
Zero-Knowledge twenty years after its inventionOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.Email: oded@wisdom.weizmann.ac.ilFirst draft posted in July 2002Current version: December 3, 2002AbstractZero-knowledge proofs are proofs that are both convincing and yet yield nothing beyondthe validity of the assertion being proven. Since their introduction about twenty years ago,zero-knowledge proofs have attracted a lot of attention and have, in turn, contributed to thedevelopment of other areas of cryptography and complexity theory.We survey the main de�nitions and results regarding zero-knowledge proofs. Speci�cally,we present the basic de�nitional approach and its variants, results regarding the power of zero-knowledge proofs as well as recent results regarding questions such as the composeability ofzero-knowledge proofs and the use of the adversary's program within the proof of security (i.e.,non-black-box simulation).

Contents1 Introduction 11.1 The Basics : 11.2 Advanced Topics : 21.3 Comments : 2I The Basics 32 Preliminaries 32.1 Interactive proofs and argument systems : 42.2 Computational Di�culty and One-Way Functions : 62.3 Computational Indistinguishability : 63 De�nitional Issues 73.1 The Simulation Paradigm : 73.2 The Basic De�nition : 83.3 Variants : 93.3.1 Universal and black-box simulation : 93.3.2 Honest veri�er versus general cheating veri�er : 103.3.3 Statistical versus Computational Zero-Knowledge : 103.3.4 Strict versus expected probabilistic polynomial-time : 114 Zero-Knowledge Proofs for every NP-set 114.1 Constructing Zero-Knowledge Proofs for NP-sets : 124.2 Using Zero-Knowledge Proofs for NP-sets : 14II Advanced Topics 145 Composing zero-knowledge protocols 145.1 Sequential Composition : 155.2 Parallel Composition : 165.3 Concurrent Composition (with and without timing) : 176 Using the adversary's program in the proof of security 19Digest: Witness Indistinguishability and the FLS-Technique : 217 Proofs of Knowledge 227.1 How to de�ne proofs of knowledge : 227.2 How to construct proofs of knowledge : 238 Non-Interactive Zero-Knowledge 239 Statistical Zero-Knowledge 249.1 Transformations : 259.2 Complete problems and structural properties : 2510 Knowledge Complexity 2611 Resettability of a party's random-tape (rZK and rsZK) 2712 Zero-knowledge in other models 2713 A source of inspiration for complexity theory 28References 29

1 IntroductionZero-Knowledge proofs, introduced by Goldwasser, Micali and Racko� [66], are fascinating andextremely useful constructs. Their fascinating nature is due to their seemingly contradictory de�-nition; zero-knowledge proofs are both convincing and yet yield nothing beyond the validity of theassertion being proven. Their applicability in the domain of cryptography is vast; they are typicallyused to force malicious parties to behave according to a predetermined protocol. In addition totheir direct applicability in Cryptography, zero-knowledge proofs serve as a good bench-mark forthe study of various problems regarding cryptographic protocols (e.g., the \preservation of securityunder various forms of protocol composition" and the \use of of the adversary's program withinthe proof of security").In this tutorial we present the basic de�nitions and results regarding zero-knowledge protocolsas well as some recent developments regarding this notion. The rest of the introduction provides ahigh-level summary of the tutorial.
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

?

!

?

!

??

 !

X X is true!

Figure 1: Zero-knowledge proofs { an illustration.1.1 The BasicsLoosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity of theassertion. That is, a veri�er obtaining such a proof only gains conviction in the validity of the asser-tion. This is formulated by saying that anything that is feasibly computable from a zero-knowledgeproof is also feasibly computable from the (valid) assertion itself (by a so-called simulator). Variantson the basic de�nition include:� Consideration of auxiliary inputs.� Mandating of universal and black-box simulations.� Restricting attention to honest (or rather semi-honest) veri�ers.� The level of similarity required of the simulation.It is well-known that zero-knowledge proofs exist for any NP-set, provided that one-way functionsexist. This result is a powerful tool in the design of cryptographic protocols, because it enables toforce parties to behave according to a predetermined protocol (i.e., the protocol requires partiesto provide zero-knowledge proofs of the correctness of their secret-based actions, without revealingthese secrets). 1

Organization of Part 1: We start with some preliminaries (Section 2), which are central tothe \mind-set" of the notion of zero-knowledge. In particular, we review the de�nitions of inter-active proofs and arguments as well as the de�nitions of computational indistinguishability (whichunderlies the de�nition of general zero-knowledge) and of one-way functions (which are used inconstructions). We then turn to the de�nitional treatment of zero-knowledge itself (Section 3).Finally, we discuss the constructibility and applicability of zero-knowledge proofs (Section 4).1.2 Advanced TopicsWe start with two basic problems regarding zero-knowledge, which actually arise also with respectto the security of other cryptographic primitives. The �rst question refers to the preservation ofsecurity (i.e., zero-knowledge in our case) under various types of composition operations. We surveythe known results regarding sequential, parallel and concurrent execution of (arbitrary and/orspeci�c) zero-knowledge protocols. The main facts are:� Zero-knowledge (with respect to auxiliary inputs) is closed under sequential composition.� In general, zero-knowledge is not closed under parallel composition. Yet, some zero-knowledgeproofs (for NP) preserve their security when many copies are executed in parallel. Further-more, some of these protocol use a constant number of rounds.� Some zero-knowledge proofs (for NP) preserve their security when many copies are executedconcurrently, but such a result is not known for constant-round protocols.The second basic question regarding zero-knowledge refers to the usage of the adversary's programwithin the proof of security (i.e., demonstration of the zero-knowledge property). For 15 years, allknown proofs of security used the adversary's program as a black-box (i.e., a universal simulatorwas presented using the adversary's program as an oracle). Furthermore, it was believed that thereis no advantage in having access to the code of the adversary's program. Consequently it wasconjectured that negative results regarding black-box simulation represent an inherent limitationof zero-knowledge. This believe has been refuted recently by the presentation of a zero-knowledgeargument (for NP) that has important properties that are unachievable by black-box simulation.For example, this zero-knowledge argument uses a constant number of rounds and preserves itssecurity when an (a-priori �xed polynomial) number of copies are executed concurrently.1Organization of Part 2: The composeability of zero-knowledge proofs is discussed in Section 5and the use of the adversary's program within the proof of security is discussed in Section 6. Othertopics treated in the second part of this tutorial include proofs of knowledge (Section 7), Non-Interactive Zero-Knowledge proofs (Section 8), Statistical Zero-Knowledge (Section 9), KnowledgeComplexity (Section 10), and resettability of a party's random-tape (Section 11).1.3 CommentsThe notion of zero-knowledge has had a vast impact on the development of cryptography. Inparticular, zero-knowledge proofs of various types were explicitly used (as a tool) in a variety ofapplications. We wish to highlight also the indirect impact of zero-knowledge on the de�nitional1 This result falls short of achieving a fully concurrent zero-knowledge argument, because the number of concurrentcopies must be �xed before the protocol is presented. Speci�cally, the protocol uses messages that are longer thanthe allowed number of concurrent copies. 2

approach underlying the foundations of cryptography (cf. Section 3.1). In addition, zero-knowledgehas served as a source of inspiration for complexity theory (cf. Section 13).A Brief Historical Account (regarding the main part of the tutorial): The concept of zero-knowledge has been introduced by Goldwasser, Micali, and Racko� [66]. Although their work, whichalso introduced interactive proof systems, has �rst appeared in STOC95, early versions of it haveexisted as early as in 1982 (and were rejected three times from major conferences; i.e., FOCS83,STOC84, and FOCS84). The wide applicability of zero-knowledge proofs was �rst demonstratedby Goldreich, Micali and Wigderson, who showed how to construct zero-knowledge proof systemsfor any NP-set, using any commitment scheme [57]. An important technique for the design ofzero-knowledge was introduced by Feige, Lapidot and Shamir [38], based on the notion of witnessindistinguishability (which was introduced by Feige and Shamir [39]). Important contributions tothe study of the sequential, parallel and concurrent composition of zero-knowledge protocols werepresented in [55, 59], [55, 51] and [34, 81, 28, 72, 7], respectively. The power of non-black-boxsimulators has been recently discovered by Barak [7].Suggestions for further reading: For further details regarding most of the material, the readeris referred to [49, Chap. 4]. For a wider perspective on probabilistic proof systems, the reader isreferred to [48, Chap. 2].The current version: This is a minor revision of the �rst draft (dated July 31, 2002).Part IThe Basics2 PreliminariesModern Cryptography, is concerned with the construction of e�cient schemes for which it is in-feasible to violate the security feature. The same concern underlies the main de�nitions of zero-knowledge. Thus, for starters, we need a notion of e�cient computations as well as a notion ofinfeasible ones. The computations of the legitimate users of the scheme ought be e�cient, whereasviolating the security features (via an adversary) ought to be infeasible.E�cient computations are commonly modeled by computations that are polynomial-time in thesecurity parameter. The polynomial bounding the running-time of the legitimate user's strategy is�xed and typically explicit (and small). Here (i.e., when referring to the complexity of the legitimateusers) we are in the same situation as in any algorithmic setting. Things are di�erent when referringto our assumptions regarding the computational resources of the adversary. A common approach isto postulate that the latter are polynomial-time too, where the polynomial is not a-priori speci�ed.In other words, the adversary is restricted to the class of e�cient computations and anything beyondthis is considered to be infeasible. Although many de�nitions explicitly refer to this convention,this convention is inessential to any of the results known in the area. In all cases, a more generalstatement can be made by referring to adversaries of running-time bounded by any super-polynomialfunction (or class of functions). Still, for sake of concreteness and clarity, we shall use the formerconvention in our treatment. 3

Actually, in order to simplify our exposition, we will often consider as infeasible any computationthat cannot be conducted by a (possibly non-uniform) family of polynomial-size circuits. Forsimplicity we consider families of circuits fCng, where for some polynomials p and q, each Cn hasexactly p(n) input bits and has size at most q(n).Randomized computations play a central role in the de�nition of zero-knowledge (as well as incryptography at large). That is, we allow the legitimate users to employ randomized computations,and likewise we consider adversaries that employ randomized computations. This brings up theissue of success probability: typically, we require that legitimate users succeed (in ful�lling theirlegitimate goals) with probability 1 (or negligibly close to this), whereas adversaries succeed (inviolating the security features) with negligible probability. Thus, the notion of a negligible probabilityplays an important role in our exposition. One feature required of the de�nition of negligibleprobability is to yield a robust notion of rareness: A rare event should occur rarely even if werepeat the experiment for a feasible number of times. Likewise, we consider two events to occur\as frequently" if the absolute di�erence between their corresponding occurrence probabilities isnegligible. For concreteness, we consider as negligible any function � :N! [0; 1] that vanishes fasterthan the reciprocal of any polynomial (i.e., for every positive polynomial p and all su�ciently bign, it holds that �(n) < 1=p(n)).2.1 Interactive proofs and argument systemsBefore de�ning zero-knowledge proofs, we have to de�ne proofs. The standard notion of static (i.e.,non-interactive) proofs will not do, because static zero-knowledge proofs exist only for sets that areeasy to decide (i.e, are in BPP) [59] whereas we are interested in zero-knowledge proofs for arbitraryNP-sets. Instead, we use the notion of an interactive proof (introduced exactly for that reason byGoldwasser, Micali and Racko� [66]). That is, here a proof is a (multi-round) randomized protocolfor two parties, called veri�er and prover, in which the prover wishes to convince the veri�er ofthe validity of a given assertion. Such an interactive proof should allow the prover to convince theveri�er of the validity of any true assertion, whereas no prover strategy may fool the veri�er toaccept false assertions. Both the above completeness and soundness conditions should hold withhigh probability (i.e., a negligible error probability is allowed).We comment that interactive proofs emerge naturally when associating the notion of e�-cient veri�cation, which underlies the notion of a proof system, with probabilistic and interactivepolynomial-time computations. This association is quite natural in light of the growing acceptabil-ity of randomized and distributed computations. Thus, a \proof" in this context is not a �xed andstatic object, but rather a randomized and dynamic (i.e., interactive) process in which the veri�erinteracts with the prover. Intuitively, one may think of this interaction as consisting of \tricky"questions asked by the veri�er, to which the prover has to reply \convincingly". The above discus-sion, as well as the following de�nition, makes explicit reference to a prover, whereas a prover isonly implicit in the traditional de�nitions of proof systems (e.g., NP-proofs).Loosely speaking, an interactive proof is a game between a computationally bounded veri�erand a computationally unbounded prover whose goal is to convince the veri�er of the validity ofsome assertion. Speci�cally, the veri�er is probabilistic polynomial-time. It is required that if theassertion holds then the veri�er always accepts (i.e., when interacting with an appropriate proverstrategy). On the other hand, if the assertion is false then the veri�er must reject with \noticeable"probability, no matter what strategy is being employed by the prover. Indeed, the error probability(in the soundness condition) can be reduced by (either sequential or parallel) repetitions.De�nition 1 (Interactive Proof systems and the class IP [66]): An interactive proof system for a set4

S is a two-party game, between a veri�er executing a probabilistic polynomial-time strategy (denotedV) and a prover which executes a computationally unbounded strategy (denoted P), satisfying� Completeness: For every x 2 S the veri�er V always accepts after interacting with the proverP on common input x.� Soundness: For some polynomial p, it holds that for every x 62 S and every potential strat-egy P �, the veri�er V rejects with probability at least 1=p(jxj), after interacting with P � oncommon input x.The class of problems having interactive proof systems is denoted IP.Note that by repeating such a proof system for O(p(jxj)2) times, we may decrease the probabilitythat V accepts a false statement (from 1�(1=p(jxj))) to 2�p(jxj). Thus, when constructing interactiveproofs we sometimes focus on obtaining a noticeable rejection probability for no-instances (i.e.,obtaining soundness error bounded away from 1), whereas when using interactive proofs we typicallyassume that their soundness error is negligible.Variants: Arthur-Merlin games (a.k.a public-coin proof systems), introduced by Babai [4], are aspecial case of interactive proofs in which the veri�er must send the outcome of any coin it tosses(and thus need not send any other information). Yet, as shown in [67], this restricted case hasessentially the same power as the general case (introduced by Goldwasser, Micali and Racko� [66]).Thus, in the context of interactive proof systems, asking random questions is as powerful as asking\tricky" questions. (As we shall see, this does not necessarily hold in the context of zero-knowledgeproofs.) Also, in some sources interactive proofs are de�ned so that two-sided error probability isallowed (rather than requiring \perfect completeness" as done above); yet, this does not increasetheir power [44].Arguments (or Computational Soundness): A fundamental variant on the notion of inter-active proofs was introduced by Brassard, Chaum and Cr�epeau [21], who relaxed the soundnesscondition so that it only refers to feasible ways of trying to fool the veri�er (rather than to allpossible ways). Speci�cally, the soundness condition was replaced by the following computationalsoundness condition that asserts that it is infeasible to fool the veri�er into accepting false state-ments.For every polynomial p, every prover strategy that is implementable by a family ofpolynomial-size circuits fCng, and every su�ciently large x 2 f0; 1g�nS, the probabilitythat V accepts x when interacting with Cjxj is less than 1=p(jxj).We warn that although the computational-soundness error can always be reduced by sequentialrepetitions, it is not true that this error can always be reduced by parallel repetitions (cf. [14]).Protocols that satisfy the computational-soundness condition are called arguments.2 We mentionthat argument systems may be more e�cient than interactive proofs (see [70, 53]).Terminology. Whenever we wish to blur the distinction between proofs and arguments, we willuse the term protocols. We will consider such a protocol trivial if it establishes membership in aBPP-set (because membership in such a set can be determined by the veri�er itself). On the otherhand, we will sometimes talk about protocols for NP , when what we actually mean is protocolsfor each set in NP. (This terminology is quite common in the area.)32 A related notion not discussed here is that of CS-proofs, introduced by Micali [75].3 See [9] for further discussion of the distinction. 5

2.2 Computational Di�culty and One-Way FunctionsMost positive results regarding zero-knowledge proofs are based on intractability assumptions.Furthermore, the very notion of a zero-knowledge proof is interesting only in case the assertionbeing proven to be valid is hard to verify in probabilistic polynomial-time. Thus, our discussionalways assumes (at least implicitly) that IP is not contained in BPP , and often we explicitlyassume more than that.In general, Modern Cryptography is concerned with the construction of schemes that are easy tooperate (properly) but hard to foil. Thus, a complexity gap (i.e., between the complexity of properusage and the complexity of defeating the prescribed functionality) lies in the heart of ModernCryptography. However, gaps as required for Modern Cryptography are not known to exist; theyare only widely believed to exist. Indeed, almost all of Modern Cryptography rises or falls withthe question of whether one-way functions exist. One-way functions are functions that are easy toevaluate but hard (on the average) to invert (cf. [32]). That is, a function f : f0; 1g� !f0; 1g� iscalled one-way if there is an e�cient algorithm that on input x outputs f(x), whereas any feasiblealgorithm that tries to �nd a preimage of f(x) under f may succeed only with negligible probability(where the probability is taken uniformly over the choices of x and the algorithm's coin tosses).Associating feasible computations with (possibly non-uniform) families of polynomial-size circuits,we obtain the following de�nition.De�nition 2 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the followingtwo conditions hold:1. easy to evaluate: There exist a polynomial-time algorithm A such that A(x) = f(x) for everyx 2 f0; 1g�.2. hard to invert: For every family of polynomial-size circuits fCng, every polynomial p, and allsu�ciently large n, Pr[Cn(f(x)) 2 f�1(f(x))] < 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gn.Some of the most popular candidates for one-way functions are based on the conjectured intractabil-ity of computational problems in number theory. One such conjecture is that it is infeasible to factorlarge integers. Consequently, the function that takes as input two (equal length) primes and outputstheir product is widely believed to be a one-way function.Terminology. Some of the (positive) results mentioned below require stronger forms of one-wayfunctions (e.g., one-way permutations with (or without) trapdoor [49, Sec. 2.4.4] and claw-freepermutation pairs [49, Sec. 2.4.5]). Whenever we wish to avoid the speci�c details, we will talkabout standard intractability assumptions. In all cases, the conjectured intractability of factoringwill su�ce.2.3 Computational IndistinguishabilityA central notion in Modern Cryptography is that of \e�ective similarity" (introduced by Gold-wasser, Micali and Yao [65, 86]). The underlying thesis is that we do not care whether or notobjects are equal, all we care is whether or not a di�erence between the objects can be observed by6

a feasible computation. In case the answer is negative, the two objects are equivalent as far as anypractical application is concerned. Indeed, like in many other cryptographic de�nitions, in the def-inition of general/computational zero-knowledge we will freely interchange such (computationallyindistinguishable) objects.The asymptotic formulation of computational indistinguishability refers to (pairs of) probabil-ity ensembles, which are in�nite sequences of �nite distributions, rather than to (pairs of) �nitedistributions. Speci�cally, we consider sequences indexed by strings (rather than by integers (inunary representation)). For S � f0; 1g�, we consider the probability ensembles X = fX�g�2Sand Y = fY�g�2S , where each X� (resp., Y�) is a distribution that ranges over strings of lengthpolynomial in j�j. We say that X and Y are computationally indistinguishable if for every feasiblealgorithm A the di�erence dA(n) def= max�2f0;1gnfjPr[A(X�) = 1] � Pr[A(Y�) = 1]jg is a negligiblefunction in j�j. That is:De�nition 3 (computational indistinguishability [65, 86]): We say that X = fX�g�2S and Y =fY�g�2S are computationally indistinguishable if for every family of polynomial-size circuits fDng,every polynomial p, all su�ciently large n and every � 2 f0; 1gpoly(n) \ S,jPr[Dn(X�)=1] � Pr[Dn(Y�)=1]j < 1p(n)where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn).That is, we think of D = fDng as of somebody who wishes to distinguish two distributions (basedon a sample given to it), and think of 1 as of D's verdict that the sample was drawn accordingto the �rst distribution. Saying that the two distributions are computationally indistinguishablemeans that if D is an e�cient procedure then its verdict is not really meaningful (because theverdict is almost as often 1 when the input is drawn from the �rst distribution as when the inputis drawn from the second distribution).We comment that indistinguishability by a single sample (as de�ned above) implies indistin-guishability by multiple samples. Also note that the de�nition would not have been stronger if wewere to provide the distinguisher (i.e., D) with the index (i.e., �) of the distribution-pair beingtested.43 De�nitional IssuesLoosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity of theassertion. That is, a veri�er obtaining such a proof only gains conviction in the validity of theassertion. This is formulated by saying that anything that can be feasibly obtained from a zero-knowledge proof is also feasibly computable from the (valid) assertion itself. The latter formulationfollows the simulation paradigm, which is discussed next.3.1 The Simulation ParadigmIn de�ning zero-knowledge proofs, we view the veri�er as a potential adversary that tries to gainknowledge from the (prescribed) prover. We wish to state that no (feasible) adversary strategy for4 Furthermore, the de�nition would not have been stronger if we were to consider a specialized polynomial-sizecircuit per each � 2 S (i.e., consider the di�erence jPr[D�(X�) = 1] � Pr[D�(Y�) = 1]j for any set of circuitsD = fD�g�2S such that the size of D� is polynomial in j�j).7

the veri�er can gain anything from the prover (beyond conviction in the validity of the assertion).Let us consider the desired formulation from a wide perspective.A key question regarding the modeling of security concerns is how to express the intuitive re-quirement that an adversary \gains nothing substantial" by deviating from the prescribed behaviorof an honest user. Our approach is that the adversary gains nothing if whatever it can obtainby unrestricted adversarial behavior can be obtained within essentially the same computationale�ort by a benign behavior. The de�nition of the \benign behavior" captures what we want toachieve in terms of security, and is speci�c to the security concern to be addressed. For example,in the previous paragraph, we said that a proof is zero-knowledge if it yields nothing beyond thevalidity of the assertion (i.e., the benign behavior is any computation that is based (only) on theassertion itself, while assuming that the latter is valid). Thus, in a zero-knowledge proof no feasibleadversarial strategy for the veri�er can obtain more than a \benign veri�er", which believes theassertion, can obtain from the assertion itself. We comment that the simulation paradigm, whichwas �rst developed in the context of zero-knowledge [66], is pivotal also to the de�nition of thesecurity of encryption schemes (cf. [50, Chap. 5]) and cryptographic protocols (cf. [24, 47]).A notable property of de�ning security (or zero-knowledge) via the simulation paradigm is thatthis approach is \overly liberal" with respect to its view of the abilities of the adversary as well asto what might constitute a gain for the adversary. Thus, the approach may be considered overlycautious, because it prohibits also \non-harmful" gains of some \far fetched" adversaries. Wewarn against this impression. Firstly, there is nothing more dangerous in cryptography than toconsider \reasonable" adversaries (a notion which is almost a contradiction in terms): typically, theadversaries will try exactly what the system designer has discarded as \far fetched". Secondly, itseems impossible to come up with de�nitions of security that distinguish \breaking the scheme in aharmful way" from \breaking it in a non-harmful way": what is harmful is application-dependent,whereas a good de�nition of security ought to be application-independent (as otherwise using thescheme in any new application will require a full re-evaluation of its security). Furthermore, evenwith respect to a speci�c application, it is typically very hard to classify the set of \harmfulbreakings".3.2 The Basic De�nitionZero-knowledge is a property of some prover strategies. More generally, zero-knowledge is a propertyof some interactive machines. Fixing an interactive machine (e.g., a prescribed prover), we considerwhat can be computed by an arbitrary feasible adversary (e.g., a veri�er) that interacts withthe �xed machine on a common input taken from a predetermined set (in our case the set of validassertions). This is compared against what can be computed by an arbitrary feasible algorithm thatis only given the input itself. An interactive strategy A is zero-knowledge on (inputs from) the set Sif, for every feasible (interactive) strategy B�, there exists a feasible (non-interactive) computationC� such that the following two probability ensembles are computationally indistinguishable:1. f(A;B�)(x)gx2S def= the output of B� after interacting with A on common input x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.We stress that the �rst ensemble represents an actual execution of an interactive protocol, whereasthe second ensemble represents the computation of a stand-alone procedure (called the \simulator"),which does not interact with anybody. Thus, whatever can be feasibly extracted from interactionwith A on input x 2 S, can also be feasibly extracted from x itself. This means that nothing wasgain by the interaction itself (beyond con�dence in the assertion x 2 S).8

The above de�nition does not account for auxiliary information that an adversary may haveprior to entering the interaction. Accounting for such auxiliary information is essential for usingzero-knowledge proofs as subprotocols inside larger protocols (see [55, 59]). This is taken care ofby a more strict notion called auxiliary-input zero-knowledge.5De�nition 4 (zero-knowledge [66], revisited [59]): A strategy A is auxiliary-input zero-knowledgeon inputs from S if for every probabilistic polynomial-time strategy B� and every polynomial p thereexists a probabilistic polynomial-time algorithm C� such that the following two probability ensemblesare computationally indistinguishable:1. f(A;B�(z))(x)gx2S ; z2f0;1gp(jxj) def= the output of B� when having auxiliary-input z and inter-acting with A on common input x 2 S; and2. fC�(x; z)gx2S ; z2f0;1gp(jxj) def= the output of C� on inputs x 2 S and z 2 f0; 1gp(jxj).An interactive proof (resp., an argument) system for S is called auxiliary-input zero-knowledge if theprescribed prover strategy is auxiliary-input zero-knowledge on inputs from S.6The more basic de�nition of zero-knowledge is obtained by eliminating the auxiliary-input z fromDe�nition 4. We comment that almost all known zero-knowledge proofs are in fact auxiliary-inputzero-knowledge. (Notable exceptions are zero-knowledge proofs constructed on purpose in orderto show a separation between these two notions (e.g., in [55]) and protocols having only \nonblack-box simulators" (see warm-up in [7]).)We stress that the zero-knowledge property of an interactive proof (resp., argument) refers to allfeasible adversarial strategies that the veri�er may employ (in attempt to extract knowledge fromthe prescribed prover that tries to convince the veri�er to accept a valid assertion). In contrast,the soundness property of an interactive proof (resp., the computational-soundness property of anargument) refers to all possible (resp., feasible) adversarial strategies that the prover may employ(in attempt to fool the prescribed veri�er to accept a false assertion). Finally, the completenessproperty (only) refers to the behavior of both prescribed strategies (when given, as common input,a valid assertion).3.3 VariantsThe reader may skip the current subsection and return to it whenever encountering (especially inthe second part of this tutorial) a notion that was not de�ned above.3.3.1 Universal and black-box simulationWe have already discussed two variants on the basic de�nition (i.e., with or without auxiliary-inputs). Further strengthening of De�nition 4 is obtained by requiring the existence of a universal5 We note that the following de�nition seems stronger than merely allowing the veri�er and simulator to bearbitrary polynomial-size circuits. The issue is that the latter formulation does not guarantee that the simulator canbe easily derived from the cheating veri�er nor that the length of the simulator's description is related to the lengthof the description of the veri�er. Both issues are important when trying to use zero-knowledge proofs as subprotocolsinside larger protocols or to compose them (even sequentially). For further discussion, see Section 5.6 Note that the prescribed veri�er strategy (which is a probabilistic polynomial-time strategy that only depends onthe common input) is always auxiliary-input zero-knowledge. In contrast, typical prover strategies are implementedby probabilistic polynomial-time algorithms that are given an auxiliary input (which is not given to the veri�er), butnot by probabilistic polynomial-time algorithms that are only given the common input.9

simulator, denoted C, that is given the program of the veri�er (i.e., B�) as an auxiliary-input; thatis, in terms of De�nition 4, one should replace C�(x; z) by C(x; z; hB�i), where hB�i denotes thedescription of the program of B� (which may depend on x and on z).7 That is, we e�ectivelyrestrict the simulation by requiring that it be a uniform (feasible) function of the veri�er's program(rather than arbitrarily depend on it). This restriction is very natural, because it seems hard toenvision an alternative way of establishing the zero-knowledge property of a given protocol.Taking another step, one may argue that since it seems infeasible to reverse-engineer programs,the simulator may as well just use the veri�er strategy as an oracle (or as a \black-box"). Thisreasoning gave rise to the notion of black-box simulation, which was introduced and advocated in [55]and further studied in numerous works (see, e.g., [28]). The belief was that impossibility resultsregarding black-box simulation represent inherent limitations of zero-knowledge itself. However,this belief has been refuted recently by Barak [7]. For further discussion, see Section 6.3.3.2 Honest veri�er versus general cheating veri�erThe (general) de�nition of zero-knowledge (i.e., De�nition 4) refers to all feasible veri�er strategies.This choice is most natural since zero-knowledge is supposed to capture the robustness of the proverunder any feasible (i.e., adversarial) attempt to gain something by interacting with it. Thus, wetypically view the veri�er as an adversary that is trying to cheat.A weaker and still interesting notion of zero-knowledge refers to what can be gained by an\honest veri�er" (or rather a semi-honest veri�er)8 that interacts with the prover as directed, withthe exception that it may maintain (and output) a record of the entire interaction (i.e., even ifdirected to erase all records of the interaction). Although such a weaker notion is not satisfactoryfor standard cryptographic applications, it yields a fascinating notion from a conceptual as wellas a complexity-theoretic point of view. Furthermore, as shown in [62], every public-coin proofsystem that is zero-knowledge with respect to the honest-veri�er can be transformed into a standardzero-knowledge proof that maintains many of the properties of the original protocol (and withoutincreasing the prover's powers or using any intractability assumptions).We stress that the de�nition of zero-knowledge with respect to the honest-veri�er V is derivedfrom De�nition 4 by considering a single veri�er strategy B that is equal to V except that B alsomaintains a record of the entire interaction (including its own coin tosses) and outputs this record atthe end of the interaction. (In particular, the messages sent by B are identical to the correspondingmessages that would have been sent by V .)3.3.3 Statistical versus Computational Zero-KnowledgeRecall that the de�nition of zero-knowledge postulates that for every probability ensemble of onetype (i.e., representing the veri�er's output after interaction with the prover) there exists a \similar"ensemble of a second type (i.e., representing the simulator's output). One key parameter is theinterpretation of \similarity". Three interpretations, yielding di�erent notions of zero-knowledge,have been commonly considered in the literature (cf., [66, 42]):1. Perfect Zero-Knowledge (PZK) requires that the two probability ensembles be identical.97 Actually, we may incorporate x and z in hB�i, and thus replace C(x; z; hB�i) by C(hB�i).8 The term \honest veri�er" is more appealing when considering an alternative (equivalent) formulation of Def-inition 4. In the alternative de�nition, the simulator is \only" required to generate the veri�er's view of the realinteraction, when the veri�er's view includes its inputs, the outcome of its coin tosses, and all messages it has received.9 The actual de�nition of PZK allows the simulator to fail (while outputting a special symbol) with some probabilitythat is bounded away from 1, and the output distribution of the simulator is conditioned on its not failing.10

2. Statistical Zero-Knowledge (SZK) requires that these probability ensembles be statisticallyclose (i.e., the variation distance between them is negligible).3. Computational (or rather general) Zero-Knowledge (CZK) requires that these probability en-sembles be computationally indistinguishable.Indeed, Computational Zero-Knowledge (CZK) is the most liberal notion, and is the notion consid-ered in De�nition 4 as well as in most of this tutorial. (In particular, whenever we fail to qualify thetype of zero-knowledge, we mean computational zero-knowledge.) The only exception is Section 9,which is devoted to a discussion of Statistical (or Almost-Perfect) Zero-Knowledge (SZK). We notethat the class SZK contains several problems that are considered intractable.3.3.4 Strict versus expected probabilistic polynomial-timeSo far, we did not specify what we exactly mean by the term probabilistic polynomial-time. Twocommon interpretations are:1. Strict probabilistic polynomial-time. That is, there exist a (polynomial in the length of theinput) bound on the number of steps in each possible run of the machine, regardless of theoutcome of its coin tosses.2. Expected probabilistic polynomial-time. The standard approach is to look at the running-timeas a random variable and bound its expectation (by a polynomial in the length of the input).As observed by Levin [73] (cf. [46]), this de�nitional approach is quite problematic (e.g., it isnot model-independent and is not closed under algorithmic composition), and an alternativetreatment of this random variable is preferable.10Consequently, the notion of expected polynomial-time raises a variety of conceptual and technicalproblems. For that reason, whenever possible, one should prefer to use the more robust (andrestricted) notion of strict (probabilistic) polynomial-time. Thus, with the exception of constant-round zero-knowledge protocols, whenever we talk of a probabilistic polynomial-time veri�er (resp.,simulator) we mean one in the strict sense. In contrast, with the exception of [7, 11],11 all resultsregarding constant-round zero-knowledge protocols refer to a strict polynomial-time veri�er andan expected polynomial-time simulator, which is indeed a small cheat. For further discussion, thereader is referred to [11].4 Zero-Knowledge Proofs for every NP-setA question avoided so far is whether zero-knowledge proofs exist at all. Clearly, every set in P (orrather in BPP)12 has a \trivial" zero-knowledge proof (in which the veri�er determines membership10 Speci�cally, it is preferable to de�ne expected polynomial-time as having running time that is polynomially-related to a function that has linear expectation. That is, rather than requiring that E[Xn] = poly(n), one requiresthat for some Yn it holds that Xn = poly(Yn) and E[Yn] = O(n). The advantage of the latter approach is that if Xnis deemed polynomial on the average then so is X2n, which is not the case under the former approach (e.g., Xn = 2nwith probability 2�n and Xn = n otherwise).11 Speci�cally, in [7, 11] both the veri�er and the simulator run in strict polynomial-time. We comment that, asshown in [11], the use of non-black-box is necessary for the non-triviality of constant-round zero-knowledge protocolsunder the strict de�nition.12 Trivial zero-knowledge proofs for sets in BPP n coRP require modifying the de�nition of interactive proofs suchthat to allow a negligible error also in the completeness condition. Alternatively, zero-knowledge proofs for sets inBPP can be constructed by having the prover send a single message that is distributed almost uniformly (cf. [44]).11

by itself); however, what we seek is zero-knowledge proofs for statements that the veri�er cannotdecide by itself.4.1 Constructing Zero-Knowledge Proofs for NP-setsAssuming the existence of commitment schemes13, which in turn exist if one-way functions ex-ist [76, 68], there exist (auxiliary-input) zero-knowledge proofs of membership in any NP-set (i.e.,sets having e�ciently veri�able static proofs of membership). These zero-knowledge proofs, �rstconstructed by Goldreich, Micali and Wigderson [57] (and depicted in Figure 2), have the followingimportant property: the prescribed prover strategy is e�cient, provided it is given as auxiliary-inputan NP-witness to the assertion (to be proven). That is:Theorem 5 ([57], using [68, 76]): If one-way functions exist then every set S 2 NP has a zero-knowledge interactive proof. Furthermore, the prescribed prover strategy can be implemented inprobabilistic polynomial-time, provided it is given as auxiliary-input an NP-witness for membershipof the common input in S.Theorem 5 makes zero-knowledge a very powerful tool in the design of cryptographic schemes andprotocols (see below). We comment that the intractability assumption used in Theorem 5 seemsessential; see [78].Commitment schemes are digital analogies of sealed envelopes (or, better, locked boxes). Sendinga commitment means sending a string that binds the sender to a unique value without revealingthis value to the receiver (as when getting a locked box). Decommitting to the value means sendingsome auxiliary information that allows to read the uniquely committed value (as when sending thekey to the lock).Common Input: A graph G(V;E). Suppose that V � f1; :::; ng for n def= jV j.Auxiliary Input (to the prover): A 3-coloring � : V ! f1; 2; 3g.The following 4 steps are repeated t � jEj many times so to obtain soundness error exp(�t).Prover's �rst step (P1): Select uniformly a permutation � over f1; 2; 3g. For i = 1 to n, sendthe veri�er a commitment to the value �(�(i)).Veri�er's �rst step (V1): Select uniformly an edge e 2 E and send it to the prover.Prover's second step (P2): Upon receiving e = (i; j) 2 E, decommit to the ith and jth valuessent in Step (P1).Veri�er's second step (V2): Check whether or not the decommitted values are di�erent ele-ments of f1; 2; 3g and whether or not they match the commitments received in Step (P1).Figure 2: The zero-knowledge proof of Graph 3-Colorability (of [57]). Zero-knowledgeproofs for other NP-sets can be obtained using the standard reductions.Analyzing the protocol of Figure 2. Let us consider a single execution of the main loop.Clearly, the prescribed prover is implemented in probabilistic polynomial-time, and always con-vinces the veri�er (provided that it is given a valid 3-coloring of the common input graph). In case13 Loosely speaking, commitment schemes are digital analogue of non-transparent sealed envelopes. See furtherdiscussion in Figure 2. 12

the graph is not 3-colorable then, no matter how the prover behaves, the veri�er will reject withprobability at least 1=jEj (because at least one of the edges must be improperly colored by theprover). We stress that the veri�er selects uniformly which edge to inspect after the prover hascommitted to the colors of all vertices. Thus, Figure 2 depicts an interactive proof system for Graph3-Colorability. As can be expected, the zero-knowledge property is the hardest to establish, and wewill con�ne ourselves to presenting a simulator (which we hope will convince the reader without adetailed analysis). We start with three simplifying conventions (which are useful in general):1. Without loss of generality, we may assume that the cheating veri�er strategy is implementedby a deterministic polynomial-size circuit (or, equivalently, by a polynomial-time algorithmwith an auxiliary input). This is justi�ed by �xing any outcome of the veri�er's coins, andobserving that our (uniform) simulation of the various (residual) deterministic strategies yieldsa simulation of the original probabilistic strategy.2. Without loss of generality, it su�ces to consider cheating veri�ers that (only) output theirview of the interaction (i.e., their input, coin tosses, and the messages the received). This isjusti�ed by observing that the output of the original veri�er can be computed by an algorithmof comparable complexity that is given the veri�er's view of the interaction. Thus, it su�cesto simulate the view of that cheating veri�ers have of the real interaction.3. Without loss of generality, it su�ces to construct a \weak simulator" that produces outputwith some noticeable probability. This is the case because, by repeatedly invoking this weaksimulator (polynomially) many times, we may obtain a simulator that fails to produce anoutput with negligible probability, whereas the latter yields a simulator that never fails (asrequired).The simulator starts by selecting uniformly and independently a random color (i.e., element off1; 2; 3g) for each vertex, and feeding the veri�er strategy with random commitments to theserandom colors. Indeed, the simulator feeds the veri�er with a distribution that is very di�erentfrom the distribution that the veri�er sees in a real interaction with the prover. However, beingcomputationally-restricted the veri�er cannot tell these distributions apart (or else we obtain acontradiction to the security of the commitment scheme in use). Now, if the veri�er asks to inspectan edge that is properly colored then the simulator performs the proper decommitment action andoutputs the transcript of this interaction. Otherwise, the simulator halts proclaiming failure. Weclaim that failure occurs with probability approximately 1=3 (or else we obtain a contradiction tothe security of the commitment scheme in use). Furthermore, based on the same hypothesis (but viaa more complex proof), conditioned on not failing, the output of the simulator is computationallyindistinguishable from the veri�er's view of the real interaction.Zero-knowledge proofs for other NP-sets. By using the standard Karp-reductions to 3-Colorability, the protocol of Figure 2 can be used for constructing zero-knowledge proofs for anyset inNP . We comment that this is probably the �rst time that an NP-completeness result was usedin a \positive" way (i.e., in order to construct something rather than in order to derive a hardnessresult). Subsequent positive uses of completeness results have appeared in the context of interactiveproofs [74, 84], probabilistically checkable proofs [5, 36, 3, 2], \hardness versus randomness trade-o�s" [6], and statistical zero-knowledge [83].E�ciency considerations. The protocol in Figure 2 calls for invoking some constant-roundprotocol for a non-constant number of times. At �rst glance, it seems that one can derive a13

constant-round zero-knowledge proof system (of negligible soundness error) by performing theseinvocations in parallel (rather than sequentially). Unfortunately, as demonstrated in [55], thisintuition is not sound. See further discussions in Sections 5 and 6. We comment that the numberof rounds in a protocol is commonly considered the most important e�ciency criteria (or complexitymeasure), and typically one desires to have it be a constant. We mention that, under standardintractability assumptions (e.g., the intractability of factoring), constant-round zero-knowledgeproofs (of negligible soundness error) exists for every set in NP (cf. [54]).4.2 Using Zero-Knowledge Proofs for NP-setsWe stress two important aspects regarding Theorem 5: Firstly, it provides a zero-knowledgeproof for every NP-set, and secondly the prescribed prover can be implemented in probabilisticpolynomial-time when given an adequate NP-witness.A generic application. In a typical cryptographic setting, a user referred to as U , has a secretand is supposed to take some action depending on its secret. The question is how can otherusers verify that U indeed took the correct action (as determined by U 's secret and the publiclyknown information). Indeed, if U discloses its secret then anybody can verify that U took thecorrect action. However, U does not want to reveal its secret. Using zero-knowledge proofs wecan satisfy both conicting requirements (i.e., having other users verify that U took the correctaction without violating U 's interest in not revealing its secrets). That is, U can prove in zero-knowledge that it took the correct action. Note that U 's claim to having taken the correct actionis an NP-assertion (since U 's legal action is determined as a polynomial-time function of its secretand the public information), and that U has an NP-witness to its validity (i.e., the secret is anNP-witness to the claim that the action �ts the public information). Thus, by Theorem 5, it ispossible for U to e�ciently prove the correctness of its action without yielding anything about itssecret. Consequently, it is fair to ask U to prove (in zero-knowledge) that it behaves properly, andso to force U to behave properly. Indeed, \forcing proper behavior" is the canonical application ofzero-knowledge proofs (see [58, 47]).Zero-knowledge proofs for all IP. For the sake of elegancy, we mention that under the sameassumption used in case of NP, it holds that any set that has an interactive proof also has azero-knowledge interactive proof (cf. [69, 15]).Part IIAdvanced Topics5 Composing zero-knowledge protocolsA natural question regarding zero-knowledge proofs (and arguments) is whether the zero-knowledgecondition is preserved under a variety of composition operations. Three types of composition oper-ation were considered in the literature: sequential composition, parallel composition and concurrentcomposition. We note that the preservation of zero-knowledge under these forms of composition isnot only interesting on its own sake, but rather also sheds light of the preservation of the securityof general protocols under these forms of composition.14

We stress that when we talk of composition of protocols (or proof systems) we mean that thehonest users are supposed to follow the prescribed program (speci�ed in the protocol description)that refers to a single execution. That is, the actions of honest parties in each execution are inde-pendent of the messages they received in other executions. The adversary, however, may coordinatethe actions it takes in the various executions, and in particular its actions in one execution maydepend also on messages it received in other executions.Let us motivate the asymmetry between the independence of executions assumed of honestparties but not of the adversary. Coordinating actions in di�erent executions is typically di�cultbut not impossible. Thus, it is desirable to use composition (as de�ned above) rather than to useprotocols that include inter-execution coordination-actions, which require users to keep track ofall executions that they perform. Actually, trying to coordinate honest executions is even moreproblematic than it seems because one may need to coordinate executions of di�erent honest parties(e.g., all employees of a big cooperation or an agency under attack), which in many cases is highlyunrealistic. On the other hand, the adversary attacking the system may be willing to go into theextra trouble of coordinating its attack in the various executions of the protocol.For T 2 fsequential; parallel; concurrentg, we say that a protocol is T -zero-knowledgeif it is zero-knowledge under a composition of type T . The de�nitions of T -zero-knowledge arederived from De�nition 4 by considering appropriate adversaries (i.e., adversarial veri�ers); thatis, adversaries that can initiate a polynomial number of interactions with the prover, where theseinteractions are scheduled according to the type T .14 The corresponding simulator (which, as usual,interacts with nobody) is required to produce an output that is computationally indistinguishablefrom the output of such a type T adversary.5.1 Sequential CompositionIn this case, the protocol is invoked (polynomially) many times, where each invocation followsthe termination of the previous one. At the very least, security (e.g., zero-knowledge) should bepreserved under sequential composition, or else the applicability of the protocol is highly limited(because one cannot safely use it more than once).Referring to De�nition 4, we mention that whereas the \simpli�ed" version (i.e., without aux-iliary inputs) is not closed under sequential composition (cf. [55]), the actual version (i.e., withauxiliary inputs) is closed under sequential composition (cf. [59]). We comment that the same phe-nomena arises when trying to use a zero-knowledge proof as a sub-protocol inside larger protocols.Indeed, it is for these reasons that the augmentation of the \most basic" de�nition by auxiliaryinputs was adopted in all subsequent works.15Bottom-line: Every protocol that is zero-knowledge (under De�nition 4) is sequential-zero-knowledge.14 Without loss of generality, we may assume that the adversary never violates the scheduling condition; it mayinstead send an illegal message at the latest possible adequate time. Furthermore, without loss of generality, we mayassume that all the adversary's messages are delivered at the latest possible adequate time.15 Interestingly, the preliminary version of Goldwasser, Micali and Racko�'s work [66] used the \most basic"de�nition, whereas the �nal version of this work used the augmented de�nition. In some works, the \most basic"de�nition is used for simplicity, but typically one actually needs and means the augmented de�nition.
15

5.2 Parallel CompositionIn this case, (polynomially) many instances of the protocol are invoked at the same time andproceed at the same pace. That is, we assume a synchronous model of communication, and consider(polynomially) many executions that are totally synchronized so that the ith message in all instancesis sent exactly (or approximately) at the same time. (Natural variants on this model are discussedbelow as well as at the end of Section 5.3.)It turns out that, in general, zero-knowledge is not closed under parallel composition. A simplecounter-example (to the \parallel composition conjecture") is depicted in Figure 3. This counter-example, which is adapted from [55], consists of a simple protocol that is zero-knowledge (in astrong sense), but is not closed under parallel composition (not even in a very weak sense).Consider a party P holding a random (or rather pseudorandom) function f : f0; 1g2n ! f0; 1gn, andwilling to participate in the following protocol (with respect to security parameter n). The other party,called A for adversary, is supposed to send P a binary value v 2 f1; 2g specifying which of the followingcases to execute:For v = 1: Party P uniformly selects � 2 f0; 1gn, and sends it to A, which is supposed to reply witha pair of n-bit long strings, denoted (�;). Party P checks whether or not f(��) = . In caseequality holds, P sends A some secret information.For v = 2: Party A is supposed to uniformly select � 2 f0; 1gn, and sends it to P , which selectsuniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy is zero-knowledge (even w.r.t auxiliary-inputs as de�ned in De�nition 4):Intuitively, if the adversary A chooses the case v = 1, then it is infeasible for A to guess a passing pair(�;) with respect to the random � selected by P . Thus, except with negligible probability (when itmay get secret information), A does not obtain anything from the interaction. On the other hand, ifthe adversary A chooses the case v = 2, then it obtains a pair that is indistinguishable from a uniformlyselected pair of n-bit long strings (because � is selected uniformly by P , and for any � the value f(��)looks random to A).In contrast, if the adversary A can conduct two concurrenta executions with P , then it may learn thedesired secret information: In one session, A sends v = 1 while in the other it sends v = 2. Uponreceiving P 's message, denoted �, in the �rst session, A sends � as its own message in the secondsession, obtaining a pair (�; f(��)) from P 's execution of the second session. Now, A sends the pair(�; f(��)) to the �rst session of P , this pair passes the check, and so A obtains the desired secret.aDummy messages may be added (in both cases) in order to make the above scheduling �t the perfectly parallel case.Figure 3: A counter-example (adapted from [55]) to the parallel repetition conjecturefor zero-knowledge protocols.We comment that, at the 1980's, the study of parallel composition was interpreted mainly in thecontext of round-e�cient error reduction (cf. [39, 55]); that is, the construction of full-edge zero-knowledge proofs (of negligible soundness error) by composing (in parallel) a basic zero-knowledgeprotocol of high (but bounded away from 1) soundness error. Since alternative ways of constructingconstant-round zero-knowledge proofs (and arguments) were found (cf. [54, 40, 23]), interest inparallel composition (of zero-knowledge protocols) has died. In retrospect, this was a conceptualmistake, because parallel composition (and mild extensions of this notion) capture the preservationof security in a fully synchronous (or almost-fully synchronous) communication network. We notethat the almost-fully synchronous communication model is quite realistic in many settings, althoughit is certainly preferable not to assume even weak synchronism.16

Although, in general, zero-knowledge is not closed under parallel composition, under standardintractability assumptions (e.g., the intractability of factoring), there exists zero-knowledge pro-tocols for NP that are closed under parallel composition. Furthermore, these protocols have aconstant number of rounds (cf. [51] for proofs and [34] for arguments).16 Both results extend alsoto concurrent composition in a synchronous communication model, where the extension is in al-lowing protocol invocations to start at di�erent (synchronous) times (and in particular executionsmay overlap but not run simultaneously).We comment that parallel composition is problematic also in the context of reducing the sound-ness error of arguments (cf. [14]), but our focus here is on the zero-knowledge aspect of protocolsregardless if they are proofs, arguments or neither.Bottom-line: Under standard intractability assumptions, every NP-set has a constant-roundparallel-zero-knowledge proof.5.3 Concurrent Composition (with and without timing)Concurrent composition generalizes both sequential and parallel composition. Here (polynomially)many instances of the protocol are invoked at arbitrary times and proceed at arbitrary pace. Thatis, we assume an asynchronous (rather than synchronous) model of communication.In the 1990's, when extensive two-party (and multi-party) computations became a reality (ratherthan a vision), it became clear that it is (at least) desirable that cryptographic protocols maintaintheir security under concurrent composition (cf. [33]). In the context of zero-knowledge, concurrentcomposition was �rst considered by Dwork, Naor and Sahai [34]. Actually, two models of concurrentcomposition were considered in the literature, depending on the underlying model of communication(i.e., a purely asynchronous model and an asynchronous model with timing). Both models coversequential and parallel composition as special cases.Concurrent composition in the pure asynchronous model. Here we refer to the standardmodel of asynchronous communication. In comparison to the timing model, the pure asynchronousmodel is a simpler model and using it requires no assumptions about the underlying communicationchannels. However, it seems harder to construct concurrent zero-knowledge protocols for this model.In particular, for a while it was not known whether concurrent zero-knowledge proofs for NPexist at all (in this model). Under standard intractability assumptions (e.g., the intractability offactoring), this question was a�rmatively resolved by Richardson and Kilian [81]. Following theirwork, research has focused on determining the round-complexity of concurrent zero-knowledgeproofs for NP. This question is still opened, and the current state of the art regarding it is asfollows:� Under standard intractability assumptions, every language in NP has a concurrent zero-knowledge proof with almost-logarithmically many rounds (cf. [80], building upon [72], whichin turn builds over [81]). Furthermore, the zero-knowledge property can be demonstratedusing a black-box simulator (see de�nition in Sections 3.3.1 and 6).� Black-box simulator cannot demonstrated the concurrent zero-knowledge property of non-trivial proofs (or arguments) having signi�cantly less than logarithmically-many rounds (cf.16 In case of parallel-zero-knowledge proofs, there is no need to specify the soundness error because it can alwaysbe reduced via parallel composition. As mentioned above, this is not the case with respect to arguments, which weretherefore de�ned to have negligible soundness error. 17

Canetti et. al. [28]).17� Recently, Barak [7] demonstrated that the \black-box simulation barrier" can be bypassed.With respect to concurrent zero-knowledge he only obtains partial results: constant-roundzero-knowledge arguments (rather than proofs) for NP that maintain security as long as ana-priori bounded (polynomial) number of executions take place concurrently. (The length ofthe messages in his protocol grows linearly with this a-priori bound.)Thus, it is currently unknown whether or not constant-round protocols for NP may be concurrentzero-knowledge (in the pure asynchronous model).Concurrent composition under the timing model: A model of naturally-limited asyn-chronousness (which certainly covers the case of parallel composition) was introduced by Dwork,Naor and Sahai [34]. Essentially, they assume that each party holds a local clock such that therelative clock rates are bounded by an a-priori known constant, and consider protocols that employtime-driven operations (i.e., time-out in-coming messages and delay out-going messages). Thebene�t of the timing model is that it is known to construct concurrent zero-knowledge protocols forit. Speci�cally, using standard intractability assumptions, constant-round arguments and proofsthat are concurrent zero-knowledge under the timing model do exist (cf. [34] and [51], respectively).The disadvantages of the timing model are discussed next.The timing model consists of the assumption that talking about the actual timing of events ismeaningful (at least in a weak sense) and of the introduction of time-driven operations. The timingassumption amounts to postulating that each party holds a local clock and knows a global bound,denoted � � 1, on the relative rates of the local clocks.18 Furthermore, it is postulated that theparties know a (pessimistic) bound, denoted �, on the message-delivery time (which also includesthe local computation and handling times). In our opinion, these timing assumptions are most rea-sonable, and are unlikely to restrict the scope of applications for which concurrent zero-knowledgeis relevant. We are more concerned about the e�ect of the time-driven operations introduced inthe timing model. Recall that these operations are the time-out of in-coming messages and thedelay of out-going messages. Furthermore, typically the delay period is at least as long as thetime-out period, which in turn is at least � (i.e., the time-out period must be at least as long asthe pessimistic bound on message-delivery time so not to disrupt the proper operation of the pro-tocol). This means that the use of these time-driven operations yields slowing down the executionof the protocol (i.e., running it at the rate of the pessimistic message-delivery time rather than atthe rate of the actual message-delivery time, which is typically much faster). Still, in absence ofmore appealing alternatives (i.e., a constant-round concurrent zero-knowledge protocol for the pureasynchronous model), the use of the timing model may be considered reasonable. (We commentthan other alternatives to the timing-model include various set-up assumptions; cf. [26, 30].)Back to parallel composition: Given our opinion about the timing model, it is not surprisingthat we consider the problem of parallel composition almost as important as the problem of concur-rent composition in the timing model. Firstly, it is quite reasonable to assume that the parties' local17 By non-trivial proof systems we mean ones for languages outside BPP, whereas by signi�cantly less thanlogarithmic we mean any function f :N!N satisfying f(n) = o(log n= log log n). In contrast, by almost-logarithmicwe mean any function f satisfying f(n) = !(log n).18 The rate should be computed with respect to reasonable intervals of time; for example, for � as de�ned below, onemay assume that a time period of � units is measured as �0 units of time on the local clock, where �=� � �0 � ��.18

clocks have approximately the same rate, and that drifting is corrected by occasional clock syn-chronization. Thus, it is reasonable to assume that the parties have approximately-good estimateof some global time. Furthermore, the global time may be partitioned into phases, each consistingof a constant number of rounds, so that each party wishing to execute the protocol just delaysits invocation to the beginning of the next phase. Thus, concurrent execution of (constant-round)protocols in this setting amounts to a sequence of (time-disjoint) almost-parallel executions of theprotocol. Consequently, proving that the protocol is parallel zero-knowledge su�ces for concurrentcomposition in this setting.Relation to resettable zero-knowledge. Going to the other extreme, we mention that thereexist a natural model of zero-knowledge that is even stronger than concurrent zero-knowledge (evenin the pure asynchronous model). Speci�cally, \resettable zero-knowledge" as de�ned in Section 11,implies concurrent zero-knowledge.6 Using the adversary's program in the proof of securityAs discussed in the �rst part of this tutorial, zero-knowledge is de�ned by following the simulationparadigm, which in turn underlies many other central de�nitions in cryptography. Recall thatthe de�nition of zero-knowledge proofs states that whatever an e�cient adversary can computeafter interacting with the prover, can actually be e�ciently computed from scratch by a so-calledsimulator (which works without interacting with the prover). Although the simulator may dependarbitrarily on the adversary, the need to present a simulator for each feasible adversary seems torequire the presentation of a universal simulator that is given the adversary's strategy (or program)as another auxiliary input. The question addressed in this section is how can the universal simulatoruse the adversary's program.The adversary's program (or strategy) is actually a function determining for each possible viewof the adversary (i.e., its input, random choices and the message it has received so far) whichmessage will be sent next. Thus, we identify the adversary's program with this next-messagefunction. As stated in Section 3.3.1, until very recently, all universal simulators (constructed to-wards demonstrating zero-knowledge properties) have used the adversary's program (or rather itsnext-message function) as a black-box (i.e., the simulator invoked the next-message function on asequence of arguments of its choice). Furthermore, in view of the presumed di�culty of \reverseengineering" programs, it was commonly believed that nothing is lost by restricting attention tosimulators, called black-box simulators, that only make black-box usage of the adversary's program.Consequently, Goldreich and Krawczyk conjectured that impossibility results regarding black-boxsimulation represent inherent limitations of zero-knowledge itself, and studied the limitations of theformer [55].In particular, they showed that parallel composition of the protocol of Figure 2 (as wellas of any constant-round public-coin protocol) cannot be proven to be zero-knowledgeusing a black-box simulator, unless the language (i.e., 3-Colorability) is in BPP . In facttheir result refers to any constant-round public-coin protocol with negligible soundnesserror, regardless of how such a protocol is obtained. This result was taken as strongevidence towards the conjecture that constant-round public-coin protocol with negligiblesoundness error cannot be zero-knowledge (unless the language is in BPP).Similarly, as mentioned in Section 5.3, it was shown that protocols of sub-logarithmicnumber of rounds cannot be proven to be concurrent zero-knowledge via a black-box19

simulator [28], and this was taken as evidence towards the conjecture that such protocolscannot be concurrent zero-knowledge.In contrast to these conjectures and supportive evidence, Barak showed how to constructed non-black-box simulators and obtained several results that were known to be unachievable via black-boxsimulators [7]. In particular, under standard intractability assumption (see also [9]), he presentedconstant-round public-coin zero-knowledge arguments with negligible soundness error for any lan-guage in NP. (Moreover, the simulator runs in strict polynomial-time, which is impossible forblack-box simulators of non-trivial constant-round protocols [11].) Furthermore, this protocol pre-serves zero-knowledge under a �xed19 polynomial number of concurrent executions, in contrast tothe result of [28] (regarding black-box simulators) that holds also in that restricted case. Thus,Barak's result calls for the re-evaluation of many common beliefs. Most concretely, it says thatresults regarding black-box simulators do not reect inherent limitations of zero-knowledge (butrather an inherent limitation of a natural way of demonstrating the zero-knowledge property). Mostabstractly, it says that there are meaningful ways of using a program other than merely invokingit as a black-box.Does this means that a method was found to \reverse engineer" programs or to \understand"them? We believe that the answer is negative. Barak [7] is using the adversary's program in asigni�cant way (i.e., more signi�cant than just invoking it), without \understanding" it. So howdoes he use the program?The key idea underlying Barak's protocol [7] is to have the prover prove that either the originalNP-assertion is valid or that he (i.e., the prover) \knows the veri�er's residual strategy" (in the sensethat it can predict the next veri�er message). Indeed, in a real interaction (with the honest veri�er),it is infeasible for the prover to predict the next veri�er message, and so computational-soundnessof the protocol follows. However, a simulator that is given the code of the veri�er's strategy (andnot merely oracle access to that code), can produce a valid proof of the disjunction by properlyexecuting the sub-protocol using its knowledge of an NP-witness for the second disjunctive. Thesimulation is computational indistinguishable from the real execution, provided that one cannotdistinguish an execution of the sub-protocol in which one NP-witness (i.e., an NP-witness for theoriginal assertion) is used from an execution in which the second NP-witness (i.e., an NP-witnessfor the auxiliary assertion) is use. That is, the sub-protocol should be a witness indistinguishableargument system (see further discussion below). We warn the reader that the actual implementationof the above idea requires overcoming several technical di�culties (cf. [7, 9]).Perspective. In retrospect, taking a wide perspective, it should not come as a surprise that theprogram's code yields extra power beyond black-box access to it. Feeding a program with its owncode (or part of it) is the essence of the diagonalization technique, and this too is done without\reverse engineering". Furthermore, various non-black-box techniques have appeared before in thecryptographic setting, but they were used in the more natural context of devising an attack onan (arti�cial) insecure scheme (e.g., towards proving the failure of the \Random Oracle Methodol-ogy" [27] and the impossibility of software obfuscation [10]). In contrast, in [7] (and [8]) the codeof the adversary is being used within a sophisticated proof of security. What we wish to highlighthere is that non-black-box usage of programs is relevant also to proving (rather than to disproving)the security of systems.19 The protocol depends on the polynomial bounding the number of executions, and thus is not known to beconcurrent zero-knowledge (because the latter requires to �x the protocol and then consider any polynomial numberof concurrent executions). 20

Digest: Witness Indistinguishability and the FLS-TechniqueThe above description (of [7]), as well as several other sophisticated constructions of zero-knowledgeprotocols (e.g., [38, 81]), makes crucial use of a technique introduced by Feige, Lapidot andShamir [38], which in turn is based on the notion of witness indistinguishability (introduced byFeige and Shamir [39]).Loosely speaking, for any NP-relation R, an argument system for the corresponding language(i.e., LR) is called witness indistinguishable if no feasible veri�er may distinguish the case in whichthe prover uses one NP-witness to x (i.e., w1 such that (x;w1) 2 R) from the case the prover isusing a di�erent NP-witness to the same input x (i.e., w2 such that (x;w2) 2 R). Furthermore, ifx1 is indistinguishable from x2 then no feasible veri�er may distinguish the case in which the proveruses w1 to prove x1 2 LR from the case that the prover uses w2 to prove x2 2 LR.20 Clearly, anyzero-knowledge protocol is witness indistinguishable, but the converse does not necessarily hold andit seems that witness indistinguishable protocols are easier to construct than zero-knowledge ones.(We mention that witness indistinguishable protocols are closed under parallel composition [39],whereas this does not hold in general for zero-knowledge protocols.)Following is a sketchy description of a special case of the FLS-technique, whereas the above-mentioned application uses a more general version (which refers to proofs of knowledge, as de�nedin Section 7).21 In this special case, the technique consists of the following construction schema,which uses witness indistinguishable protocols for NP in order to obtain zero-knowledge protocolsfor NP . On common input x 2 L, where L = LR is the NP-set de�ned by the witness relation R,the following two steps are performed:1. The parties generate an instance x0 for an auxiliary NP-set L0, where L0 is de�ned by a witnessrelation R0. The generation protocol in use must satisfy the following two conditions:(a) If the veri�er follows its prescribed strategy then no matter which feasible strategy isused by the prover, with high probability, the protocol's outcome is a no-instance of L0.(b) Loosely speaking, there exists an e�cient (non-interactive) procedure for producing a(random) transcript of the generation protocol along with an NP-witness for the corre-sponding outcome such that the produced transcript is computationally indistinguishablefrom the transcript of a real execution of the protocol.2. The parties execute a witness indistinguishable protocol for the set L00 de�ned by the witnessrelation R00 = f((�; �0); (�; �0)) : (�; �) 2 R _ (�0; �0) 2 R0g. The sub-protocol is such thatthe corresponding prover can be implemented in probabilistic polynomial-time given an NP-witness for (�; �0) 2 L00. The sub-protocol is invoked on common input (x; x0), where x0 isthe outcome of Step 1, and the sub-prover is invoked with the corresponding NP-witness asauxiliary input (i.e., with (w; �), where w is the NP-witness for x given to the main prover).The computational-soundness of the above protocol follows by Property (a) of the generation pro-tocol (i.e., with high probability x0 62 L0, and so x 2 L follows by the soundness of the protocol usedin Step 2). To demonstrate the zero-knowledge property, we �rst generate a simulated transcript of20 The additional condition yields a stronger notion (cf. [49, Def. 4.6.2]), but for simplicity we call it witnessindistinguishability.21 In the general case, the generation protocol may generate an instance x0 in L0, but it is infeasible for the proverto obtain a corresponding witness (i.e., a w0 such that (x0; w0) 2 R0). In the second step, the sub-protocol in useought to be a proof of knowledge, and computational-soundness of the main protocol will follows (because otherwisethe prover, using a knowledge extractor, can obtain a witness for x0 2 L0).21

Step 1 (with outcome x0 2 L0) along with an adequate NP-witness (i.e., w0 such that (x0; w0) 2 L0),and then emulates Step 2 by feeding the sub-prover strategy with the NP-witness (�;w0). Com-bining Property (b) of the generation protocol and the witness indistinguishability property of theprotocol used in Step 2, the simulation is indistinguishable from the real execution.7 Proofs of KnowledgeThis section addresses the concept of \proofs of knowledge". Loosely speaking, these are proofs inwhich the prover asserts \knowledge" of some object (e.g., a 3-coloring of a graph), and not merelyits existence (e.g., the existence of a 3-coloring of the graph, which in turn implies that the graphis 3-colorable). But what is meant by saying that a machine knows something? Indeed the mainthrust of this section is in addressing this question. Before doing so we point out that \proofs ofknowledge", and in particular zero-knowledge \proofs of knowledge", have many applications tothe design of cryptographic schemes and cryptographic protocols. In fact, we have already referredto \proofs of knowledge" in Section 6.7.1 How to de�ne proofs of knowledgeWhat does it mean to say that a machine knows something? Any standard dictionary suggestsseveral meanings for the verb to know, and most meanings are phrased with reference to awareness,a notion which is certainly inapplicable in the context of machines. We must look for a behavioristicinterpretation of the verb to know. Indeed, it is reasonable to link knowledge with ability to dosomething (e.g., the ability to write down whatever one knows). Hence, we will say that a machineknows a string � if it can output the string �. But this seems as total non-sense too: a machinehas a well de�ned output { either the output equals � or it does not. So what can be meant bysaying that a machine can do something? Loosely speaking, it may mean that the machine can beeasily modi�ed so that it does whatever is claimed. More precisely, it may mean that there existsan e�cient machine that, using the original machine as a black-box (or given its code as an input),outputs whatever is claimed.So much for de�ning the \knowledge of machines". Yet, whatever a machine knows or does notknow is \its own business". What can be of interest and reference to the outside is the question ofwhat can be deduced about the knowledge of a machine after interacting with it. Hence, we areinterested in proofs of knowledge (rather than in mere knowledge).For sake of simplicity let us consider a concrete question: how can a machine prove that it knowsa 3-coloring of a graph? An obvious way is just to send the 3-coloring to the veri�er. Yet, we claimthat applying the protocol in Figure 2 (i.e., the zero-knowledge proof system for 3-Colorability) isan alternative way of proving knowledge of a 3-coloring of the graph.Loosely speaking, we may say that an interactive machine, V , constitutes a veri�er for knowledgeof 3-coloring if the probability that the veri�er is convinced by a machine P to accept the graph Gis inversely proportional to the di�culty of extracting a 3-coloring of G when using machine P asa \black box".22 Namely, the extraction of the 3-coloring is done by an oracle machine, called anextractor, that is given access to a function specifying the behavior P (i.e., the messages it sends inresponse to particular messages it may receives). We require that the (expected) running time ofthe extractor, on input G and access to an oracle specifying P 's messages, be inversely related (bya factor polynomial in jGj) to the probability that P convinces V to accept G. In case P always22 Indeed, as hinted above, one may consider also non-black-box extractors as done in [11]. However, this limitsthe applicability of the de�nitions to provers that are implemented by polynomial-size circuits.22

convinces V to accept G, the extractor runs in expected polynomial-time. The same holds in caseP convinces V to accept with noticeable probability. (We stress that the latter special cases do notsu�ce for a satisfactory de�nition; see discussion in [49, Sec. 4.7.1].)23We mention that the concept of proofs of knowledge was �rst introduced in [66], but the aboveformulation is based mostly on [13]. A famous application of zero-knowledge proofs of knowledgeis to the construction of identi�cation schemes (e.g., the Fiat-Shamir scheme [41]).7.2 How to construct proofs of knowledgeAs hinted above, many of the known proof systems are in fact proofs of knowledge. Furthermore,some (but not all) known zero-knowledge proofs (resp., arguments) are in fact proofs (resp., argu-ments) of knowledge.24 Indeed, a notable example is the zero-knowledge proof depicted in Figure 2.For further discussion, see [49, Sec. 4.7] and [11].8 Non-Interactive Zero-KnowledgeIn this section we consider non-interactive zero-knowledge proof systems. The model, introducedin [18], consists of three entities: a prover, a veri�er and a uniformly selected reference string(which can be thought of as being selected by a trusted third party). Both veri�er and prover canread the reference string, and each can toss additional coins. The interaction consists of a singlemessage sent from the prover to the veri�er, who then is left with the �nal decision (whether toaccept or not). The (basic) zero-knowledge requirement refers to a simulator that outputs pairsthat should be computationally indistinguishable from the distribution (of pairs consisting of auniformly selected reference string and a random prover message) seen in the real model.25 Non-interactive zero-knowledge proof systems have numerous applications (e.g., to the construction ofpublic-key encryption and signature schemes, where the reference string may be incorporated in thepublic-key). Several di�erent de�nitions of non-interactive zero-knowledge proofs were consideredin the literature.� In the basic de�nition, one considers proving a single assertion of a-priori bounded length,where this length may be smaller than the length of the reference string.� A natural extension, required in many applications, is the ability to prove multiple assertionsof varying length, where the total length of these assertions may exceed the length of thereference string (as long as the total length is polynomial in the length of the referencestring). This de�nition is sometimes referred to as the unbounded de�nition, because thetotal length of the assertions to be proven is not a-priori bounded.23 In particular, note that the latter probability (i.e., of being convinced) may be neither noticeable (i.e., boundedbelow by the reciprocal of some polynomial) nor negligible (i.e., bounded above by the reciprocal of every polynomial).Thus, events that occur with probability that is neither noticeable nor negligible, cannot neither be ignored nor occurwith high probability when the experiment is repeated for an a-priori bounded polynomial number of times.24 Arguments of knowledge are de�ned analogous to proofs of knowledge, while limiting the extraction requirementto provers that are implemented by polynomial-size circuits. In this case, it is natural to allow also non-black-boxextraction, as discussed in Footnote 22.25 Note that the veri�er does not e�ect the distribution seen in the real model, and so the basic de�nition ofzero-knowledge does not refer to it. The veri�er (or rather a process of adaptively selecting assertions to be proven)will be referred to in the adaptive variants of the de�nition.
23

� Other natural extensions refer to the preservation of security (i.e., both soundness and zero-knowledge) when the assertions to be proven are selected adaptivity (based on the referencestring and possibly even based on previous proofs).� Finally, we mention the notion of simulation-soundness, which is related to non-malleability.This extension, which mixes the zero-knowledge and soundness conditions, refers to the sound-ness of proofs presented by an adversary after it obtains proofs of assertions of its own choice(with respect to the same reference string). This notion is important in applications of non-interactive zero-knowledge proofs to the construction of public-key encryption schemes secureagainst chosen ciphertext attacks (see [50, Sec. 5.4.4.4]).Constructing non-interactive zero-knowledge proofs seems more di�cult than constructing interac-tive zero-knowledge proofs. Still, based on standard intractability assumptions (e.g., intractabilityof factoring), it is known how to construct a non-interactive zero-knowledge proof (even in theadaptive and non-malleable sense) for any NP-set.Suggestions for further reading: For a de�nitional treatment of the basic, unbounded andadaptive de�nitions see [49, Sec. 4.10]. Increasingly stronger variants of the non-malleable de�nitionare presented in [50, Sec. 5.4.4.4] and [31]. A relatively simple construction for the basic model ispresented in [38] (see also [49, Sec. 4.10.2]). (A more e�cient construction can be found in [71].)A transformation of systems for the basic model into systems for the unbounded model is alsopresented in [38] (and [49, Sec. 4.10.3]). Constructions for increasingly stronger variants of the(adaptive) non-malleable de�nition are presented in [50, Sec. 5.4.4.4] and [31].9 Statistical Zero-KnowledgeRecall that statistical zero-knowledge protocols are such in which the distribution ensembles referredto in De�nition 4 are required to be statistically indistinguishable (rather than computationallyindistinguishable). Under standard intractability assumptions, every NP-set has a statistical zero-knowledge argument [21]. On the other hand, it is unlikely that all NP-sets have statistical zero-knowledge proofs [42, 1]. Currently, the intractability assumption used for constructing statisticalzero-knowledge arguments (for NP) seems stronger than the assumption used for constructingcomputational zero-knowledge proofs (for NP). Assuming both constructs exist, the question ofwhich to prefer depends on the application (e.g., is it more important to protect the prover's secretsor to protect the veri�er from being convinced of false assertions). In contrast, Statistical zero-knowledge proofs, whenever they exist, free us from this dilemma. Indeed, this is one out of severalreasons for studying these objects. That is:� Statistical zero-knowledge proofs o�er information-theoretic security to both parties. Thus,whenever they exist, statistical zero-knowledge proofs may be preferred over computationalzero-knowledge proofs (which only o�er computational security to the prover) and over sta-tistical zero-knowledge arguments (which only o�er computational security to the veri�er).� Statistical zero-knowledge proofs provide a clean model for the study of various questionsregarding zero-knowledge. Often, this study results in techniques that are applicable also forcomputational zero-knowledge; one example is mentioned below.� The class of problems having statistical zero-knowledge proofs is interesting from a complex-ity theoretic point of view. On one hand, this class is likely to be a proper superset of BPP24

(e.g., it contains seemingly hard problems such as Quadratic Resideousity [66], Graph Iso-morphism [57], and a promise problem equivalent to the Discrete Logarithm Problem [56]).On the other hand, this class is contained in AM\ coAM (cf. [1, 42]), which is believed notto extend much beyond NP \ coNP . (AM is the class of sets having two-round public-coininteractive proofs.)In the rest of this section, we survey the main results regarding the internal structure of theclass of sets having statistical zero-knowledge proofs. This study was initiated to a large extentby Okamoto [77]. We �rst present transformations that, when applied to certain statistical zero-knowledge protocols, yield protocols with additional properties. Next, we consider several structuralproperties of the class, most notably the existence of natural complete problems (discovered by Sahaiand Vadhan [83]). For further details see [85].9.1 TransformationsThe �rst transformation takes any public-coin interactive proof that is statistical zero-knowledgewith respect to the honest veri�er, and returns a (public-coin) statistical zero-knowledge [62]. Whenapplied to a public-coin interactive proof that is (computational) zero-knowledge with respect tothe honest veri�er, the transformation yields a (computational) zero-knowledge proof. Thus, thistransformation \ampli�es the security" of (public-coin) protocols, from leaking nothing to theprescribed veri�er into leaking nothing to any cheating veri�er.The heart of the transformation is a suitable random selection protocol, which is used to emulatethe veri�er's messages in the original protocol. Loosely speaking, the random selection protocol iszero-knowledge in a strong sense, and the e�ect of each of the parties on the protocol's outcome isadequately bounded. For example, it is impossible for the veri�er to e�ect the protocol's outcome(by more than a negligible amount), whereas the prover cannot increase the probability that theoutcome hits any set by more than some speci�c (super-polynomial) factor.The �rst transformation calls our attention to public-coin interactive proofs that are statisticalzero-knowledge (with respect to the honest veri�er). In general, public-coin interactive proofs areeasier to manipulate than general interactive proofs. The second transformation takes any statisticalzero-knowledge (with respect to the honest veri�er) proof and returns one that is of the public-cointype (see [64], which builds on [77]). Unfortunately, the second transformation, which is analogousto a previously known result regarding interactive proofs [67], does not extend to computationalzero-knowledge,Combined together, the two transformations imply that the class of sets (or promise problems)having interactive proofs that are statistical zero-knowledge with respect to the honest veri�erequals the class of sets having (general) statistical zero-knowledge proofs.9.2 Complete problems and structural propertiesIn the rest of this section we consider classes of promise problems (rather than classes of decisionproblems or sets). Speci�cally, we denote by SZK the class of problems having a statistical zero-knowledge proof. Recall that BPP � SZK � AM\ coAM, and that the �rst inclusion is believedto be strict.One remarkable property of the class SZK is that it has natural complete problems (i.e.,problems in SZK such that any problem in SZK is Karp-reducible to them). One such problemis to distinguish pairs of distributions (given via sampling circuits) that are statistically close frompairs that are statistically far apart [83]. Another such problem is, given two distributions of25

su�ciently di�erent entropy, to tell which has higher entropy [64]. It is indeed interesting that \theclass statistical zero-knowledge is all about statistics (or probability)".Another remarkable property of SZK is the fact that it is closed under complementation(see [83], which builds on [77]). In fact, SZK is closed under NC1-truth-table reductions [83].Non-Interactive SZK. A systematic study of Non-Interactive Statistical Zero-Knowledge proofsystems was conducted in [63]. The main result is evidence to the non-triviality of the class (i.e.,it contains sets outside BPP if and only if SZK 6= BPP).10 Knowledge ComplexityOne of the many contributions of the seminal paper of Goldwasser, Micali and Racko� [66] isthe introduction of the concept of knowledge complexity. Knowledge complexity is intended tomeasure the computational advantage gained by interaction. Hence, something that can be obtainedwithout interaction is not considered knowledge. The latter phrase is somewhat qualitative andsupplies the intuition underlying the de�nition of zero-knowledge (i.e., knowledge complexity zero)as surveyed above. Quantifying the amount of knowledge gained by interaction, in case it is notzero, is more problematic.26 We stress that the de�nition of zero-knowledge does not depend onthe formulation of the amount of knowledge gained, because this de�nition addresses the case inwhich no knowledge is gained.Several de�nitions of knowledge complexity has appeared in the literature, where some areclosely related and quite robust (cf. [61]). Here we survey one de�nitional approach, which weconsider most satisfactory. According to this approach the amount of knowledge gained in aninteraction is bounded by the number of bits that are communicated in an alternative interactionthat allows to simulate the original interaction. That is, party P is said to yield at most k bitsof knowledge (on inputs in S) if whatever can be e�ciently computed through an interactionwith P on common input x 2 S, can also be e�ciently computed through an interaction (onthe same common input x) with an alternative machine P 0 that sends at most k(jxj) bits. Thisformulation can be applied with respect to various types of simulations, extending the varioustypes of zero-knowledge. Our focus is on the extension of statistical zero-knowledge proofs (because,under standard intractability assumptions, any language in IP has a computational zero-knowledgeproof). We note that, without loss of generality, the \knowledge-giving-machine" can be madememoryless and deterministic (i.e., by providing it with all previous messages and with coin tosses).Hence, the \knowledge-giving-machine" is merely an oracle (and we may think of the simulationas being performed by an oracle machine and count the number of its binary queries). For furtherdiscussion of this and other de�nitions, the reader is referred to [61].A natural research project is to characterize languages according to the (statistical) knowledge-complexity of their interactive proof systems. The main result known (for the above de�nition)is that languages with logarithmic statistical knowledge-complexity are in AM\ coAM (cf. [79],building on [1] and [60]). Thus, unless the polynomial time hierarchy collapses (cf. [20]), NP-complete set have super-logarithmic statistical knowledge-complexity.26 In general, it seems that quantitative notions are harder to handle than qualitative ones.
26

11 Resettability of a party's random-tape (rZK and rsZK)Having gained a reasonable understanding of the security of cryptographic schemes and protocolsas stand-alone, cryptographic research is moving towards the study of stronger notions of security.Examples include the e�ect of executing several instances of the same protocol concurrently (e.g.,the malleability of an individual protocol [33]) as well as the e�ect of executing the protocol con-currently to any other activity (or set of protocols) [25]. Another example of a stronger notion ofsecurity, which is of theoretical and practical interest, is the security of protocols under a \resetting"attack. In such an attack a party may be forced to execute a protocol several times while using thesame random-tape and without coordinating these executions (e.g., by maintaining a joint state).The theoretical interest in this notion stems from the fact that randomness plays a pivotal role incryptography, and thus the question of whether one needs fresh randomness in each invocation ofa cryptographic protocol is very natural. The practical importance is due to the fact that in manysettings it is impossible or undesirable to generate fresh randomness on the y (or to maintain astate between executions).Resettable Zero-Knowledge (rZK). Resettability of players in a cryptographic protocol was�rst considered in [26], which studies what happens to the security of zero-knowledge interactiveproofs and arguments when the veri�er can reset the prover to use the same random tape in multipleconcurrent executions. Protocols that remain zero-knowledge against such a veri�er, are calledresettable zero-knowledge (rZK). Put di�erently, the question of prover resettability, is whetherzero-knowledge is achievable when the prover cannot use fresh randomness in new interactions,but is rather restricted to (re-)using a �xed number of coins. Resettability implies security underconcurrent executions: As shown in [26], any rZK protocol constitutes a concurrent zero-knowledgeprotocol. The opposite direction does not hold (in general), and indeed it was not a-priori clearwhether (non-trivial) rZK protocols may at all exist. Under standard intractability assumptions,it was shown that resettable zero-knowledge interactive proofs for any NP-set do exist [26]. (Forrelated models and e�ciency improvements, see [26] and [72], respectively.)Resettablly-Sound Zero-Knowledge (rsZK). Resettably-sound proofs and arguments main-tain soundness even when the prover can reset the veri�er to use the same random coins in repeatedexecutions of the protocol. This notion was studied in [12], who obtained the following results: Onone hand, under standard intractability assumptions, any NP-set has a (constant-round) resettably-sound zero-knowledge argument. On the other hand, resettably-sound zero-knowledge proofs arepossible only for languages in P=poly. The question of whether a protocol for NP can be bothresettably-sound and resettably-zero-knowledge is still open.12 Zero-knowledge in other modelsAs stated above, zero-knowledge is a property of some interactive strategies, regardless of the goal(or other properties) of these strategies. We have seen that zero-knowledge can be meaningfullyapplied in the context of interactive proofs and arguments. Here we briey discuss the applicabilityof zero-knowledge to other settings in which, as in the case of arguments, there are restrictionson the type of prover strategies. We stress that the restrictions discussed here refer to the strate-gies employed by the prover both in case it tries to prove valid assertions (i.e., the completenesscondition) and in case it tries to fool the veri�er to believe false statements (i.e., the soundnesscondition). Thus, the validity of the veri�er decision (concerning false statements) depends on27

whether this restriction (concerning potential \cheating" prover strategies) really holds. The rea-son to consider these restricted models is that they enable to achieve results that are not possiblein the general model of interactive proofs (cf., [16, 21, 70, 75]). We consider restrictions of twotypes: computational and physical. We start with the latter.Multi-Prover Interactive Proofs (MIP). In the so-calledmulti-prover interactive proofmodel,denoted MIP (cf., [16]), the prover is split into several (say, two) entities and the restriction (orassumption) is that these entities cannot interact with each other. Actually, the formulation allowsthem to coordinate their strategies prior to interacting with the veri�er27 but it is crucial that theydon't exchange messages among themselves while interacting with the veri�er. The multi-provermodel is reminiscent of the common police procedure of isolating collaborating suspects and in-terrogating each of them separately. A typical application in which the two-prover model may beassumed is an ATM that veri�es the validity of a pair of smart-cards inserted in two isolated slots ofthe ATM. The advantage in using such a split system is that it enables the presentation of (perfect)zero-knowledge proof systems for any set in NP , while using no intractability assumptions [16].Strict Computational-Soundness (a.k.a Timed-ZK). Recall that we have already discussedone model of computational-soundness; that is, the model of arguments refers to prover strategiesthat are implementable by probabilistic polynomial-time machines with adequate auxiliary input.28A more strict restriction, studied in [35], refers to prover strategies that are implementable withinan a-priori �xed number of computation steps (where this number is a �xed polynomial in thelength of the common input). In reality, the prover's actual running-time is monitored by theveri�er that may run for a longer time, and the prover's utility is due to an auxiliary input thatit has. (An analogous model, where the length of the auxiliary input is a-priori �xed, was alsoconsidered in [35].)13 A source of inspiration for complexity theoryThroughout the years, zero-knowledge has served as a source of inspiration for models and tech-niques in complexity theory. The �rst such case is the very introduction of interactive proofs, whichwas motivated by the notion of zero-knowledge.The story begins with Goldwasser, Micali and Racko� who sought a general setting for theirnovel notion of zero-knowledge [66]. The choice fell on proof systems as capturing a fundamentalactivity that takes place in a cryptographic protocol. Motivated by the desire to formulate the mostgeneral type of \proofs" that may be used within cryptographic protocols, Goldwasser, Micali andRacko� introduced the notion of an interactive proof system [66]. Although the main focus of theirpaper is on zero-knowledge, the possibility that interactive proof systems may be more powerfulthan NP-proof systems has been pointed out in [66].Similarly, the main motivation for the introduction of multi-prover interactive proofs (in [16])came from zero-knowledge; speci�cally, introducing multi-prover zero-knowledge proofs for NPwithout relying on intractability assumptions. Again, the complexity theoretic prospects of thenew class, denoted MIP, have not been ignored. A more appealing, to our taste, formulation ofthe class MIP has been subsequently presented in [43]. The latter formulation coincides with theformulation currently known as probabilistically checkable proofs (i.e., PCP).27 This is implicit in the universal quanti�er used in the soundness condition.28 A related model is that of CS-proofs, where the prover's strategy is allowed to run in time that is polynomial inthe time it takes to decide membership of the common input via a canonical decision procedure for the language [75].28

Getting more technical, we mention that the notion of zero-knowledge as well as known zero-knowledge proof systems have inspired constructions that seem unrelated to zero-knowledge. Anotable example is the PCP construction of [37], which was tailored towards obtaining tight inap-proximability results for the chromatic number.AcknowledgmentsI wish to thank Yehuda Lindell for pointing out some errors in previous versions.References[1] W. Aiello and J. H�astad. Perfect Zero-Knowledge Languages can be Recognized in Two Rounds. In28th IEEE Symposium on Foundations of Computer Science, pages 439{448, 1987.[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cation and Intractability ofApproximation Problems. Journal of the ACM, Vol. 45, pages 501{555, 1998. Preliminary version in33rd FOCS, 1992.[3] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP. Journal of theACM, Vol. 45, pages 70{122, 1998. Preliminary version in 33rd FOCS, 1992.[4] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium on the Theory of Com-puting, pages 421{420, 1985.[5] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarithmic Time. In23rd ACM Symposium on the Theory of Computing, pages 21{31, 1991.[6] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponential Time Simulations unlessEXPTIME has Publishable Proofs. Complexity Theory, Vol. 3, pages 307{318, 1993.[7] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd IEEE Symposium on Foun-dations of Computer Science, pages 106{115, 2001.[8] B. Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing the Shared RandomString Model. In 43th IEEE Symposium on Foundations of Computer Science, to appear, 2002.[9] B. Barak and O. Goldreich, Universal arguments and their applications. In the 17th IEEE Conferenceon Computational Complexity, pages 194{203, 2002.[10] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the(im)possibility of software obfuscation. In Crypto01, Springer-Verlag Lecture Notes in Computer Science(Vol. 2139), pages 1{18.[11] B. Barak and Y. Lindell. Strict Polynomial-time in Simulation and Extraction. In 34th ACM Symposiumon the Theory of Computing, pages 484{493, 2002.[12] B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell, Resettably-Sound Zero-Knowledge and itsApplications. In 42th IEEE Symposium on Foundations of Computer Science, pages 116{125, 2001.[13] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. In Crypto92, Springer-Verlag LectureNotes in Computer Science (Vol. 740), pages 390{420.[14] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in ComputationallySound Protocols? In 38th IEEE Symposium on Foundations of Computer Science, pages 374{383, 1997.[15] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali and P. Rogaway. EverythingProvable is Probable in Zero-Knowledge. In Crypto88, Springer-Verlag Lecture Notes in ComputerScience (Vol. 403), pages 37{56, 1990.[16] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive Proofs: How toRemove Intractability. In 20th ACM Symposium on the Theory of Computing, pages 113{131, 1988.[17] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof Systems.SIAM Journal on Computing, Vol. 20, No. 6, pages 1084{1118, 1991. (Considered the journal versionof [18].) 29

[18] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications. In 20thACM Symposium on the Theory of Computing, pages 103{112, 1988. See [17].[19] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits.SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS, 1982.[20] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short Interactive Proofs? InformationProcessing Letters, 25, May 1987, pp. 127-132.[21] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs of Knowledge. Journal of Com-puter and System Science, Vol. 37, No. 2, pages 156{189, 1988. Preliminary version by Brassard andCr�epeau in 27th FOCS, 1986.[22] G. Brassard and C. Cr�epeau. Zero-Knowledge Simulation of Boolean Circuits. In Crypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages 223{233, 1987.[23] G. Brassard, C. Cr�epeau and M. Yung. Constant-Round Perfect Zero-Knowledge ComputationallyConvincing Protocols. Theoretical Computer Science, Vol. 84, pages 23{52, 1991.[24] R. Canetti. Security and Composition of Multi-party Cryptographic Protocols. Journal of Cryptology,Vol. 13, No. 1, pages 143{202, 2000.[25] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In 42ndIEEE Symposium on Foundations of Computer Science, pages 136{145, 2001. Full version (with di�erenttitle) is available from Cryptology ePrint Archive, Report 2000/067.[26] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In 32nd ACMSymposium on the Theory of Computing, pages 235{244, 2000.[27] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited. In 30th ACMSymposium on the Theory of Computing, pages 209{218, 1998. Full version available on-line fromhttp://eprint.iacr.org/1998/011.[28] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires~
(logn) Rounds. In 33rd ACM Symposium on the Theory of Computing, pages 570{579, 2001.[29] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and Multi-PartySecure Computation. In 34th ACM Symposium on the Theory of Computing, pages 494{503, 2002.[30] I. Damg�ard. E�cient Concurrent Zero-Knowledge in the Auxiliary String Model. In Eurocrypt'00, 2000.[31] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust Non-interactive Zero-Knowledge. In Crypto01, Springer Lecture Notes in Computer Science (Vol. 2139), pages 566{598.[32] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Info. Theory, IT-22(Nov. 1976), pages 644{654.[33] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing, Vol. 30,No. 2, pages 391{437, 2000. Preliminary version in 23rd STOC, 1991.[34] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th ACM Symposium on the Theoryof Computing, pages 409{418, 1998.[35] C. Dwork and L. Stockmeyer. 2-Round Zero-Knowledge and Proof Auditors. In 34th ACM Symposiumon the Theory of Computing, pages 322{331, 2004.[36] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating Clique is almost NP-complete. Journal of the ACM, Vol. 43, pages 268{292, 1996. Preliminary version in 32nd FOCS,1991.[37] U. Feige and J. Kilian. Zero knowledge and the chromatic number. In 11th IEEE Conference onComputational Complexity, pages 278{287, 1996.[38] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under GeneralAssumptions. SIAM Journal on Computing, Vol. 29 (1), pages 1{28, 1999.[39] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd ACMSymposium on the Theory of Computing, pages 416{426, 1990.[40] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In Crypto'89, Springer-Verlag LNCS Vol. 435, pages 526{544, 1990. 30

[41] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identi�cation and SignatureProblems. In Crypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages 186{189,1987.[42] L. Fortnow, The Complexity of Perfect Zero-Knowledge. In 19th ACM Symposium on the Theory ofComputing, pages 204{209, 1987.[43] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interactive protocols. In Proc. 3rdIEEE Symp. on Structure in Complexity Theory, pages 156{161, 1988.[44] M. F�urer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Completeness and Soundness inInteractive Proof Systems. Advances in Computing Research: a research annual, Vol. 5 (Randomnessand Computation, S. Micali, ed.), pages 429{442, 1989.[45] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Journal of Cryp-tology, Vol. 6, No. 1, pages 21{53, 1993.[46] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity. ECCC, TR97-058, Dec. 1997.[47] O. Goldreich. Secure Multi-Party Computation. Working draft, June 1998.Available from http://www.wisdom.weizmann.ac.il/�oded/pp.html.[48] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms andCombinatorics series (Vol. 17), Springer, 1998.[49] O. Goldreich. Foundation of Cryptography { Basic Tools. Cambridge University Press, 2001.[50] O. Goldreich. Foundation of Cryptography { Volume 2. Working drafts for chapters regarding encryptionschemes and signature schemes, 2000. Revised 2002.Available from http://www.wisdom.weizmann.ac.il/�oded/foc-vol2.html.[51] O. Goldreich. Concurrent Zero-Knowledge With Timing, Revisited. In 34th ACM Symposium on theTheory of Computing, pages 332{340, 2002.[52] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal of the ACM,Vol. 33, No. 4, pages 792{807, 1986.[53] O. Goldreich and J. H�astad. On the Complexity of Interactive Proofs with Bounded Communication.IPL, Vol. 67 (4), pages 205{214, 1998.[54] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems forNP. Journal of Cryptology, Vol. 9, No. 2, pages 167{189, 1996. Preliminary versions date to 1988.[55] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM Journalon Computing, Vol. 25, No. 1, February 1996, pages 169{192.[56] O. Goldreich and E. Kushilevitz. A Perfect Zero-Knowledge Proof for a Decision Problem Equivalentto Discrete Logarithm. Journal of Cryptology, Vol. 6 (2), pages 97{116, 1993.[57] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or All Languagesin NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No. 1, pages 691{729, 1991.Preliminary version in 27th FOCS, 1986.[58] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game { A Completeness Theoremfor Protocols with Honest Majority. In 19th ACM Symposium on the Theory of Computing, pages218{229, 1987. See details in [47].[59] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems. Journal ofCryptology, Vol. 7, No. 1, pages 1{32, 1994.[60] O. Goldreich, R. Ostrovsky and E. Petrank. Knowledge Complexity and Computational Complexity.SIAM Journal on Computing, Vol. 27, 1998, pages 1116{1141.[61] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Computational Complexity, Vol. 8,pages 50{98, 1999. Preliminary version in 32nd FOCS, 1991.[62] O. Goldreich, A. Sahai, and S. Vadhan. Honest-Veri�er Statistical Zero-Knowledge equals generalStatistical Zero-Knowledge. In 30th ACM Symposium on the Theory of Computing, pages 399{408,1998. 31

[63] O. Goldreich, A. Sahai, and S. Vadhan. Can Statistical Zero-Knowledge be Made Non-Interactive? orOn the Relationship of SZK and NISZK. In Crypto99, Springer-Verlag Lecture Notes in ComputerScience (Vol. 1666), pages 467{484.[64] O. Goldreich and S. Vadhan. Comparing Entropies in Statistical Zero-Knowledge with Applications tothe Structure of SZK. In 14th IEEE Conference on Computational Complexity, pages 54{73, 1999.[65] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Science,Vol. 28, No. 2, pages 270{299, 1984. Preliminary version in 14th STOC, 1982.[66] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive Proof Systems.SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in 17th STOC, 1985.[67] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems. Advancesin Computing Research: a research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pages73{90, 1989. Extended abstract in 18th STOC, pages 59{68, 1986.[68] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any One-wayFunction. SIAM Journal on Computing, Volume 28, Number 4, pages 1364{1396, 1999.[69] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In Crypto87, Springer-VerlagLecture Notes in Computer Science (Vol. 293), pages 40{51, 1987.[70] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In 24th ACM Symposium on theTheory of Computing, pages 723{732, 1992.[71] J. Kilian and E. Petrank. An E�cient Non-Interactive Zero-Knowledge Proof System for NP withGeneral Assumptions. Journal of Cryptology, Vol. 11, pages 1{27, 1998.[72] J. Kilian and E. Petrank Concurrent and Resettable Zero-Knowledge in Poly-logarithmic Rounds In33rd ACM Symposium on the Theory of Computing, pages 560{569, 2001.[73] L.A. Levin. Average Case Complete Problems. SIAM Jour. of Computing, Vol. 15, pages 285{286,1986.[74] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods for Interactive Proof Systems.Journal of the ACM, Vol. 39, No. 4, pages 859{868, 1992. Preliminary version in 31st FOCS, 1990.[75] S. Micali. Computationally Sound Proofs. SICOMP, Vol. 30 (4), pages 1253{1298, 2000. Preliminaryversion in 35th FOCS, 1994.[76] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology, Vol. 4, pages151{158, 1991.[77] T. Okamoto. On relationships between statistical zero-knowledge proofs. In 28th ACM Symposium onthe Theory of Computing, pages 649{658, 1996.[78] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial Zero-Knowledge. In2nd Israel Symp. on Theory of Computing and Systems, IEEE Comp. Soc. Press, pages 3{17, 1993.[79] E. Petrank and G. Tardos. On the Knowledge Complexity of NP. In 37th IEEE Symposium onFoundations of Computer Science, pages 494{503, 1996.[80] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge Proofs in Logarithmic Numberof Rounds. In 43rd IEEE Symposium on Foundations of Computer Science, 2002.[81] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In Euro-Crypt99, Springer LNCS 1592, pages 415{413.[82] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public KeyCryptosystems. Communications of the ACM, Vol. 21, Feb. 1978, pages 120{126[83] A. Sahai and S. Vadhan. A Complete Promise Problem for Statistical Zero-Knowledge. In 38th IEEESymposium on Foundations of Computer Science, pages 448{457, 1997.[84] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869{877, 1992. Preliminaryversion in 31st FOCS, 1990.[85] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis, Department of Mathematics,MIT, 1999. ACM Doctoral Dissertation Award 2000. To be published by Springer-Verlag for receiving32

[86] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium on Foundationsof Computer Science, pages 80{91, 1982.[87] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium on Foundations ofComputer Science, pages 162{167, 1986.

33

