
Computational Intelligence, Volume 16, Number 4, 2000

PROBABILITY-BASED CHINESE TEXT PROCESSING
AND RETRIEVAL

Xiangji Huang, Stephen Robertson1

Department of Information Science, City University, London EC1V 0HB, United Kingdom

Nick Cercone and Aijun An
Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada

We discuss the use of probability-based natural language processing for Chinese text retrieval. We
focus on comparing different text extraction methods and probabilistic weighting methods. Several docu-
ment processing methods and probabilistic weighting functions are presented. A number of experiments
have been conducted on large standard text collections. We present the experimental results that com-
pare a word-based text processing method with a character-based method. The experimental results also
compare a number of term-weighting functions including both single-unit weighting and compound-unit
weighting functions.

Key words: information retrieval, word-based and character-based Chinese text processing, single-
unit and compound-unit weighting.

1. INTRODUCTION

Modern information retrieval (IR) systems should be able to take natural language
queries and retrieve documents written in natural languages. One way to process nat-
ural language texts in IR is statistical. In this approach, linguistic units are extracted
from the documents and queries. Those units extracted from the documents are used
to index the documents. Those extracted from a query are weighted according to their
degrees of importance. The most important units are chosen as query terms. An infor-
mation retrieval system takes the selected query terms, matches the terms with the
indexes of documents, calculates a retrieval status value for each matched document
using a term-weighting method, and presents the user with potentially relevant docu-
ments from a collection of documents. The performance of the information retrieval
system in identifying relevant documents greatly depends on the text processing method
used.

We investigate the effectiveness of different text extraction methods and different
term weighting methods in the context of Chinese information retrieval. It is a well-
known problem that there is no separator between Chinese words, so Chinese words
cannot be used easily to index or search texts as is possible in English. Therefore, some
people use characters or n-grams as searchable tokens instead of words. We discuss
two text extraction methods. One extraction method uses words, compound words, and
phrases in the document and query texts as indexing terms to represent the texts. We
refer to this method as the word-based approach. For this approach, text segmentation,
which divides both document and query texts into linguistic units, is regarded not only
as a necessary precursor but also as a bottleneck of this kind of system (Wu and Tseng
1993). The other extraction method is based on single Chinese characters, in which
texts are indexed by the characters appearing in the texts (Chen 1992). By using sin-
gle character approaches, a search could be conducted for any multi-character word or
phrase identified at search time, no matter whether this word or phrase is in the dic-
tionary. Both word-based and character-based methods have been used in information

Address correspondence to Xiangji Huang at the Department of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada; e-mail: jhuang@math.uwaterloo.ca.

1Microsoft Research, Ltd., 1 Guildhall Street, Cambridge, CB2 3NH, U.K.

c© 2000 Blackwell Publishers, 350 Main Street, Malden, MA 02148, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.



Probability-based Chinese Text Processing and Retrieval 553

retrieval systems. Cornell’s SMART system (Buckley et al. 1996) uses character-based
retrieval augmented with character bigrams. The Chinese retrieval system in Berkeley
(Gey et al. 1996) is a purely word-based system, which uses a dictionary of 140,000 words
to segment the Chinese collection and queries. Queens College’s PIRCS system (Kwok
et al. 1997) applies a combination of dictionary and statistical techniques to detect two-,
three-, and occasionally four-character words. Its aim was to obtain good indexing fea-
tures rather than “correct” segmentation. We use both word-based and character-based
segmentation methods in our Okapi retrieval system (Beaulieu et al. 1996; Robertson
et al. 1995). In this paper we present the two methods used in Okapi and provide empir-
ical results that compare the two methods in terms of their effectiveness for Chinese
text retrieval in Okapi.

One other issue in text retrieval is how to make use of the extracted terms in
the retrieval process. A usual way is to weight the query terms and calculate a score
of relevance for each matched document based on the terms’ weights. Statistical term-
weighting methods for IR traditionally have taken two forms: formal approaches, where
an exact formula is derived theoretically, and ad hoc approaches, where formulas are
tried because they seem to be plausible. Both categories have had some notable suc-
cesses (Buckley et al. 1996; Gey et al. 1996; Kwok et al. 1997; Robertson et al. 1995).
A problem with the formal model approach is that it is very difficult for a model to
take into account the wide variety of variables that are thought or known to influence
retrieval. A problem with the ad hoc approach is that there is little guidance as to
how to deal with specific variables. In Okapi, a complex formal probabilistic model is
used to suggest some much simpler formulas. In this paper we present several weight-
ing formulas used in Okapi and provide empirical results that compare these formulas
coupled with either word-based or character-based text processing method in terms of
their effectiveness for Chinese retrieval.

For the experiments presented in this paper, we use a standard collection of Chinese
documents and queries provided by NIST (the National Institute of Standards and
Technology). The document collection and the queries have been used by participants
in the Text REtrieval Conferences (TREC). TREC is an annual conference organized
by NIST, starting in 1992. Its purpose is to support research within the information
retrieval community by providing the infrastructure necessary for large-scale evaluation
of text retrieval methodologies. Evaluation of Chinese information retrieval systems
was included at the fifth and sixth TREC conferences (TREC-5 and TREC-6), where
a large collection of Chinese documents and two sets of queries (one for TREC-5 and
the other for TREC-6) were provided.

This paper is organized as follows. In Section 2 we present Chinese text segmen-
tation methods for document and query processing. Text retrieval based on our proba-
bilistic model is described in Section 3, where two single-unit weighting functions and a
number of compound-unit weighting functions are presented. In Section 4 we provide
experimental results and performance comparison of using the different document pro-
cessing methods and the retrieval functions presented in the paper. We conclude the
paper in Section 5.

2. CHINESE TEXT SEGMENTATION

2.1. Document Processing

Most modern Chinese words consist of more than one ideographic character, and
the number of characters in a word varies. Since a Chinese text is a linear sequence



554 Computational Intelligence

of nonspaced or equally spaced ideographic characters, we must either apply a Chinese
word segmentation method to the queries and documents or index and search in terms
of single Chinese characters. There are different requirements on Chinese text seg-
mentation for different applications. For example, machine translation requires correct
segmentation of Chinese text according to Chinese syntax. For the purpose of informa-
tion retrieval, we may not have to segment Chinese text completely correctly.

Word-based segmentation is normally accomplished using a dictionary and one of
the three methods. The first is the longest match, for which text is sequentially scanned
to match a word dictionary. The longest matched strings are taken as indexing and
search tokens, and shorter tokens within the longest matched strings are discarded.
Since longer tokens in the dictionary are more specific, longest match will generate
fewer tokens with more specific meaning. The second is the shortest match, for which
text is sequentially scanned to match the dictionary. The first matched tokens are
selected, and the match process resumes from the next character. With the shortest
match method, the segmentation process will generate more tokens with less specific
meaning. The third is the overlap match, for which tokens generated from the text can
overlap each other across the matching boundary.

Single-character-based segmentation is a purely mechanical procedure that seg-
ments Chinese texts into single characters. A huge inverted file is usually generated
to index documents. In our experiments, we use both word-based and character-based
methods to process documents. For the word-based method, we used the longest match
algorithm to segment Chinese texts. By applying this algorithm to the Chinese collection
with which we conduct experiments, approximately 43.6 million tokens were identified.
These segmented tokens are used to index the documents in the collection for the
retrieval purpose. For the character-based method, an inverted file of about 1 gigabyte
is generated.

2.2. Query Processing

Both character-based and word-based segmentations for query processing have been
used independently in our Okapi system. The character-based method uses characters,
character pairs, and multicharacter adjacencies as retrieval keywords. Character pairs,
and multi character adjacencies are similar to the bigrams and n-grams investigated by
some other researchers (Chien 1995; Willett 1979). Our word-based method uses similar
techniques that allow phrases to contribute to the matching. In this paper we report the
experimental results for a word-based method for query processing. The method uses
words and word pairs as retrieval keywords. Only pairs of the adjacent segmented terms
are regarded as new potential phrases. After words and phrases are extracted from the
query text, they are weighted by using an approximation to inverse collection frequency
(ICF) (Spark Jones 1979) as follows:

wqt = log
N − n+ 0�5

n+ 0�5

where N is the number of indexed documents in the collection and n is the number
of documents containing a specific term. These words and phrases are then ranked by
the values of their weights multiplied by the within-query frequencies. The top 19 terms
are selected as keywords for searching the word index and for searching the character
index.



Probability-based Chinese Text Processing and Retrieval 555

3. RETRIEVAL BASED ON PROBABILISTIC MODEL

After documents and the query are processed, the selected keywords from the query
are sent to the retrieval module to find documents that are most relevant to the query. In
Okapi, we use a probability-based retrieval model that weights the keywords according
to some information obtained from the documents. The keywords are then matched
with the documents, which are indexed by characters or segmented words depending
on the extraction method used in document processing. For each document that matches
a keyword, a retrieval status value (RSV) is calculated by summing up the weights of
all the keywords that match with the document. Finally, the documents are ranked by
their RSVs and are presented to the user in that ordered sequence. The performance
of the retrieval system therefore depends on the weighting method used to weight the
keywords. In this section we describe the weighting functions used in our Chinese Okapi
system. Later, in the experimental section, we will compare character-based and word-
based document processing methods in terms of these weighting functions.

Keyword weighting can be classified into single-unit weighting and compound-unit
weighting. A single-unit weighting function is for weighting a single linguistic unit in a
keyword. A single linguistic unit is the linguistic unit that is used to build the index of
documents. For example, if documents are indexed using words, a word is a single lin-
guistic unit; if documents are indexed using characters, a character is a single linguistic
unit. A compound-unit weighting function is for weighting a compound linguistic unit
that consists of two or more single units. For example, if the documents are indexed
using words, then a phrase is a compound linguistic unit; if the documents are indexed
using characters, then both words and phrases are compound units.

3.1. Single-Unit Weighting

BM25 Weighting Function. We used two single-unit weighting functions in the
experiments presented in this paper. They are both extended versions of ICF, which
include document length and within-document and within-query frequencies as provid-
ing further evidence. Adding this evidence makes the term weighting dependent on the
document, which has been shown to be highly beneficial in English text retrieval. The
first function is called BM25 (Beaulieu 1996), given as follows.

w = �k1 + 1� ∗ tf
K + tf

∗ log
N − n+ 0�5

n+ 0�5
∗ �k3 + 1� ∗ qtf

k3 + qtf
⊕ k2 ∗ nq ∗ �avdl − dl�

�avdl + dl� (1)

where N is the number of indexed documents in the collection, n is the number of
documents containing a specific term, tf is within-document term frequency, qtf is
within-query term frequency, dl is the length of the document, avdl is the average
document length, nq is the number of query terms, the kis are tuning constants, which
depend on the database and possibly on the nature of the queries and are empirically
determined, K equals k1 ∗ ��1 − b� + b ∗ dl/avdl�, and ⊕ indicates that its following
component is added only once per document rather than for each term. The component

k2 ∗ nq ∗ �avdl − dl�
�avdl + dl�

is called the correction factor and was designed to take into account the length of a
document. The value of the correction factor decreases with dl, from a maximum as



556 Computational Intelligence

Figure 1. Curve for BM25’s correction factor with respect to document length.

dl → 0, through zero, at which dl = avdl, and to a minimum as dl → ∞, as shown in
Figure 1. This design of the correction factor assumes that the shorter the document is,
the more value the correction factor should have; i.e., the more possible the document
is relevant.

In our experiments, the values of k1, k2, k3, and b in the BM25 function are set
to be 2.0, 0, 5.0, and 0.75, respectively. Note that we set k2 to be 0, which means that
the correction factor is not considered. The setting of these numbers was obtained from
previous extensive experiments for English text retrieval and from initial experiments
for Chinese text retrieval. For example, we found that the system produces better results
if we set k2 to be 0.

BM26 Weighting Function. The fact that better performance of BM25 is achieved
when k2 is set to be zero (i.e., the correction factor is ignored) indicates that the
correction factor in BM25 is not designed properly. To tackle this problem, we propose
an enhanced version of BM25, referred to as BM26, which is designed on the basis of
the following assumptions:

Assumption 1. Too short documents are not relevant.

Assumption 2. The function curve for the correction factor should be consistent with
the distribution of relevant documents in the standard text collection provided by the
TREC conferences.

These assumptions can be justified by some statistics in the Chinese TREC-5 and
TREC-6 experiments. Table 1 describes the Chinese collection for the TREC-5 and
TREC-6 experiments in terms of the minimum, maximum, average length of docu-
ments, and total number of documents. Figure 2 depicts the frequency distribution of
the documents in the collection with respect to the length of documents. In the figure,
the document length is discretized by using equal-interval binning, where the length of
each interval is 500 bytes. Table 2 shows the statistics on the relevant documents for the
TREC-5 queries. Figure 3 depicts the frequency distribution of the TREC-5 relevant
documents with respect to the document length. The statistics for the TREC-6 relevant
documents are shown in Table 3 and Figure 4.



Probability-based Chinese Text Processing and Retrieval 557

Table 1. Whole Data Set for TREC-5

Min. length 0 byte
Max. length 294,056 bytes
Average length 891 bytes
Total number of documents 164,768 documents

Figure 2. Distribution curve for the whole Chinese TREC data set.

Table 2. Relevant Data Set for TREC-5

Min. length 58 bytes
Max. length 22,718 bytes
Average number of relevant documents per query 83.9 documents
Average length 1399 bytes
Standard deviation 1675.31 bytes

From these statistics we can observe that

1. The average length of relevant documents for both TREC-5 and TREC-6 queries
is longer than the average length of the documents in the whole TREC document
collection. A closer look at the documents also revealed that very small documents,
such as the title of an article, are usually considered as irrelevant by the human
appraisers for the TREC evaluation.

2. On average, only 0.05 to 0.064% of the documents in the collection are relevant for
a query. Since a very small portion of the whole documents is relevant, Figure 2
can be roughly regarded as the distribution curve of irrelevant documents.

3. The curve for the correction factor of BM25, shown in Figure 1, does not match
relevant document distributions but roughly matches the distribution curve for the
whole data set (Figure 2), which means that Figure 1 matches the distribution curve
of document length for the irrelevant dataset.



558 Computational Intelligence

Figure 3. Distribution curve for the relevant TREC-5 data set.

Table 3. Relevant Data Set for TREC-6

Min. length 60 bytes
Max. length 294,056 bytes
Average number of relevant documents per query 105.6 documents
Average length 1987 bytes
Standard deviation 6194.5 bytes

Figure 4. Distribution curve for the relevant TREC-6 data set.

Based on these observations, we can conclude that the BM25 correction factor function
is suitable for the irrelevant data set but not for the relevant data set. To correct this
problem, we define BM26 as follows:

w = �k1 + 1� ∗ tf
K + tf

∗ log
N − n+ 0�5

n+ 0�5
∗ �k3 + 1� ∗ qtf

k3 + qtf
⊕ kd ∗ y (2)



Probability-based Chinese Text Processing and Retrieval 559

Figure 5. Curve for the new correction factor with respect to document length.

where all the parameters have the same meaning as in BM25 except that kd is a tuning
constant and

y =
{
ln� dl

avdl � + ln�x1� if 0 < dl <= rel avdl

�ln� rel avdl
avdl

� + ln�x1���1− dl−rel avdl
x2∗avdl−rel avdl � if rel avdl < dl < ∞�

in which dl is the length of the document, avdl is the average document length, rel avdl
is the average relevant document length calculated from previous queries based on the
same collection of documents, and x1 and x2 are two parameters to be set.

The difference between BM26 and BM25 is in the y bit of the correction factor.
In BM26, y will reach a maximum as dl → rel avdl, through zero when dl = avdl/x1
(or dl = x2 ∗ avdl), and to a minimum as dl → 0 (or dl → ∞). In our experiments, x1
and x2 were set to 3 and 26, respectively. The curve of this new correction function is
shown in Figure 5.

3.2. Compound Unit Weighting

Compound units (phrases or words) contain more information than single units
(words or characters). It is reasonable to consider that search for compound units during
retrieval is one of the most powerful combination techniques that could improve the
retrieval performance. In our Chinese Okapi system, documents are indexed by single
units (words or characters), and a query keyword could be either a single unit (words)
or a compound unit (words or phrases). Whether a document matches with a compound
unit is determined at the search time using position information in the index file. In
our system, query keywords may include both compound terms and all or some of their
constituent elements, e.g., a word pair and both or one of the member single words,
depending on whether all or only some of constituent elements are selected during
the query processing. Therefore, both documents containing the compound unit and
documents containing any of its member terms or containing all the member terms but
not in the phrasal relationship could match with the query. Intuitively, preference should
be given to the matches on the compound unit. This preference should be reflected in



560 Computational Intelligence

designing weighting functions for compound units; i.e., it is reasonable to assume that
for a compound unit consisting of two single terms t1t2,

w�t1�� w�t2� < w�t1 ∧ t2� = w�t1� +w�t2� < w�t1 adj t2� (3)

where ∧ is the and operator and adj is the adjacency operator. The equation in the mid-
dle represents the usual scoring method for the ∧ (and) operator: The score assigned
to a document is the sum of the weights of the matching terms. The assumption is that
two adjacent units carry a higher score than two separate terms.

The problem of devising such a method consistent with the probabilistic model
generally has not been tackled in text retrieval in English. But for text retrieval in
Chinese, the problem is likely to be more serious than it is in English. This would be
so in a word-based system, since there are likely to be considerable differences between
Chinese speakers as to whether a given combination of characters is considered to be a
single word or a phrase. But it is even more serious in a character-based system, where
one would want a match on a complete word or phrase to carry a higher score than
matches on the component characters.

Suppose that we have a sequence of j adjacent single units t1� t2� � � � � tj (characters
or words) constituting a larger compound unit t1t2 · · · tj (word or phrase) and that each
single unit and the compound unit are included in the selected list of query keywords.
Each unit (large or small) has a “natural” weight, given by a single-unit weighting
formula (such as BM25 or BM26). Let wti

be the natural weight for term ti�i = 1� � � � � j�
and wt1t2···tj be the natural weight for the whole unit t1t2 · · · tj . If both the compound
unit and its constituent single units are given weights in the usual fashion, we have

w�t1 ∧ t2 ∧ · · · ∧ tj� =
j∑

i=1

wti

w�t1 adj t2 adj · · · adj tj� = wt1t2···tj +
j∑

i=1

wti

The weight for w�t1 adj t2 adj · · · adj tj� contains both wt1t2···tj and
∑j

i=1 wti
because

t1 adj t2 adj · · · adj tj implies t1∧ t2∧· · ·∧ tj . This natural assignment of weights satisfies

the preceding assumption expressed in equation (3). Here,
∑j

i=1 wti
can be considered

as a “boost weight.” Furthermore, for consistency, we also could reduce the scores of
those documents which contain the component single units but not the compound unit,
e.g., by giving a small negative weight to the logical conjunction of the component units
(i.e., reducing w�t1 ∧ t2 ∧ · · · ∧ tj�). However, design of this negative weight with the
restriction to satisfy the left inequality (w�t1�� w�t2� < w�t1 ∧ t2�) in the assumption
in equation (3) is not an easy task. To avoid this difficulty, we can add an extra boost
weight to w�t1 adj t2 adj · · · adj tj� and let w�t1∧ t2∧· · ·∧ tj� remain naturally designed.
Based on this consideration, we suggest a number of weighting functions that satisfy
the condition specified in equation (3). Table 4 gives six of such functions (denoted
as Weight1, Weight2,. . . , and Weight6). In each set of the functions, the formula for
w�t1 adj t2 adj · · · adj tj� contains an extra boost weight, such as jk in Weight2. Among
the six formulas, Weight1 and Weight5 are given the biggest extra boost, Weight3 has no
extra boost weight, and the others are in between. All these formulas are used in our
experiments, each of which is coupled with BM25 or BM26 for single-unit weighting.



Probability-based Chinese Text Processing and Retrieval 561

Table 4. Compound Unit Weighting Methods

Weight Methods w�t1 adj t2 adj · · · adj tj� w�t1 ∧ t2 ∧ · · · ∧ tj�
Weight1 2

∑j
i=1 wti

+wt1t2···tj
∑j

i=1 wti

Weight2
∑j

i=1 wti
+wt1t2···tj + jk

∑j
i=1 wti

Weight3
∑j

i=1 wti
+wt1t2···tj

∑j
i=1 wti

Weight4
∑j

i=1 wti
+wt1t2···tj + log #�t1∧t2∧···∧tj�

#�t1 adj t2 adj···adj tj�
∑j

i=1 wti

Weight5
∑j

i=1 wti
+wt1t2···tj × log2 j

∑j
i=1 wti

Weight6
∑j

i=1 wti
+wt1t2···tj +

∑j
i=1 wti

d

∑j
i=1 wti

Where #�t� indicates the number of documents containing the term t
and k (k ∈ �0� 2�) and d are tuning constants.

4. EXPERIMENTAL RESULTS AND PERFORMANCE COMPARISON

Extensive experiments have been done to investigate the effect of word-based and
character-based document processing on Chinese text retrieval and the effect of differ-
ent weighting functions and of varying their parameters. A large collection of Chinese
documents, which contain 164,768 documents, was used in the experiments. The col-
lection was obtained from the National Institute of Standards and Technology (NIST)
for participating in the Text REtrieval Conferences (TREC). Fifty-four Chinese queries
(28 for TREC-5 and 26 for TREC-6) were used in our experiments.

In our experiments, the relevance judgments for each query come from the human
assessors of NIST. Statistical evaluation was done by means of the latest version TREC
evaluation program. Several measures are used to evaluate the retrieval result, which is
an ordered set of retrieved documents. The measures include average precision: average
precision over all 11 recall points (0�0� 0�1� 0�2� � � � � 1�0); R precision: precision after the
number of documents retrieved is equal to the number of known relevant documents for
a query; and precision at 100 docs: precision after 100 documents have been retrieved.
Detailed descriptions of these measures can be found in Voorhees and Harman, (1997).

4.1. Experimental Results for TREC-5 Queries

In this section we report our test results for the 28 TREC-5 queries. A number of
versions of our Chinese Okapi retrieval system are tested, which use different document
processing methods and four different compound-unit weighting methods. The single-
unit weighting method used here is BM25. We do not use BM26 for the TREC-5
queries because BM26 requires a parameter, the average relevant document length, to
be calculated from previous queries, and there are no previous queries with evaluation
results for this Chinese document collection. Table 5 illustrates the results in terms
of average precision, total number of relevant documents retrieved, R precision, and
precision at 100 docs. Average precision, R precision, and precision at 100 docs are
the average numbers over the 28 queries, and total number of relevant documents
is the summation over the 28 queries of the number of relevant documents in the
first 1000 retrieved documents for each query. All the numbers were calculated by the
TREC evaluation program. The results in Table 5 indicate that Weight2 is the best



562 Computational Intelligence

Table 5. Results for the TREC-5 Queries

Document Compound unit Average Total Rel R Precision
Run Processing Weighting Precision Retrieved Precision at 100 docs

T5w1.BM25 Word Weight1 0�3691 1995 0�3873 0�3164
T5w2.BM25 Word Weight2 0�3775 2003 0�3865 0�3189
T5w3.BM25 Word Weight3 0�3762 2002 0�3860 0�3204
T5w4.BM25 Word Weight4 0�3773 2005 0�3864 0�3193
T5w5.BM25 Word Weight5 0�3657 1992 0�3812 0�3164
T5c1.BM25 Character Weight1 0�3475 2004 0�3611 0�2918
T5c2.BM25 Character Weight2 0�4126 2056 0�4251 0�3368
T5c3.BM25 Character Weight3 0�3795 1986 0�3963 0�3189
T5c4.BM25 Character Weight4 0�3863 2011 0�4017 0�3275
T5c5.BM25 Character Weight5 0�3507 1992 0�3619 0�2968

compound-unit weighting formula among the five tested formulas for both word-based
and character-based Chinese retrieval and also that the character-based method is better
than the word-based method with three of the five tested compound unit weighting
formulas. In the TREC-5 experiments, the value of k in Weight2 is 0.5.

4.2. Experimental Results for TREC-6 Queries

We also run different versions of Okapi on the 26 TREC-6 Chinese queries. For
these queries we use BM26 as the single-unit weighting method, since we can set the
average relevant document length parameter (rel avdl) based on the TREC-5 results.
The parameter kd in BM26 is set to have different values in our experiments. When
kd is 0, BM26 becomes BM25, since we set the parameter k2 in BM25 to be 0 in our
experiments. The value of k in Weight2 is set to be 1. Table 6 shows the results for using
word-based document processing. Table 7 shows the results for using character-based
document processing. Figure 6 illustrates in bar plots a comparison of single-unit weight-
ing functions (BM25 and BM26 with different values of parameter kd) when word-based
document processing is used. Comparison of compound-unit weighting methods for
word-based document processing is illustrated in Figure 7, in which the last group of
bars represents the results for the Weight6 method with different values for param-
eter d (d = 2� 10� 20� 50� and 100, respectively). Figures 8 and 9 illustrate the same
comparisons for character-based document processing. Figure 10 shows in bar plots the
comparison of word-based and character-based methods in terms of average precision
over the 45 runs described in Tables 6 and 7. In the figure, darker bars represent the
results for the character-based method and lighter bars for the word-based method.

In terms of single-unit weighting, both the result from the word-based method
(Figure 6) and the result from the character-based method (Figure 8) indicate that
BM26 with kd > 0 is better than BM25 (BM26 with kd = 0). In terms of parameter
setting for BM26, the results show that the best performance is achieved when kd is
set to be 20 for word-based methods and when kd is set to 20 or 15 for character-
based methods. In terms of compound-unit weighting, the results (see Figures 7 and
9) confirm that Weight2 is the best compound-unit weighting formula for both words
and character-based methods. This is more obvious in the results for character-based
methods. We can say that character-based methods are more sensitive to the compound



Probability-based Chinese Text Processing and Retrieval 563

Figure 6. Comparison of single-unit weighting functions using word methods.

Figure 7. Comparison of compound-unit weighting functions using word methods.

Figure 8. Comparison of single-unit weighting functions using character methods.

weighting functions. In addition, the results (see Figure 10) consistently show that the
character-based method is better than the word-based method except when kd is set
to 50. Table 8 shows the improvements of BM26 over BM25 and character-based over
word-based methods, in which Weight2 is used for compound unit weighting.



564 Computational Intelligence

Table 6. Results for TREC-6 Queries with the Word-Based Approach

Precision
Weighting Average Total Rel R at 100

Run Method kd Precision Retrieved Precision docs

1 T6w1.kd0 Weight1 0 0�4594 2516 0�4740 0�4519
2 T6w2.kd0 Weight2 0 0�4927 2546 0�5127 0�4773
3 T6w3.kd0 Weight3 0 0�4900 2542 0�5106 0�4746
4 T6w4.kd0 Weight4 0 0�4921 2548 0�5124 0�4777
5 T6w5.kd0 Weight5 0 0�4446 2502 0�4635 0�4385
6 T6w1.kd2 Weight1 2 0�4636 2528 0�4772 0�4585
7 T6w2.kd2 Weight2 2 0�5008 2557 0�5197 0�4842
8 T6w3.kd2 Weight3 2 0�4982 2551 0�5202 0�4842
9 T6w4.kd2 Weight4 2 0�5004 2558 0�5200 0�4862
10 T6w5.kd2 Weight5 2 0�4507 2513 0�4693 0�4492
11 T6w1.kd6 Weight1 6 0�4727 2547 0�4883 0�4688
12 T6w2.kd6 Weight2 6 0�5126 2577 0�5294 0�4988
13 T6w3.kd6 Weight3 6 0�5104 2574 0�5278 0�4977
14 T6w4.kd6 Weight4 6 0�5118 2580 0�5287 0�5004
15 T6w5.kd6 Weight5 6 0�4595 2530 0�4795 0�4608
16 T6w1.kd8 Weight1 8 0�4758 2517 0�4911 0�4708
17 T6w2.kd8 Weight2 8 0�5174 2590 0�5288 0�4992
18 T6w3.kd8 Weight3 8 0�5154 2588 0�5282 0�5000
19 T6w4.kd8 Weight4 8 0�5162 2588 0�5277 0�4996
20 T6w5.kd8 Weight5 8 0�4631 2532 0�4839 0�4631
21 T6w1.kd10 Weight1 10 0�4789 2548 0�4923 0�4738
22 T6w2.kd10 Weight2 10 0�5209 2593 0�5309 0�5027
23 T6w3.kd10 Weight3 10 0�5192 2592 0�5296 0�5035
24 T6w4.kd10 Weight4 10 0�5198 2595 0�5309 0�5027
25 T6w5.kd10 Weight5 10 0�4662 2533 0�4868 0�4658
26 T6w1.kd15 Weight1 15 0�4831 2548 0�4939 0�4765
27 T6w2.kd15 Weight2 15 0�5267 2589 0�5331 0�5023
28 T6w3.kd15 Weight3 15 0�5251 2589 0�5328 0�5031
29 T6w4.kd15 Weight4 15 0�5253 2583 0�5308 0�5019
30 T6w5.kd15 Weight5 15 0�4714 2533 0�4872 0�4715
31 T6w1.kd20 Weight1 20 0�4862 2534 0�4924 0�4785
32 T6w2.kd20 Weight2 20 0.5303 2575 0.5342 0�5035
33 T6w3.kd20 Weight3 20 0�5276 2575 0�5320 0�5038
34 T6w4.kd20 Weight4 20 0�5289 2575 0�5321 0�5027
35 T6w5.kd20 Weight5 20 0�4748 2522 0�4905 0�4769
36 T6w1.kd50 Weight1 50 0�4812 2429 0�4928 0�4831
37 T6w2.kd50 Weight2 50 0�5024 2415 0�5162 0�4938
38 T6w3.kd50 Weight3 50 0�5006 2408 0�5147 0�4923
39 T6w4.kd50 Weight4 50 0�5013 2410 0�5133 0�4931
40 T6w5.kd50 Weight5 50 0�4739 2427 0�4939 0�4765
41 T6w6.kd15.d2 Weight6�d = 2� 15 0�5053 2566 0�5111 0�4931
42 T6w6.kd15.d10 Weight6�d = 10� 15 0�5212 2584 0�5314 0�5038
43 T6w6.kd15.d20 Weight6�d = 20� 15 0�5233 2586 0�5311 0.5050
44 T6w6.kd15.d50 Weight6�d = 50� 15 0�5241 2587 0�5319 0�5031
45 T6w6.kd15.d100 Weight6�d = 100� 15 0�5247 2588 0�5336 0�5031



Probability-based Chinese Text Processing and Retrieval 565

Table 7. Results for TREC-6 Queries with the Character-based Approach

Precision
Weighting Average Total Rel R at 100

Run Method kd Precision Retrieved Precision docs

1 T6c1.kd0 Weight1 0 0�4789 2550 0�4767 0�4704
2 T6c2.kd0 Weight2 0 0�5341 2637 0�5416 0�5108
3 T6c3.kd0 Weight3 0 0�4967 2537 0�5175 0�4812
4 T6c4.kd0 Weight4 0 0�5113 2558 0�5244 0�4923
5 T6c5.kd0 Weight5 0 0�4627 2493 0�4666 0�4458
6 T6c1.kd2 Weight1 2 0�4833 2562 0�4813 0�4738
7 T6c2.kd2 Weight2 2 0�5434 2653 0�5482 0�5158
8 T6c3.kd2 Weight3 2 0�5096 2565 0�5279 0�4942
9 T6c4.kd2 Weight4 2 0�5227 2568 0�5356 0�5035
10 T6c5.kd2 Weight5 2 0�4693 2504 0�4735 0�4504
11 T6c1.kd6 Weight1 6 0�4891 2566 0�4875 0�4769
12 T6c2.kd6 Weight2 6 0�5551 2655 0�5505 0�5169
13 T6c3.kd6 Weight3 6 0�5306 2575 0�5412 0�5077
14 T6c4.kd6 Weight4 6 0�5389 2581 0�5504 0�5104
15 T6c5.kd6 Weight5 6 0�4825 2516 0�4884 0�4619
16 T6c1.kd8 Weight1 8 0�4921 2573 0�4864 0�4792
17 T6c2.kd8 Weight2 8 0�5582 2647 0�5518 0�5177
18 T6c3.kd8 Weight3 8 0�5348 2569 0�5404 0�5035
19 T6c4.kd8 Weight4 8 0�5439 2577 0�5488 0�5135
20 T6c5.kd8 Weight5 8 0�4880 2520 0�4965 0�4685
21 T6c1.kd10 Weight1 10 0�4942 2574 0�4894 0�4800
22 T6c2.kd10 Weight2 10 0.5603 2647 0�5544 0�5208
23 T6c3.kd10 Weight3 10 0�5383 2560 0�5422 0�5058
24 T6c4.kd10 Weight4 10 0�5476 2573 0�5526 0�5154
25 T6c5.kd10 Weight5 10 0�4925 2515 0�5001 0�4742
26 T6c1.kd15 Weight1 15 0�4981 2575 0�4956 0�4808
27 T6c2.kd15 Weight2 15 0�5599 2621 0.5613 0.5227
28 T6c3.kd15 Weight3 15 0�5417 2546 0�5494 0�5131
29 T6c4.kd15 Weight4 15 0�5494 2566 0�5548 0�5173
30 T6c5.kd15 Weight5 15 0�5007 2511 0�5106 0�4804
31 T6c1.kd20 Weight1 20 0�5005 2570 0�4960 0�4781
32 T6c2.kd20 Weight2 20 0�5545 2590 0�5540 0�5181
33 T6c3.kd20 Weight3 20 0�5374 2518 0�5466 0�5096
34 T6c4.kd20 Weight4 20 0�5450 2539 0�5488 0�5145
35 T6c5.kd20 Weight5 20 0�5032 2491 0�5119 0�4800
36 T6c1.kd50 Weight1 50 0�4892 2491 0�4985 0�4823
37 T6c2.kd50 Weight2 50 0�4893 2325 0�5119 0�5004
38 T6c3.kd50 Weight3 50 0�4677 2225 0�4995 0�4788
39 T6c4.kd50 Weight4 50 0�4779 2256 0�5036 0�4850
40 T6c5.kd50 Weight5 50 0�4805 2349 0�5037 0�4742
41 T6c6.kd15.d2 Weight6�d = 2� 15 0�5144 2618 0�5102 0�4873
42 T6c6.kd15.d10 Weight6�d = 10� 15 0�5421 2626 0�5387 0�5073
43 T6c6.kd15.d20 Weight6�d = 20� 15 0�5471 2611 0�5460 0�5108
44 T6c6.kd15.d50 Weight6�d = 50� 15 0�5484 2608 0�5474 0�5142
45 T6c6.kd15.d100 Weight6�d = 100� 15 0�5488 2605 0�5493 0�5150



566 Computational Intelligence

Figure 9. Comparison of compound-unit weighting functions using character methods.

Figure 10. Comparison of character and word methods.

Table 8. Results Comparison

Run kd Indexing Method Average Precision

T6w2.kd0 (BM25) 0 word 0.4927
T6c2.kd0 (BM25) 0 character 0.5341 (+8.40%)
T6w2.kd10 (BM26) 10 word 0.5209 (+5.72%)
T6c2.kd10 (BM26) 10 character 0.5603 (+13.72%)

4.3. Comparison with Other TREC Participating Systems

To see how our system performs, we compare our results with the automatic run
results from other systems participating in TREC-5 and TREC-6 experiments. Since
we only have 19 TREC-5 queries’ evaluation results for other participating systems,
our comparison on the TREC-5 queries is based on these 19 queries. The comparison
on TREC-6 is based on all the TREC-6 queries. Figure 11 shows the comparison on
TREC-5, and Figure 12 on TREC-6. In both figures we includes the best automatic
run from almost every participating institution. These runs are compared with two of



Probability-based Chinese Text Processing and Retrieval 567

Figure 11. Precision-recall curves for some automatic runs at TREC-5.

Figure 12. Precision-recall curves for some automatic runs at TREC-6.

our runs (T5c2.BM25 using the TREC-5 queries and T6c2.kd10 using the TREC-6
queries). From these performance statistics we can see that our results compare well
with the best reported at TREC. In terms of average precision, the results at TREC-5
range from 0.027 to 0.38, with just two systems giving results better than 0.35, and our



568 Computational Intelligence

official result (Beaulieu et al. 1996) from T5c2.BM25 is 0.3541. The average precision
results at TREC-6 range from 0.34 to 0.62, with four systems giving results better than
0.55, and our latest result from T6c2.kd10 is 0.5603. Detailed comparison of these runs
can be found in Huang et al. (1999).

5. CONCLUSION

We have presented and evaluated word-based and character-based text segmenta-
tion methods for Chinese text processing, two single-unit weighting methods (BM25
and BM26), and a number of compound-unit weighting methods for text retrieval. The
evaluation results have demonstrated that character-based document processing is bet-
ter than the word-based approach for Chinese text retrieval using probabilistic models.
As to single-unit weighting, the results indicate that using BM26 weighting function
makes a significant positive contribution to the quality of retrieval compared with using
BM25. Concerning the use of compound-unit weighting methods, we can draw a con-
clusion that the method of Weight2 is the best among the six tested methods in terms of
average precision. The results for compound-unit weighting also indicate that the extra
boost weight in the formulas for w�t1 adj t2 adj · · · adj tj� plays an important role in
the performance of the retrieval system. Neither a big extra boost weight as in Weight1
and Weight5 nor a too small extra boost as in Weight3 that has zero amount of extra
boost leads to the best results. A moderate extra boost weight such as the extra boost
weights in Weight2 and Weight4 produces better retrieval results. More experiments
and analyses need to be done in the future to confirm our findings in this paper and to
establish the best form of the extra boost weight for compound unit weighting.

ACKNOWLEDGMENTS

This research was supported by an ORS award from the Committee of Vice-
Chancellors and Principals of United Kingdom and a Centenary Scholarship from City
University. We would like to thank the anonymous reviewers for their valuable com-
ments. We also would like to thank University of Waterloo and University of Regina
for providing computer facilities for conducting the experiments reported in the paper.

REFERENCES

Beaulieu, M. M., M. Gatford, X. Huang, S. E. Robertson, S. Walker, and P. Williams. 1996.
Okapi at TREC-5. In Proceedings of the Fifth Text REtrieval Conference (TREC-5), Gaithers-
burg. Edited by D. K. Harman. NIST Special Publication, pp. 143–166.

Buckley, C., A. Singhal, and M. Mitra. 1996. Using query zoning and correlation within SMART:
TREC-5. In Proceedings of the Fifth Text REtrieval Conference (TREC-5), Gaithersburg. Edited
by D. K. Harman. NIST Special Publication, pp. 105–118.

Chen, G. 1992. On single Chinese character retrieval system. Journal of Information, 11(1):11–18 (in
Chinese).

Chien, L. F. 1995. Fast and quasi-natural language search for gigabits of Chinese texts. SIGIR,
95:112–120.

Croft, W. B., and D. T. Harper. 1979. Using probabilistic models of document retrieval without
relevance information. Journal of Documentation, 35(4):285–295.

Gey, F., A. Chen, J. He, L. Xu, and J. Meggs. 1996. Term importance, Boolean conjunct training,
negative terms, and foreign language retrieval: probabilistic algorithms at TREC-5. In Proceedings



Probability-based Chinese Text Processing and Retrieval 569

of the Fifth Text REtrieval Conference (TREC-5), Gaithersburg. Edited by D. K. Harman. NIST
Special Publication, pp. 181–190.

Huang, X., and S. E. Robertson. 1997. Application of probabilistic methods to Chinese text retrieval.
Journal of Documentation, 53(1):74–79.

Huang, X., S. E. Robertson, N. Cercone, and A. An. 1999. The probability-based Chinese text pro-
cessing and retrieval. In Proceedings of the Conference of Pacific Association for Computational
Linguistics (PACLING’99). University of Waterloo, Waterloo, Canada, pp. 223–235.

Kwok, K. L., J. H. Frundeld, and J. H. Xu. 1997. TREC-6 English and Chinese retrieval experiments
using PIRCS. In Proceedings of the Sixth Text REtrieval Conference (TREC-6), Gaithersburg.
Edited by D. K. Harman. NIST Special Publication, pp. 207–114.

Robertson, S. E., and K. Sparck Jones. 1976. Relevance weighting of search terms. Journal of the
American Society for Information Science, 27:129–146.

Robertson, S. E., S. Walker, andM. Hancock-Beaulieu. 1995. Large test collection experiments on
an operational, interactive system: OKAPI at TREC. Information Processing and Management,
31(3):345–360.

Sparck Jones, K., 1979. Search relevance weighting given little relevance information. Journal of
Documentation, 35(1):30–48.

Voorhees, E. and D. Harman. 1997. Overview of the Sixth Text REtrieval Conference (TREC-6).
In Proceedings of the Sixth Text REtrieval Conference (TREC-6), Gaithersburg. NIST Special
Publication, 1–24.

Willett, P. 1979. Document retrieval experiments using indexing vocabularies of varying size: II.
Hashing, truncation, digram and trigram encoding of index terms. Journal of Documentation,
35(4):296–305.

Wu, Z., and G. Tseng. 1993. Chinese text segmentation for text retrieval: Achievement and Problems.
Journal of the American Society for Information Science, 44(9):532–541.


