
HDL Windows Designer Compatible with the PALASM Platform

ALIN BADEA, LORAND BOGDANFFY
Department of Control Engineering, Computers, Electrical and Power Engineering

University of Petrosani
20 University Street, 332006, Petrosani

ROMANIA
ghost_0100@yahoo.com, lorand1985@yahoo.com, www.upet.ro

Abstract:- This paper presents a high level view of circuit design and how it can be achieved using hardware
description languages as well as the different levels of abstractions that are available to the designer using one
of these languages. The paper also presents the characteristicss that describe a PAL circuit. A short description
of PALASM HDL is presented and then the paper goes on to describe how a PALASM Windows designer was
designed and implemented using the OOP paradigm and the C# 2010 language. Finally the paper presents an
example of using the designed application to implement a left-right drive control for a motor assembly.

Key-Words:- HDL, PALASM, Windows Designer, PAL, PLD, WPF, C#

1 Introduction
Circuit design using HDL is achieved by creating a
textual description of a circuit or logic digital
system. Systems and hardware circuits are described
at different levels of abstraction using HDL. Starting
at the highest level using the concept of system or
conceptually representing a high level description.
The algorithm level describes the behavior of the
project in mathematical terms.

Neither the concept of system nor the algorithm
describe how the project behavior will be
implemented. The algorithm structure in the
hardware is described by architecture. The
architecture identifies the high level functional
blocks that will be used and the interconnections
between these blocks. The algorithm level and the
architecture describe the behavior of the project well
enough for it to be verified and simulated.

The next level of the architecture is the register
transfer level. This level describes the register
storage and the transfer of data in the project along
with the logic operations on the data. This level is
used mostly by synthesis tools that describe the
structure of the project. Logic gates are
implemented using transistors. The HDL can offer a
comutation description level that models the
transistor like a switch. When working with HDLs,
the designer chooses the language and the desired
abstraction level. When choosing an HDL the
following things need to be considered;

• The availability of process automation tools
to offer support for the selected language;

• Prior knowledge;
• Personal preferences;
• Availability of simulation tools;
• Sinthesys capabilities;
• Reusing the design;
• The need to learn the language and its

capabilities;
• The existence of standards for the language;
• Access to these standards;
• The code produces is easy to read

Because programming PLD circuits is relatively

easy to do the PALASM language was designed to
desccribe the PAL circuits, create the AND matrix
connections, simulate the circuit and in the end
program them.
Each PAL circuit is described using the following
parameters:

• Number of input pins;
• Number of output pins;
• Number of I/O pins;
• The number of product terms of each

output;
• Number of flip-flops;
• Active logic.

PALASM is a hardware description language

used to translate logic functions and state transition
tables to fuse maps in order to program PAL
devices. The last version of this software platform
ran under the DOS operating system and was
developed by Advanced Micro Devices.

Latest Trends in Applied Computational Science

ISBN: 978-1-61804-171-5 79

mailto:ghost_0100@yahoo.com�
mailto:lorand1985@yahoo.com�
http://www.upet.ro/�

2 Problem formulation
PALASM is a HDL used to program PAL devices.
These contain a programable AND gate input matrix
and an OR gate output matrix. There exists a large
variety of PAL devices designed for implementing
relatively simple logic functions with combinatorial
and sequential inputs and outputs.

Beeing available only under the DOS operating
system the application has many inconvenients
when running on modern computers.

The goal of this paper is to present the design
and implementation of a software platform that runs
on the Windows operating system and is based on
the DOS version of the PALASM platform created
by AMD. The paper also presents a practical
application implemented using this software
platform.

3 Problem solution
In order to solve some of the problems that the old
PALASM software has when running on modern
computers this section proposes a new application
that is designed to run under the Windows operating
system.

This application is designed to be compatible
with the older PALASM version that runs on the
DOS operating system and offers a user friendly
interface that is easier to use.

3.1 Configuration file
The application is designed and implemented using
the OOP paradigm in the C# language and has a
friendly user interface built using WPF. The GUI
uses the PALASM software compiler developed by
AMD and a custom configuration file.

The configuration file contains compilation
settings, simulation settings, logic synthesis settings
and data regarding the current project beeing
developed.

All of these are stored using custom
configuration sections. When the PALASM
compiler and simulator are run the settings in the
configuration file are passed to them as parameters.

The configuration settings are stored in three
classes. These classes are necesary in order to use
the custom configuration sections inside the
App.config file of the application.

These settings are read from the XML file using
APIs provided by the .NET platform. The class
diagrams for these clases are presented next.

Fig.1 Configuration sections a) Compilation b)

Simulation c)Logic synthesis

These settings can be accessed and changed in
the application using the settings window. The GUI
for this window is presented next.

Fig.2 Settings window

As can be seen from the above figure this

window also allows the user to also change
environment settings. In order to read the settings
from the configuration file the custom configuration
section classes are used.

The structure of the configuration file is
presented next.

3.2 General project data
The information regarding the current project are
stored in the ProjectData class. The structure of this
class is presented next.

Latest Trends in Applied Computational Science

ISBN: 978-1-61804-171-5 80

Fig.3 ProjectData class

As can be seen from the above figure this class

stores information about the current working
directory, the device name, the project file name and
the file that holds a list of all available PAL and
GAL devices. Some of this information
(DeviceName, FileName, InputFormat) is set when
a new project is created and cannot be changed after
that. The rest of the information can be changed
using the Environment tab of the settings window.

3.3 Pin and node information
When a new project is created the information
regarding pin and node settings are stored in the
PinData class. The structure of this class is
presented next.

Fig.4 PinData class

This class exposes some properties that allow a

pin or node declaration to be changed. The PinType
property is used to declare either a pin or a node.
The StorageType property can be used to define the
pin or node as a registered, combinatorial, latched or
default (combinatorial). In order to declare a new
pin or node when the NewProject window is open
the user can press the AddNew button. When this
button is pressed a new pin having a default
configuration will be added to the list of pins. Pin

settings can be changed by entering the new data in
the available textboxes of by selecting available
values from the comboboxes. The GUI of the
NewProject window is presented next.

Fig.5 NewProject window

3.4 The Controller class
This class cotains properties that provide access to
the application settings as well as some methods that
are used to compile and simulate the current project.
The structure of this class is presented next.

Fig.6 The Controller class

The compilation and simulation of the current

project is done using the Compilation and
Simulation methods. These methods are called in a
separate thread using the BackgroundWorker
component available in C# in orded not to cause the
UI to block. The code that starts the compilation and
simulation processes is presented in the following
snippet.

When the compilation or the simulation is
complete the following code is executed which fires
one of two events.

Latest Trends in Applied Computational Science

ISBN: 978-1-61804-171-5 81

The CompilationEnded and SimulationEnded
events are used to display the results of the
compilation and simulation processes. The
compilation and simulation of the current project is
achieved using the PALASM compiler and
simulator created by AMD which are available in
the DOS version.

In order to start the compiler and the simulator
the Process class (available in the .NET platform) is
used as follows.

• Create an instance of the Process class
• Initialize this class by setting the StartInfo

property
For StartInfo we set the following properties

o The name of the compiler file, using
the FileName property

o The compiler parameters using the
Arguments property

o The Directory from which the file
will launched using the
WorkingDirectory property

• The Start method of the Process class is
called

• The WaitForExit method is called in order
to wait for the current process to complet
before starting a new process

• Close the process.

The compilation and simulation processes create
an intermediary file and a log file. After each
process is complete the log file is read and
displayed. This file contains the results of the
compilation or simulation and may contain errors.

3.5 The G.U.I.
The designed application is used to create, edit,
compile and simulate PALASM design files. The
main application window is divided into 2 sections:
an editor section at the top and an output section at
the bottom that displays log messages from the
compiler and simulator. The main window also has
a status bar with details about the current project
and a toolbar that contains common menu shortcuts.
This window is presented in the following figure.
The parser created by AMD was used.

Fig.7 Application main window

As can be seen from teh above figure the main

window of the application is divided into two
sections. The upper section is used to edit the
current project file and the bottom section is used to
display the results of the compilation and simulation
processes. The botttom section also contains details
about the current project.

The application can open multiple files related to
the current project where each open file will appear
in its own tab. When the user opens a file other thatn
the current design by using the View menu options
the content of this file will be displayed in a new tab
as can be seen from the following figure.

Fig.8 Simulation process results

In order to create a new design the New option of

the File menu is used. The NewProject window that
is shown allows the user to specify initial project
data like the chip that is used, the list of pins and
nodes and others.

3.6 Practical application
In order to demonstrate the usefulness and ease of
use of the designed platform a controller was
implemented that allows reversible starting of a
motor assembly.

Latest Trends in Applied Computational Science

ISBN: 978-1-61804-171-5 82

The diagram of the controller for the reversible
starting is presented in the following figure:

Fig.9 controller diagram

Based on the above diagram the logic functions

are determined.
𝑄𝑄1 = 𝑂𝑂� ∗ (𝑃𝑃1 + 𝑄𝑄1) ∗ 𝑄𝑄2���� (1)
𝑄𝑄2 = 𝑂𝑂� ∗ (𝑃𝑃2 + 𝑄𝑄2) ∗ 𝑄𝑄1��� (2)

The logic functions were then programmed into a

PAL device using the designed application. A new
project was created using the menu options.

Fig. 10 Create new project

The logic eqquations were them programmed

into the project.

Fig.11 Code window

The project was then compiled and simulated.

The results of the simulation are shown in the
following figure.

Fig.12 Simulation results

4 Conclusion
Even though the PALASM language is not used as
much as it was in the early 90s it is still used to
program simple logic functions into PAL devices.
The software platform that was presented in this
paper runs under the Windows operating systems
offering a user friendly and intuitive interface with
relatively few menu options. In case of errors
durring the simulation and compilation processes
the bad lines of code can be easily identified since
the application displayes both the code window and
the log window on the screen at the same time. Also
since the application can open multiple files, related
project files can be viewed more easily.

References:
[1] *** PALASM User Guide.
[2] Pop E., Automatizari in industria miniera.
Editura Didactica si Pedagogica, Bucuresti, 1983
[3] Torelsen A., Pro C# 2010 and the .NET 4
Platform 5th ed., Apress, 2010.
[4]B. Cohen, VHDL Coding Styles and
Methodologies 2nd ed. Kluwer Academic Publishers,
2002.
[5] F. Badea, E. Pop, Approache to Designing the
Graphic User Interface Components for Mobile
SCADA HMIs and Application, Proceedings of the
11th WSEAS International Conference
DNCOCO’12, Sliema, Malta, ISBN: 978-1-61804-
118-0, 2012.
[6] O.Hachour, N.Mastorakis, IAV: A VHDL
Methodology for FPGA implementation, WSEAS
Transactions on Circuits and Systems, 2004.
[7] A. Avram, E. Pop, C. Barbu, VLSI Embedded
Solution for Multi-Drive Conveyors Control,
Proceedings of the International Conference on
Applied Computer Science (ACS), WSEAS, Malta,
September 15-17, 2010.

Latest Trends in Applied Computational Science

ISBN: 978-1-61804-171-5 83

