then do the path integral weighted by the local functional F' evaluated
at the origin, to obtain an element of H,. This element depends linearly on
F', so in a sense this is the inverse of the state-operator correspondence.

The gluing relations imply strong constraints on the OPE coefficients,
usually called the “associativity of the OPE” (although since the positions
enter, this is not standard associativity). In simple cases (the ¢ <1 CFT’s
we will discuss below), these can actually be solved and uniquely determine
the theory.

6T do this, the Euclidean correlation functions we are discussing must satisfy the
Osterwalder-Schrader axioms; see [182] for these axioms and the reconstruction theorem.
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3.2.1.3. The stress tensor. Usually denoted T', this is the most important
local operator and is present in all QFT’s. It can be defined in terms of the
functional integral as follows:

B () . :;L/ —Slo.gl . ..
(3.27) (T (x)--) = ol 59,0 (@) [D¢le -
In words, the insertion of the stress tensor 7),,(x) in a correlation function
generates an infinitesimal metric deformation at the point . On the other
hand, using the definition (3.20) and the relation to the linear category,
T, (x) acts as a linear operator on Hg. If we know this action, we can in
principle compute the morphisms D, for any g.

As an example, consider the Euclidean time evolution (3.1), defined by
the morphism Y X [0,¢] with the product metric. As we discussed, this is
the exponential of a Hamiltonian H. One can show that this can be defined
in terms of the stress tensor as

H:/ T, 00",
Y

where v* is the unit vector field in the time direction (the [0, ] factor).
Thus, the Hamiltonian is determined by the stress tensor. On the other
hand, since the latter is a local operator, it is far more constrained.

3.2.2. Two-dimensional conformal field theory. We can now state
the definition of a CFT: it is a QFT in which conformal rescaling of the
metric acts by conjugation. For the family of morphisms D,, we can state
this as

(328) D[ehg] = ec~a[h] L_l[h’BJ Dg L[h’B2]

The analogous statement (conjugating the state on each boundary) is true
for any Y.

Here L is a linear operator depending only on the restriction of h to
one of the boundaries of the annulus. All the dependence on the conformal
rescaling away from the boundary is determined by a universal (independent
of the particular CFT) functional a[h] € R, which appears in an overall mul-
tiplicative factor e "), The quantity ¢, called “Virasoro central charge” (or,
in this chapter, just central charge) will be defined more carefully shortly.

Let us first consider the special case of an overall rescaling, with h con-
stant. As in the QM discussion, the corresponding operators L[h] form a
semigroup, with a self-adjoint generator H.” Then, since according to the
axioms of QFT the spectrum of H is bounded below, we can promote this
to a group action. This can be used to map any of the Hilbert spaces Hy
to a single Hy for a fixed value of ¢, say £ = 1. We will now do this and use
the simpler notation H = H;, without further comment.

"This is related to the Virasoro generators introduced below as H = Lo + Lo.
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How do we determine the L[h| ? In outline, this is done as follows.
First, we uniformize ¥ — in other words, we find a complex diffeomorphism
¢ from our surface with boundary ¥ to a constant curvature surface. We
then consider the restriction of ¢ to each of the boundary components B;,
to get an element ¢; of Diff S' x RT, where the RT factor acts by an overall
rescaling. We then express each ¢; as the exponential of an element I; in the
Lie algebra Diff S'. Finally, we find an appropriate projective representation
of this Lie algebra on H.

Actually carrying this out, one discovers some very important subtleties,
whose proper understanding leads to most of the exact results for these
theories. The first of these is that the Lie algebra Diff S' which appears is
actually a subalgebra of a direct sum of two commuting algebras, which act
independently on “left moving” and “right moving” factors in H.® Thus, we
can write H as a direct sum of irreps of this direct sum algebra,

(3.29) H=®Hr;®Hp,.

Each of these two commuting algebras is a central extension of the Lie
algebra Diff S, usually called the Virasoro algebra or Vir.

Before discussing the representation theory of this algebra, let us explain
how conformal invariance implies that, in a given correlation function, the
OPE (3.26) has a finite radius of convergence. Consider a correlation func-
tion containing two operators ¢ and ¢, with positions such that there is
a circle surrounding them and no other operators. In any 2d QFT, we can
define a Hilbert space H on this circle. But in CFT, we can rescale it to be
arbitrarily small, so that a state in H is again a local operator.

Iterating, we find that the state produced by any finite product of local
operators corresponds to a local operator. In this sense, the state-operator
correspondence for CFT is an isomorphism.

3.2.2.1. Constraints from Virasoro representation theory. Consider the
natural action of Diff S on functions on an S! parameterized by 6 € [0, 27).
After complexification, we can take the following set of generators,

(3.30) Iy = i D e Z,
which satisfy the relations

(3.31) Uiy ln] = (M — n)lpgn.

The Virasoro algebra is the universal central extension of this, with gener-
ators L, with n € Z, ¢ € R, and the relations

(3.32) [Lins Ln] = (m = 1) Linsn + 15

The parameter c is again the Virasoro central charge.

n(n2 — 1)dmn,0-

80ne also says “holomorphic” and “antiholomorphic,” or “chiral” and “antichiral.”
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It is easy to show that the central extension is required in any non-trivial
unitary CFT. We outline the argument, not because we need it in detail, but
as a warm-up for a similar argument in the N = 2 superconformal algebra
which will be important for us. First unitarity and other QFT axioms require
the Virasoro representation to act on a Hilbert space, so that L_, = LL.
In particular, Lg is self-adjoint and can be diagonalized. Then, Axiom 2
above requires us to take a “highest weight representation,” meaning one in
which the spectrum of L is bounded below. The Ly eigenvector with the
minimum eigenvalue, call this h, is by definition the “highest weight state.”?
Call this state |h), so that

(3.33) Lo|h) = h|h),

and normalize it so that (h|h) = 1.
As a warm-up, consider

(h|[L1, L1]lh) = (h|2Lo|h) = 2h.

Since |h) is a highest weight state, one can show that Li|h) = 0 (otherwise
it would have a lower L eigenvalue). Therefore, this also equals

(h|L1L1|h) = ||L-1|h)[?

since L1 = LT_l. Finally, since this is a norm in a Hilbert space, we conclude
that h > 0, with equality only if L_1|h) = 0. Thus, we verify Axiom 2, and
get some information on the vacuum with h = 0. In fact, L_1|0) = 0 can be
related to the translation invariance of the vacuum, another axiom.

The argument that ¢ > 0 runs the same way, by considering

C
(0|[La2, L—2]]0) = 520,

with equality only if L_5|0) = 0. One can also show that equality here
implies all L,|0) = 0 and consequently complete triviality of the CFT. Con-
tinuing along these lines, the entire structure of a Virasoro representation is
determined by the two numbers h and c.

It is useful to rephrase the above discussion in terms of local operators
instead of states. We take X to be the infinite cylinder R x S', or equivalently
the punctured complex plane C* with the complex coordinate z. One can
show that in a CFT the component T, of the stress tensor can be expressed
in terms of the Virasoro generators:

zz—T ZL”Z n—'

nez
The component T3z is antiholomorphic and can be similarly expressed in
terms of the generators L,, of the second copy of the Virasoro algebra:

T =T(2) ZL 572,

nel

9The inversion of the nomenclature here is standard.
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The mixed component 7,5 = T3, is a c-number which vanishes for a flat
metric. The state corresponding to T'(z) is L_2|0).

3.2.2.2. Primary fields. The local operator corresponding to a highest
weight state |h) is called a conformal primary and satisfies

h 1
Oh(w,’lf)) + wath(w,w) + -,

T(z)Op(w,w) = Gow)p o

where dots denote terms which stay finite in the limit z — w. This is a
special example of the operator product expansion and illustrates that the
product of two local operators typically does not have a good limit when
the insertion points approach each other. From this formula one can deduce
that local operators corresponding to states L_,|h) are of the form 9]} Oj.

The full symmetry algebra of the CFT is the direct sum of commut-
ing “left” and “right” Virasoro algebras, which we denote Ly and Lp. A
representation of these is determined by the values (hr,cr, hg,cr). In all
theories we discuss, ¢;, = cg. Furthermore, all operators which descend to
the topological theory will have hy, = hp.

3.2.2.3. Sewing and factorization. For X without boundary, the geomet-
ric functor assigns a number Z[X], called the partition function. While Z[¥]
depends on the metric g on 3, its variation under a conformal transforma-
tion g — ag (with a € C(X,R")) is determined by (3.28), while it depends
nontrivially on the complex structure of 3. This is characterized by a fi-
nite number of parameters and thus partition functions are functions on a
moduli space.

The set of all partition functions (for every genus surface) determines
the CFT, as is demonstrated using “factorization.” This is based on the fact
that a boundary of complex structure moduli space (for a Riemann surface)
is associated with a limit in which the surface degenerates to a lower genus
surface with punctures.

We will consider the behavior of Z[X] near a boundary in which ¥ devel-
ops a long neck, ultimately breaking into two surfaces, each with a puncture.
Such a degeneration can be parameterized by a “length-twist” parameter 7,
whose real part is the length of the neck divided by its circumference, and
whose imaginary part is an angle of rotation.

Using Axiom 4 and the sewing axioms, Z[¥]| will have an expansion

Z = C,'e_ThLi_‘FhRi.
hi

The coefficients C; of individual terms can then be identified with a sum of
correlation functions in which operators of dimensions (hr;, hg;) are inserted
at the punctures.

By taking multiple degeneration limits, the partition functions (in prin-
ciple) determine all correlation functions. One then uses the state-operator
correspondence above to reconstruct the geometric category.
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3.2.2.4. Classification by Virasoro central charge c. This is the most im-
portant invariant of a CF'T. It is analogous to the dimension d of a manifold,
indeed for the sigma models we discuss below the two are proportional.

To explain this, let us consider the “density of states” N(A), defined
as the number of eigenvalues of the Hamiltonian H which are less than a
specified A € R. Its asymptotic behavior for large A is controlled by the
dimension; for quantum mechanics this is (Weyl’s theorem)

(3.34) N(A) ~ \dmM/2,
In conformal field theory, taking H = Ly, this is (Cardy’s formula)
(3.35) N(h) ~ exp (27?\/ 6ch) .

While this grows faster than (3.34) for any finite dimensional M, since it is
subexponential, quantities like the partition function (3.12) are well-defined
for any Ret > 0. In fact, they have modular properties under an SL(2,7Z)
group action. This arises physically because they come from functional
integrals with X an elliptic curve.

The representation theory of the Virasoro algebra is well understood.
How far does this help us with understanding CFT? One can understand
the basic picture by considering the simplest picture of a highest weight rep-
resentation, which is given by the “Verma module.” This is simply obtained
from the free action of the universal enveloping algebra on a highest weight
state; using the algebra, all such elements can be written in the form

(3.36) T1zY:0m).
>0

Granting that all of these states are independent, the partition function
(3.12) is simply an n function, and thus we can compare its asymptotic
number of states with (3.35). If it is comparable, we can hope to decompose
the full Hilbert space into a finite sum of the form (3.29), in which case
the representation theory will be highly constraining. On the other hand, if
(3.35) grows much faster, we cannot hope to do this.

In fact, the asymptotic number of states for (3.36) corresponds to ¢ = 1
in (3.35), so the general theory divides into two cases. For ¢ < 1, representa-
tion theory and physical arguments have led to a complete classification and
complete solutions. These theories are the “minimal models” with ¢ < 1,
and the “free boson” and its orbifolds for ¢ = 1. We refer to [112] for a
complete discussion.

3.2.2.5. Constructions of ¢ > 1 CFT. Here representation theory by
itself does not give very strong results, and we need to appeal to other
definitions. In the study of mirror symmetry, three definitions are commonly
used. Our primary approach will be the nonlinear sigma model, which we
will discuss in some detail in §3.2.6 and §3.3.2.
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A second general approach, much used in MS1, is the linear sigma model
(a special case of which is the “Landau-Ginzburg model”). This is more
powerful physically than the nonlinear sigma model approach, and many of
the first results along the lines we will discuss were obtained in this way. On
the other hand, using it requires far more physical technique than we can
fit into this book. Thus, except for a brief discussion in §3.2.6.3, we have
decided not to rely on it.

Finally, one can remain within the algebraic approach, by considering
tensor products and other combinations of ¢ < 1 theories, to obtain the
subclass of “rational” CF'T’s. Although a very special subclass, these provide
independent confirmation of the physical arguments used in the other two
approaches. We will discuss the case of orbifolds of flat space in some detail
in §5.6, and briefly outline the construction of the “Gepner models” in §3.3.6.

3.2.3. Free bosonic CFT. The simplest example of a CFT and the
first example in every textbook is the free boson. We now describe this
theory, both as a concrete example and because many of these results will
play an essential role in our discussion.

The “free bosonic field” is a random map ¢ : ¥ — M, where M is a
Riemannian manifold with flat metric g;;, which we take to be a constant
real symmetric matrix. One can in this case make precise definitions of
the path integral (3.14) and action (3.15). We refer to [182] for this, and
describe it more informally here.

Let us choose a complex coordinate z on Y, and write the action as

1

522—/ (D¢, D)
™ Jx

where 0 = 3/0z, 0 = 0/0%, and (,) is the inner product on 7M. Since the
integrand is a (1, 1)-form, we see that the action depends on the metric on
3 only through its complex structure, so a QFT based on it is a candidate
for a CFT. Of course, by (3.28) and the previous arguments that ¢ > 0, this
property (independence of the conformal factor) must be violated by the
quantization procedure.

3.2.3.1. Functional integral formalism. Let us begin with M = R%. Since
the action is quadratic in ¢, this functional integral is an infinite dimensional
Gaussian integral. Its essential features can be understood by analogy to
those of a finite dimensional Gaussian integral, say

(3.37) Z[C] = (fgg)m - /RN dVz exp <—%xt O x>

with € RY and C a real symmetric matrix. By analogy, we would like to
write Z[A] = (det A)~%2 where A = 90 is the scalar Laplacian on X, and

0B quivalently, S = (1/2)(1/27) [ dxdy((9:¢)? + (Oyp)?). The 1/27 prefactor is a
convention, chosen to obtain a simple normalization for the Green’s function (3.43).
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the determinant is defined as a product over a complete set of eigenvalues

det A = H/\i; Ap; = \jw;.

Of course this is a divergent product, but a variety of suitable definitions
have been developed, which realize (3.28). A good example is zeta-function
regularization. As we will not need the details, we refer to [144, 182].

In addition to these “ultraviolet” or UV divergences, there is another
problem. Since the scalar Laplacian has a zero eigenvalue (the constant
function), its determinant is zero. To deal with this “zero mode,” we de-
compose the field as

(3.38) ©(2) = @o + ¢(2)
with 9 € M and fE » = 0. The measure then decomposes as

(3.39) DA = [ deo [ID5]
and we can write the formal expression
Z = (det 'A)~Y2 x / Vdet g,
M

where det / is a product over the non-zero eigenvalues of A,

det 'A = H A
;70

After regularization, this expression defines a real-valued functional on met-
rics on X. It can be reduced to a function of the complex moduli of ¥ by
either using the ideas of §3.2.2, or simply restricting to a particular confor-
mal class (say constant curvature metrics). This function can be written
explicitly in terms of automorphic functions [12, 11].

Let us go on to discuss correlation functions, as defined in (3.24). These
are an infinite dimensional analog of expectation values in the matrix Gauss-
ian integral (3.37) such as (here vy, vy € (RV)¥)

1 1
(vl-xvg~x>zm/RNdNa: exp<—§ajt'C-x> V1T Vg - T

These are easily obtained by differentiating the following generating func-

tion:

gay  zlcq) = [ e <—%a:t-(1-a:+j'a:>

(3.41) —  Z[C]exp <%jt.c—1-j>

as

(342) (01 2 vg -z vy 7) = Z[é’j] vl-%vg-%- vn-%Z[C’,j]
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Thus any correlation function can be expressed in terms of the “Green func-
tion” or formal inverse to the Laplacian,
A.G(z,2) =6 (z - 2)

where the Laplacian A, acts on the first argument. In two dimensions, a
simple calculation leads to

(3.43) (e(z1)p(z2)) = Glz,2') = —log |z — 2/[%.
This formalism is the starting point for perturbative quantum field the-

ory, and is developed in every textbook on the subject. As other examples,
we have

1
(3.44) (0p(21)0p(22)) = =)
and
(3.45)
(Op(21) Op(z2) Op(z3) Op(za))
1 1 1

(1= 222z — 20 | (1= %) (2 — 22 | (o1 — a2 — 2a)2

3.2.3.2. Vertex algebra formalism. Using the standard physical frame-
work of canonical quantization, one can derive the Hilbert space H and
Hamiltonian H of §3.2. We refer to [112] or any other textbook on QFT
for this approach. What we will do here is define the Heisenberg vertex al-
gebra, the simplest non-trivial example, and compare it with the functional
integral results we just derived.

The axioms of a vertex algebra are given in [157, 158, 246]. It can
be shown that their general realization, consistent with (3.44), is the “U(1)
current algebra,” sometimes called the Heisenberg algebra in the math lit-
erature.'! We introduce generators a,, with n € Z, satisfying the relations

(3.46) [y O] = MOy g 0-

Note that the generator aq is central.

A highest weight representation of this algebra is determined by a sin-
gle parameter p. We introduce a highest weight vector |p) defined by the
conditions

an|p> =0; n >0

aolp) = plp)-
The operators a,, with n > 0 are called “annihilation operators,” as they
annihilate the highest weight vector. Those with n < 0 are “creation oper-
ators,” as they create new vectors.
We then define the representation as the linear space obtained by acting
on |p) with the universal enveloping algebra, modulo the relations (this is the

17t is an infinite product of Heisenberg algebras as the term is used in physics. It is
also called the algebra of canonical commutation relations or CCR in two dimensions.
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“Fock space”). A basis for this space is labelled by a multi-index N which
is an infinite sequence of nonnegative integers with finitely many nonzero
entries,

Ny N N
(3.47) a_na_n+11 ~-al} |p).

The integers NN; are usually called “occupation numbers.”
The relation to the previous definition of free boson can be made by
defining

(3.48) (%cp(z) = 0p(z) = Z 2",

nez

This could be integrated to obtain ¢(z), but we will not need this.
As an example, let us verify (3.44) algebraically,

0100(21)00(2)[0) = 3 (1) H(za)" ! = ——

n>1 (21 = 22)

3.2.3.3. Stress tensor and Virasoro algebra. We now explain how one
would use this formalism to derive (3.32) for the free boson, and determine
the central charge c. Very similar but more lengthy computations would
suffice to derive the N = 2 superconformal algebra and justify the structure
theorems used in §3.3.2.

Applying the definition (3.27) with S treated as a classical functional,
one finds that each component of the stress tensor is quadratic in dy and
J¢. One component is purely holomorphic,

T..() = 5 (09(2))

However, from (3.44) we see that this expression does not really make sense
in the quantum theory as such a product of local operators is divergent.

An obvious way to try to fix the problem is to subtract the divergence.
The form of (3.44) suggests defining

(3.49) T(z) = % limz <8<,0(z)8<,0(z/) - ﬁ) .

A related algebraic operation is “normal ordering.” It is denoted by colons,
e.g.,

T(z) = % 1 0p(2)0p(2) : .

It is defined by taking a product of operators, performing the mode expan-
sion (3.48), and then reordering so that all annihilation operators appear to
the left of all creation operators.

In the case at hand, the two definitions are equivalent. More generally,
we can define the normal product of operators by taking the non-singular
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terms of the OPE in the coincidence limit,

(3.50) Op(z1) Op(z2) — ﬁg"‘ : 0p(21)0p(22) : + nonsingular

21 —%Z2

— (singular) + : dp(2)0p(z) :

While useful, the price we pay for dropping the singular terms is that this
product satisfies no analog of associativity.

Using any of these prescriptions, we can compute the mode expansion
of the stress-energy tensor,

T(z) =Y Lnz "2,

and verify (3.32) algebraically, determining the constant c¢. One finds ¢ = 1

with )
Ln:§Z:aman_m:.
meZ
In particular,

1
LO = 5(0&0)2 + Z A Oy
m>1

Using this, a trivial computation shows that, on the highest weight vector,

(3.51) Lolp) = %2!19%

Furthermore, since aq is central and the creation operators can only raise
h, we see that

2 2
= . Nez

(3.52) h=C 4 N>

|

for every eigenstate.

3.2.3.4. Complete theory and gradings. The complete theory of a free
boson is defined by taking the tensor product of left and right moving copies
of this algebra. A highest weight representation is then labelled by two
“charges” (or “momenta”) (pr,pr); call it

‘/pL 'PR*

The remaining choice in defining the theory is the particular direct sum of
irreducibles,

(3-53) H= ®pL7PRNPL7PR VPL,pRv

where the factors IV, ;. are integer multiplicities.

The charges (pr,pr) define a bigrading on H which is preserved by the
OPE (this is called “charge conservation”). Thus, the set of charges (pr,pr)
appearing in (3.53), call this Q C R?, must be closed under addition.

As the simplest example, the theory with target space M = R is obtained
by taking all p;, = pr € R with multiplicity one (more precisely, H contains
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a factor L2(M,C), whose Fourier decomposition realizes the direct sum in
(3.53)).
A simple argument for charge conservation uses the relation

oy = %dz 0p(z)

which follows from (3.48). Because of this, one can express the charge
pr, of the state created by any set of local operators as an integral of the
current Op(z) on a contour enclosing the set. Holomorphy and the residue
formula then imply additivity. While we will not do it here, one can also
define local operators (usually called “vertex operators”) which intertwine
representations with different (pr,pr).

3.2.3.5. The compactified boson. Let us now turn to the case M = S,
with circumference 2w R. To define the functional integral, we modify the
decomposition (3.38), adding terms for the maps with nontrivial winding
number. A general map to S' can be written uniquely as a sum of a harmonic
map f: ¥ — S! and a map ¢ : ¥ — R satisfying fz @ = 0. The differential
of a harmonic map to S, call it df, is then an element of H'(3,R) with
quantized periods. Thus we can choose a finite dimensional integral basis f;
for the harmonic maps, and write

(354)  p(2) =go+@(z)+2m Yy mifi(z);  m'ezZ"®.

The functional measure now becomes

e [ — [ g 3 e

meZb1 (%)

Evaluating the sum, one finds that the new term in the partition function
is a theta function on ¥. We refer to [112] for the details.

The discussion of §3.2.3.2 applies without change, up to the point where
we specify the sum over irreducibles, (3.53). This could be determined by
comparing the partition function on a torus with modular parameter T,
computed as above, with the trace over the Hilbert space

(3.56) Z(1) = Try exp (2mitLo 1 — 2miTLo R) -

There is also an algebraic approach to determining Z(7), along the lines
of Chapter 2. This is to express the sewing constraints in terms of the multi-
plicity data in (3.53), and then find the general solutions of these constraints.
At present this can be carried out only for ¢ < 1 theories.

An implicit consequence of the sewing constraints is the invariance of the
partition function under the action of “large” diffeomorphisms of ¥ (those
which are not continuously connected to the identity). For T2 these are clas-
sified by SL(2,Z) and this invariance is usually called modular invariance.



138 3. OPEN STRINGS AND DIRICHLET BRANES

The simplest example is that for (3.56) to be invariant under 7 — 7+ 1, we
need

hy, —hr €Z
for all states. From (3.51), this requires
(3.57) P —p% € 27.

Another way to phrase this, which generalizes to d dimensions, is to regard
the left hand side of (3.57) as giving the additive subgroup @ of charges
(pL, pr) the structure of a signature (1, 1) lattice. Then (3.57) states that @
must be an even lattice. Given explicit results for (3.56), one can go on to
show that for Z(7) to be invariant under 7 — —1/7, Q must be a self-dual
lattice.

Thus, @ must be an even self-dual (1,1) lattice. Any such lattice can be
obtained by acting on Z? by an automorphism preserving (3.57), in other
words

(pr,pr) — (pr cosha + prsinh «, pr sinh « + pr cosh )

for @« € R. Thus the compact free bosonic theories are classified by a sin-
gle parameter «, consistent with the single parameter R we introduced in
defining the functional integral.?

3.2.3.6. T-duality: functional formulation. As we discussed in §1.3, the
central new feature of CFT which will lead to mirror symmetry is T-duality.
We now discuss this in some detail, both because of its fundamental role
in mirror symmetry, and because it is a prototypical “duality” argument of
the sort which has become very important in the broader study of quantum
field theory and superstring theory.

Let us first discuss M = S'. The claim is that

(3.58) CFT(S',R) = CFT(S',1/R),

in other words there is a unitary transformation from the Hilbert space of
CFT(SY, R) to that of CFT(S',1/R) which takes the morphisms of the first
theory into those of the second.

In particular, this requires equality of the partition functions. As in
§3.2.2.3, equality of the partition functions for every ¥ (i.e., Riemann sur-
faces of every genus) implies the general claim. We now demonstrate this
using the functional integral.

To make the R dependence explicit, we take M = S' with a fixed Eu-
clidean metric with circumference 27, and rewrite the action as

R2
(3.59) S = 4—/ dp N *dp.
T Jx
127he complete classification of ¢ = 1 theories is also known [112]. The others

are obtained by orbifolding by discrete symmetries, along lines we discuss later for (2,2)
theories.
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While the main point is to understand T-duality on S, the core of the
argument can be understood by first considering the field ¢ to take values
in R. We will then come back and treat S'.

First, the functional integral with action (3.59) can be shown to be
equivalent to another functional integral, over ¢ and a second field IT € T*3,
with action
(3.60) S:%/H/\*H—i—i/ﬂ/\dw.

Because the new field II appears only quadratically, its functional integral
can be done exactly along the lines of (3.40) in §3.2.3.1. The result is
obtained by evaluating IT at the saddle point §S/6I1 = 0,'3 given by

27
and reproduces (3.59).
On the other hand, we can instead first integrate over ¢ to get a new
functional integral over II. We first integrate the (II,dy) term by parts,

obtaining

™ .
S:ﬁ/ﬂ/\*ﬂ—updﬂ.

Then, since ¢ appears only linearly in the action, we can do its functional
integral. Formally, this is done by analogy with the finite dimensional inte-
gral

/ d\ e = §(x)
R

where d(x) is the Dirac delta function. Thus, the result of the ¢ functional
integral will be a measure with support on fields satisfying the constraint

(3.62) dll = 0.
We then solve this constraint in terms of a new scalar field, the “dual boson”
@,
(3.63) Im= ial p
) o7 4

We will justify this choice of normalization shortly.
Substituting back, one obtains

1

This is of the same form as (3.59) with the substitution R — 1/R, supporting
the claim (3.58).

13Because the action does not involve derivatives of II, the usual one-loop integration
around the saddle point in this case leads to a trivial constant factor.
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To complete the argument, we must extend it to maps ¢ : ¥ — S1. We
express these using (3.54) as

o(z) = po + @(2) + 27TZmif,-(z); m! e 7).
This turns (3.60) into
(3.65) S:%/HA*H—I—Z'/H/\CZQE—I—Z'ZmiH/\dfi.

Since dp is single-valued, the argument that doing the functional integral
over II reproduces (3.59) goes through unchanged.

However, repeating the arguments which led to (3.64), when we solve
(3.62), we find that the general solution (3.63) is given by a map ¢ : ¥ — R,
whereas what we want is a functional integral over maps to S'. In other
words, we appear to be integrating over too many maps. The constraint
which reduces this to the correct integral arises because the functional mea-
sure (3.55) now includes an additional sum over m/,

(3.66) > exp (zm / dp A dfl-) .

meZb1 (%)

Note that the 27 in (3.54) was compensated by the 1/27 in (3.63).
Doing this sum, we get a measure with support on

1
—/dgﬁ/\dfiGZ V1.
2

This constraint is trivially satisfied by a single-valued function ¢. Using
Poincaré duality for the basis f; of harmonic one-forms, its general solution
is

(3.67) @ = Po + @ + 2w f;(2); ni € 7

where the terms are defined as in (3.54). Thus the field ¢ is a map to St in
the same sense as .

To summarize, we found that by simple manipulations on the Gaussian
functional integral (3.60) (linear changes of variable and evaluation at a
saddle point), we could obtain both (3.59) and (3.64), which differ only by
the substitution R — 1/R. Thus these two functional integrals must be
equal.

The same argument works for an arbitrary compact ¥ (we will discuss
the case with boundaries in §3.5.4). By considering degeneration of the
complex structure of ¥ and using the sewing axioms, this implies that the
CFT’s must be isomorphic. Thus we have proven (3.58).
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3.2.3.7. T-duality on vertex operators. A simple relation between the
vertex algebras in the T-dual theories is obtained by combining (3.61) with
(3.63), to get

1 .
This can also be written as
(3.68) JL = Jr: Jr— =JL; Vorpr = Vor,—pr-

Thus T-duality acts on the charge lattice ) as the non-trivial automorphism
in SO(1,1;Z). One can also compose this with the automorphism which
exchanges left and right movers, to get

(3.69) Jr = Jr; Jr = =Jr; Vorpr = Voo, —pr-

3.2.3.8. Generalization to T®. This is fairly straightforward. We start
with the action

S = /d22 (gij + Bij)0p' 0,

where in addition to the metric g;; we can add an antisymmetric two-
index tensor B;;. We then proceed as before. The consistent theories are
again those in which the charges (pr,pr) lie in a lattice of signature (d, d).
The space of such lattices is the automorphism group SO(d,d;R) modulo
SO(d,R) x SO(d,R). Locally, this is a homogeneous space of real dimension
d?, which matches the parameter counting of the matrix g+ B. Finally, two
theories are isomorphic if they are related by a change of basis in SO(d, d; Z).
This includes an SL(d,Z) subgroup induced from change of basis on T%. Tt
also includes the T-duality transformations on any subset of the coordinates.

3.2.4. Factorization of U(1) CFT. As we discussed in §3.2.3.2, from
the algebraic point of view, the defining feature of the free boson is the U(1)
current algebra (3.46). In fact one can prove that all occurences of U(1)
current algebra in CFT are described by the free boson. Since this is the
foundation of the general classification of boundary conditions in the A and
B-models, let us explain how this goes.

Consider a unitary CFT X with central charge ¢ containing a U(1)
current J, i.e., an operator with OPE

m + nonsingular.

The basic example is the free boson with J = dy, for which this is (3.50).
But U(1) currents are far more common. In fact, any U(1) action on a
CFT by automorphisms leads to at least one U(1) current (and usually
two, holomorphic and antiholomorphic). Later, the N = 2 SCA will be our
primary example.

J(z1) J(22) —
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Such a CFT can be “factorized” into two parts, a free boson with ¢ =1
and stress tensor

1
TU(l):§:JJ:7
and a quotient CFT X’ with ¢ =c¢—1 and
Txr =Tx — TU(I)'

By factorization, one loosely means that the X Hilbert space is a tensor
product of those of X’ and the free boson, with independent OPE’s. In
particular, the operator J acts trivially on X’.

To be more precise, the decomposition (§3.2.3.4) of the free boson Hilbert
space into highest weight representations V), ., lifts to the Hilbert space of
X as

(3'70) H= EBPL@RH;{LI,IJR ® VvapR'

There are similar product relations for the OPE and correlation functions
in the X theory, in terms of those for X’ and the free boson.

This goes back to [183] and can be verified algebraically as follows. First,
we have already checked that Ty (1) defines a Virasoro algebra with ¢ = 1,
in §3.2.3.2. Second, the postulates we gave suffice to compute the OPE of
Ty, and show that it defines a Virasoro algebra with ¢ = ¢ — 1.

Now, after a little algebra one sees that the two Virasoro algebras com-
mute,

LoD, LY =0
Since the Virasoro action completely determines the position dependence
of correlation functions, this implies that any correlation function in the X
theory is a sum of products of correlation functions in the two factors, and
this implies the rest.

One consequence of this is that automorphisms of the U(1) factor lift to
automorphisms of X. In particular, the action of T-duality on this factor
lifts to X.

Another consequence is that the theory of boundary conditions, which
we discuss later, factorizes in a similar way. Thus, the classification of
boundary conditions for the free boson will provide part of the classification
of boundary conditions for the theory X.

In the next section, we will introduce the N = 2 superconformal algebra,
and show that it contains a U (1) current algebra, so that these results apply.
It will then turn out that T-duality on this subsector is the CFT definition
of mirror symmetry.

3.2.5. Deformation theory. In principle, the deformation theory of
local QFT and CFT is already determined by the QFT functor, or equivalent
presentations of the same data (the algebra of operators, or a complete
understanding of the functional integral). The simplest way to deform a
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QFT is to add an operator to the action in the functional integral. Thus,
we define the partition functions Z[g] of a family of QFT’s with parameters
(usually called “coupling constants” or just couplings) ¢*, as

(3.71) Zlg] = /[Dw] o~ Soliel+08
with

(3.72) 68 = Z g /E d?z O;(z),

where the O;(x) are local operators.

The simplest way to think about (3.71) is as the generating function of
correlation functions in the undeformed theory; in other words its derivatives
at zero provide a shorthand description for the set of correlation functions
of finitely many operators [ O;. Of course, this is “formal” in the sense that
we are making no requirement that this Taylor series converges. To prove
that a deformation exists, this point would need to be addressed.™

There is another, equally important sense in which (3.71) is a “formal”
expression, requiring more information for a precise definition. Products of
operators at coincident points are usually divergent, as we saw in (3.49). To
define correlation functions of integrated operators, we must subtract these
divergences, in other words define renormalized correlation functions. In the
physics literature, expressions such as (3.71) usually denote the generating
function of renormalized correlation functions.

3.2.5.1. Renormalization theory. We outline only a few of the most im-
portant results of this theory. A sample computation appears in §3.2.6.

First, a simple argument involving behavior under conformal rescaling
of the metric implies that a local operator which can be used to deform a
d = 2 CFT to another CFT must have the scaling dimension h = 1, as
defined in (3.33).® Thus by Axiom 4, the tangent space to the space of
CFT’s is always finite dimensional.

What if we try to make a deformation with A # 1 7 A proper discussion
requires introducing the renormalization group (RG), which controls the re-
lation between the original local operator deformations supported on points
(and thus, determining the behavior on extremely short distance scales),
and the behavior at general distance scales. We refer to MS1 chapter 14,
and especially to Witten’s lectures in [109], for a brief overview of the RG.

MwWhile the physics discussion is complicated, there are cases in which it is clear that
this series has finite radius of convergence, for example the deformation varying the radius
R of the compactified boson of §3.2.3.5.

I5)\ore generally the total scaling dimension must equal the space-time dimension
d, so that the operator transforms as a density. Recall that in d = 2 the total scaling
dimension is the eigenvalue of Lo + Lo = hr + hg. One also requires Lo — Eo, the
generator of SO(2) rotations, to act trivially, so hy = hr = h.
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The simplest consequence of these arguments is a trichotomy between
the cases of h < 1, h = 1 and h > 1. Deformations with A > 1 do not lead to
new QFT’s, and are called “irrelevant.” On the other hand, a deformation
by an operator with A < 1, called a “relevant operator,” spoils conformal
invariance, and becomes more important at longer distances. As we explain
further below, one can rephrase this violation of scale invariance, as a flow
through a space of QFT’s, called the RG flow induced by the operator.

One can show that Virasoro central charge always decreases under RG
flow, and thus the RG flow has a limit which is a different CFT. Traditionally
the start and end points of the flow are called the “UV” and “IR” CFT’s,
SO

(3.73) CUV > CIR-

For a generic flow, c;g = 0 and the endpoint is trivial, but by tuning pa-
rameters (the choice of UV theory and the deformation), one can obtain a
non-trivial IR CFT. A loose but useful analogy can be drawn to the pro-
cess of rescaling the metric of a Riemannian manifold as ¢ — Ag. In the
A — 0 limit, one generically obtains a point (this could be made precise us-
ing the Gromov-Hausdorff topology, see §7.3.6), but one can find examples
(say S' x R with the flat metric) which “collapse” to a non-trivial lower
dimensional manifold.

An operator with h = 1, called “marginal,” generates a deformation
which, at least infinitesimally, produces a new CFT with the same central
charge c¢. However, the scaling argument we cited above only works to
linear order; renormalizing products of operators leads to corrections which
are nonlinear in the couplings. If these are non-zero and cannot be absorbed
into redefinitions, scale invariance and thus conformal invariance are broken.
In this case, the deformation again leads to a non-trivial RG flow (decreasing
¢), and is called “marginally relevant.”

An explicit description of the RG flow is given by the beta function, which
expresses the variation of the couplings with the choice of renormalization
scale. Denoting this scale as A, we have

Thus 3’ is a vector field on the space of QFT’s, parameterized by an explicit
choice of couplings as in (3.72) A scale-invariant QFT (a CFT) is an RG
fixed point and thus a zero of the beta function. If the beta function is
positive, the coupling is irrelevant and does not lead to a deformation, while
if it is negative it leads to an RG flow whose endpoint satisfies (3.73).

In many cases CFT deformation theory has a geometric counterpart. For
example, there is a general argument [192] that closed string deformations
in (2,2) SCFT’s are unobstructed. The sigma model construction we review
next shows that this includes as a limiting case the mathematical result
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that Calabi-Yau complex structure moduli spaces are unobstructed. The
analogous statement for open string deformations is false, corresponding to
the mathematical statement that vector bundle deformations on a CY can
be obstructed. We will discuss this relation further in §3.6.2.3 and §3.6.2.4.

3.2.6. Nonlinear sigma models. A very general source of QFT’s and
CFT’s is the nonlinear sigma model. This is the d > 2 generalization of the
theory of a quantum mechanical particle moving on a target space M which
was our basic example in §3.1.

For d = 2, we can think of a map X : ¥ — M as tracing out the space-
time history of a string in M, and thus we will often refer to X as the “string
world-sheet.” Anticipating the role of conformal invariance, we generally
think of ¥ as one-complex dimensional, rather than two-real dimensional.

Now, the nonlinear sigma model is a field theory defined as a functional
integral over all maps ¢ : ¥ — X, where X is the target manifold, and the
action is

_ L [ 0900
(3.75) Slel = 5- /E P2y L

Here z is a complex coordinate on X, ¢ are local real coordinates for X,
and Gj; is a tensor in the square of the cotangent bundle over X, which
need not be symmetric; one can also write it as a sum

G=g+B,

of a metric g;; and an antisymmetric tensor (or two-form) B;;.

By definition, the Euler-Lagrange equations, or “equations of motion,”
are the condition for the action to remain stationary (to first order) under
an infinitesimal variation of the fields. Here, they are

08 0 [~ O’ 0 (A 0y’ o 0’ 07
(3.76) 0= 3ok x5 <ij(90)g> + 5= <sz(¢)g> Gii k5=

A “classical solution of the theory” is a solution of these equations. Clearly
their simplest solution is ¢ constant on X. Another simple family of solutions
satisfies the ansatz O /0 Im z = 0; in this case B drops out and the equations
reduce to those for d = 1, whose solutions are geodesics in the metric g;;.

More generally, but restricting attention to dB = 0, these are the equa-
tions defining a harmonic map,

Agegp = 0.

Thus, another solution is to take ¢(3) to be a smooth volume minimizing
two-cycle.
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3.2.6.1. Perturbation theory. These classical solutions are also impor-
tant in the quantum field theory, as the simplest way to make sense of the
functional integral (3.14) is the semiclassical method. We assume £ is small,
and write Z as a formal sum over the “saddle points” ¢; of the integral,

1
(3.77) Zro > e SRl
55Ton=0 (det 'A)Y/

The prefactor is obtained by expanding S[p; + dp;] to quadratic order in a
small perturbation d¢, and doing the Gaussian integral over dy, as in §3.2.3.
This computation is facilitated by working in an appropriate coordinate
system; given a general Riemannian metric g;; and a distinguished point ¢,
the natural choice is Riemann normal coordinates around ¢, in which

1
9i5(p + 0¢) = gi(p) = T Rinju(p)0p 0" + -+,
where R;i;; is the Riemann tensor.
Using this expansion and taking B = 0 for simplicity, we can rewrite the
terms in the action (3.75) which are quadratic in dp as

(3.78)  0%S[p] = %/Edzzgn(w) 96" 0607 — iRikjl((P) D' 0 5" b,
thus defining the operator A appearing in (3.77).

Again, the divergence of det ‘A must be dealt with by renormalization.
In the original discussions, this was defined as a formal procedure in which
divergent “counterterms” were added to the action (3.78), to cancel diver-
gences arising from the functional integral. From this point of view, the
main goal of renormalization theory is to show that the divergences are the
sum of a finite number of local functionals of the fields, and thus can be can-
celled by an action with a finite number of terms. A renormalizable action
is one in which all of the necessary terms appear.

In the more modern RG language, one phrases this differently. One de-
fines a family of “cutoff” or regulated theories depending on an additional
parameter A (usually taken of dimensions inverse length), in which all fluc-
tuations on length scales shorter than 1/A are removed from the functional
measure. One then computes the variation of the cutoff functional integral
with respect to A. Finally, one postulates a variation of the action S which
compensates the previous variation, to enforce the principle that the final
results should be independent of A.

The result of these computations can be summarized in the beta function
(3.74). In broad terms, this is determined by the scale dependence of the
partition function,

9 i
Aa—AlogZ——Zﬁ 0,
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where the O; are the local operators defined in (3.72). The precise definition
(in particular, whether one restricts the sum to the finite number of oper-
ators needed to cancel divergences, or allows a larger sum) depends on the
formalism being used.

The general behavior of the RG depends strongly on the dimension d of
space-time. Typically the scale dimension of a given operator will have a
classical (or “engineering”) dimension, and quantum corrections which (in
perturbation theory) are given by a Taylor series in . The critical dimension
is the choice of d for which the classical scale dimension equals d, and thus
the RG is controlled by quantum corrections.

The nonlinear sigma model is most interesting if a general action (3.75)
is in its critical dimension. This will be the case if the required scaling
dimension d is entirely made up by the scaling of the derivatives, so that
we can take the classical scale dimension of the field ¢ to be zero. Since
(3.75) has two derivatives, this forces d = 2. For d > 2 one can check that
any nonlinear term in G is irrelevant, so RG flow drives the metric to be
Fuclidean.

In d = 2, we can regard the metric tensor G,-j as a formal generating
function for an infinite series of coupling constants, or (better) regard the
space of QFT’s as parameterized by a space of metrics. Thus the beta
function is a vector field on the space of metrics, which can be computed
using the formalism of §3.2.3.1, leading to (for the special case dB = 0)

0
(3.79) Aa_Agij = Bij = —Rijlg]

(the Ricci flow) at leading (one-loop or AY) order.

One can continue to expand the renormalized action, the partition func-
tion and correlation functions to higher orders in %, to obtain the standard
(weak coupling) perturbative expansion. In the sigma model, this turns out
to be equivalent to a derivative expansion; for example the next term in
(3.79) is quadratic in the Riemann tensor, with two additional derivatives
compared to the Ricci tensor. Thus there is a limit (the “large volume,”
“large structure” or “supergravity” limit) in which the corrections go to
Zero.

The RG flow (3.79) was discovered by Friedan [160]. He went on to
show that, to all orders in A, the renormalization procedure is covariant
under change of coordinates on X, so that the QFT depends only on the
diffeomorphism class of the metric and B-field. In this sense, the sigma
model can be regarded as a functor from Riemannian geometry to QFT.

The renormalization theory of the supersymmetric sigma model (§3.3.2)
is similar and one again finds (3.79) at leading order. In the (2,2) models
we will discuss, the first correction appears at order (Riemann)* [198].

Unfortunately, the perturbative expansion (for both the bosonic and
supersymmetric sigma models) is an asymptotic series in h, with factorial
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growth, and thus cannot be regarded as a satisfactory definition of the QFT,
either mathematically or physically. This problem (which is entirely different
from that of renormalization) is of such a long-standing and fundamental
nature that it tends to be swept under the rug in general discussions such
as this.

By now there are many arguments that in the case at hand, and in anal-
ogous cases such as four-dimensional Yang-Mills theory, this is essentially
a technical problem, in the sense that there do exist QFT and CFT par-
tition functions for which perturbation theory provides a good asymptotic
expansion. Furthermore, there is a fairly good sense for which points in the
physics arguments depend in an essential way on perturbation theory, and
which points can be proven (or at least expected to hold) without relying
on the perturbative expansion. It is this understanding which we implicitly
rely on when we say that a physics argument is “heuristic,” yet consider it
to be convincing.

In simpler cases, such as the Landau-Ginzburg theory we discuss in
§3.6.8, there even exist explicit (albeit extremely complicated) “construc-
tions” of the QFT, in terms of convergent series expansions [182]. Perhaps
someday similar (or simpler) arguments will provide a solid mathematical
basis for all of the physics we discuss in this book.

3.2.6.2. CFT and the renormalization group. For a sigma model to be a
CFT, the beta function must vanish. From (3.79), at leading order (and if
dB = 0) the metric must be Ricci-flat. Thus in the large volume limit, any
Ricci-flat target space X can be used to define a CFT.

At finite but large volume, one must study the corrections to (3.79),
and check that there is no obstruction to extending the solution to higher
orders. While in no case do we have exact results for the beta function, for
the N = 2 supersymmetric sigma models to be discussed below, it is not
hard to see using a superspace formalism that the beta function takes the
form

ﬁij = Rij + Z ﬁ’f&-éij
k>1

in terms of globally defined functions Fj, on X. As argued in [374], the
resulting 3 = 0 condition can always be solved to all orders in .

On the other hand, no non-trivial bosonic sigma models with R # 0,
dB = 0 and constant dilaton are known. There are non-trivial models with
dB # 0 (the Wess-Zumino-Witten models), but since our primary interest
is in supersymmetric sigma models, we now leave this topic.

The cases with 3 # 0 are best understood in the language of the RG.
It is natural to think of (3.74) as defining a vector field or flow on a space
of coupling constants, which we think of as defining a space of QFT’s. A
zero [ = 0 is then a fixed point of the flow, but one can also make sense
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of the flow, as the underlying definition of cutoff QFT gives a definition (in
principle) of all observables (correlation functions) as functions of A.

Consider a flow which asymptotes as A — oo to a fixed point gy, a