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ABSTRACT
Computer architectures are quickly changing toward hetero-
geneous many-core systems. Such a trend opens up inter-
esting opportunities but also raises immense challenges since
the efficient use of heterogeneous many-core systems is not
a trivial problem. In this paper, we explore how to program
data processing operators on top of field-programmable gate
arrays (FPGAs). FPGAs are very versatile in terms of how
they can be used and can also be added as additional pro-
cessing units in standard CPU sockets.

In the paper, we study how data processing can be accel-
erated using an FPGA. Our results indicate that efficient
usage of FPGAs involves non-trivial aspects such as having
the right computation model (an asynchronous sorting net-
work in this case); a careful implementation that balances
all the design constraints in an FPGA; and the proper inte-
gration strategy to link the FPGA to the rest of the system.
Once these issues are properly addressed, our experiments
show that FPGAs exhibit performance figures competitive
with those of modern general-purpose CPUs while offering
significant advantages in terms of power consumption and
parallel stream evaluation.

1. INTRODUCTION
Taking advantage of specialized hardware has a long tradi-

tion in data processing. Some of the earliest efforts involved
building entire machines tailored to database engines [8].
More recently, graphic processing units (GPUs) have been
used to efficiently implement certain types of operators [11,
12].

Parallel to these developments, computer architectures
are quickly evolving toward heterogeneous many-core sys-
tems. These systems will soon have a (large) number of
processors and the processors will not be identical. Some
will have full instruction sets, others will have reduced or
specialized instruction sets; they may use different clock fre-
quencies or exhibit different power consumption; floating
point arithmetic-logic units will not be present in all proces-
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sors; and there will be highly specialized cores such as field-
programmable gate arrays (FPGAs) [13, 22]. An example of
such a heterogeneous system is the Cell Broadband Engine,
which contains, in addition to a general-purpose core, multi-
ple special execution cores (synergistic processing elements,
or SPEs).

Given that existing applications and operating systems
already have significant problems when dealing with multi-
core systems [5], such diversity adds yet another dimension
to the complex task of adapting data processing software to
new hardware platforms. Unlike in the past, it is no longer
just a question of taking advantage of specialized hardware,
but a question of adapting to new, inescapable architectures.

In this paper, we focus our attention on FPGAs as one
of the more different elements that can be found in many-
core systems. FPGAs are (re-)programmable hardware that
can be tailored to almost any application. However, it is as
yet unclear how the potential of FPGAs can be efficiently
exploited. Our contribution with this work is to study the
design trade-offs encountered when using FPGAs for data
processing, as well as to provide a set of guidelines for how
to make design choices such as:

(1) FPGAs have relatively low clock frequencies. Näıve de-
signs will exhibit a large latency and low throughput.
We show how this can be avoided by using asynchronous
circuits. We also show that asynchronous circuits (such
as sorting networks) are well suited for common data
processing operations like comparisons and sorting.

(2) Asynchronous circuits are notoriously more difficult to
design than synchronous ones. This has led to a pref-
erence for synchronous circuits in studies of FPGA us-
age [13]. Using the example of sorting networks, we
illustrate systematic design guidelines to create asyn-
chronous circuits that solve database problems.

(3) FPGAs provide inherent parallelism whose only limita-
tion is the amount of chip space to accommodate par-
allel functionality. We show how this can be managed
and demonstrate an efficient circuit for parallel stream
processing.

(4) FPGAs can be very useful as database co-processors
attached to an engine running on conventional CPUs.
This integration is not trivial and opens up several ques-
tions on how an FPGA can fit into the complete ar-
chitecture. In our work, we demonstrate an embedded
heterogeneous multi-core setup and identify trade-offs
in FPGA integration design.



(5) FPGAs are attractive co-processors because of the po-
tential for tailored design and parallelism. We show that
FPGAs are also very interesting in regard to power con-
sumption as they consume significantly less power, yet
provide at a performance comparable to the one of con-
ventional CPUs. This makes FPGAs good candidates
for multi-core systems as cores where certain data pro-
cessing tasks can be offloaded.

To illustrate the trade-offs and as a running example, we
describe the implementation of a median operator that de-
pends on sorting as well as on arithmetics. We use it in
a streaming fashion to illustrate sliding window functional-
ity. The implementation we discuss in the paper is designed
to illustrate the design space of FPGA-based co-processing.
Our experiments show that FPGAs can clearly be a useful
component of a modern data processing system, especially
in the context of multi-core architectures.

Outline. We start our work by setting the context with
related work (Section 2). After introducing the necessary
technical background in Section 3, we illustrate the imple-
mentation of a median operator using FPGA hardware (Sec-
tion 4). Its integration into a complete multi-core system is
our topic for Section 5, before we evaluate our work in Sec-
tion 6. We wrap up in Section 7.

2. RELATED WORK
A number of research efforts have explored how databases

can use the potential of modern hardware architectures. Ex-
amples include optimizations for cache efficiency (e.g., [21])
or the use of vector primitives (“SIMD instructions”) in
database algorithms [29]. The QPipe [14] engine exploits
multi-core functionality by building an operator pipeline
over multiple CPU cores. Likewise, stream processors such
as Aurora [2] or Borealis [1] are implemented as networks
of stream operators. An FPGA with database functionality
could directly be plugged into such systems to act as a node
of the operator network.

The shift toward an increasing heterogeneity is already
visible in terms of tailor-made graphics or network CPUs,
which have found their way into commodity systems. Govin-
daraju et al. demonstrated how the parallelism built into
graphics processing units can be used to accelerate common
database tasks, such as the evaluation of predicates and ag-
gregates [12]. The GPUTeraSort algorithm [11] parallelizes
a sorting problem over multiple hardware shading units on
the GPU. Within each unit, it achieves parallelization by
using SIMD operations on the GPU processors. The AA-
Sort [17], CellSort [9], and MergeSort [6] algorithms are
very similar in nature, but target the SIMD instruction sets
of the PowerPC 970MP, Cell, and Intel Core 2 Quad pro-
cessors, respectively.

The use of network processors for database processing was
studied by Gold et al. [10]. The particular benefit of such
processors for database processing is their enhanced support
for multi-threading.

We share our view on the role of FPGAs in upcoming sys-
tem architectures with projects such as Kiwi [13] or Liquid
Metal [15]. Both projects aim at off-loading traditional CPU
tasks to programmable hardware. Mitra et al. [22] recently
outlined how FPGAs can be used as co-processors in an SGI
Altix supercomputer to accelerate XML filtering.
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Figure 1: Simplified FPGA architecture: 2D array
of CLBs, each consisting of 4 slices and a switch
box. Available in silicon: 2 PowerPC cores, BRAM
blocks and multipliers.

The advantage of using customized hardware as a data-
base co-processor is well known since many years. For in-
stance, DeWitt’s direct system comprises of a number of
query processors whose instruction sets embrace common
database tasks such as join or aggregate operators [8]. Sim-
ilar ideas have been commercialized recently in terms of da-
tabase appliances sold by, e.g., Netezza [7], Kickfire [19], or
XtremeData [16]. All of them appear to be based on special-
ized, hard-wired acceleration chips, which primarily provide
a high degree of data parallelism. Our approach can be used
to exploit the reconfigurability of FPGAs at runtime. By re-
programming the chip for individual workloads or queries,
we can achieve higher resource utilization and implement
data and task parallelism. By studying the foundations of
FPGA-assisted database processing in detail, this work is an
important step toward our goal of building such a system.

FPGAs are being successfully applied in signal process-
ing, and we draw on some of that work in Sections 4 and 5.
The particular operator that we use as a running example
to demonstrate FPGA-based co-processing is a median over
a sliding window. The implementation of a median with
FPGAs has already been studied [27], but only on smaller
values than the 32 bit integers considered in this paper. Our
median implementation is similar to the sorting network pro-
posed by Oflazer [24]. As we show in Section 6.1, we gain
significant performance advantages by designing the network
to run in an asynchronous mode.

3. OVERVIEW OF FPGAS
Field-programmable gate arrays are reprogrammable hard-

ware chips for digital logic. FPGAs are an array of logic
gates that can be configured to construct arbitrary digi-
tal circuits. These circuits are specified using either circuit
schematics or hardware description languages such as Ver-
ilog or VHDL. A logic design on an FPGA is also referred
to as a soft IP-core (intellectual property core). Existing
commercial libraries provide a wide range of pre-designed
cores, including those of complete CPUs. More than one
soft IP-core can be placed onto an FPGA chip.

3.1 FPGA Architecture
Figure 1 sketches the architecture of the Xilinx Virtex II

Pro XC2VP30 FPGA used in this paper [28]. The FPGA is



PowerPC cores 2
Slices 13,696
18 kbit BRAM blocks 136 (=2,448 kbit,

usable as 272 kB)
18×18-bit multipliers 136
I/O pads 644

Table 1: Characteristics of Xilinx XC2VP30 FPGA.
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Figure 2: Simplified Virtex-II Pro slice consisting of
2 LUTs and 2 register/latch components. The gray
components are configured during programming.

a 2D array of configurable logic blocks (CLBs). Each logic
block consists of 4 slices that contain logic gates (in terms
of lookup tables, see below) and a switch box that connects
slices to an FPGA interconnect fabric.

In addition to the CLBs, FPGA manufacturers provide
frequently-used functionality as discrete silicon components
(hard IP-cores). Such hard IP-cores include block RAM
(BRAM) elements (each containing 18 kbit fast storage)
as well as 18×18-bit multiplier units. A number of In-
put/Output Blocks (IOBs) link to external RAM or network-
ing devices. Two on-chip PowerPC 405 cores are directly
wired to the FPGA fabric and to the BRAM components.
Table 1 shows a summary of the characteristics of the FPGA
used in this paper.

A simplified circuit diagram of a programmable slice is
shown in Figure 2. Each slice contains two lookup tables
(LUTs) with four inputs and one output each. A LUT
can implement any binary-valued function with four binary-
inputs. The output of the LUTs can be fed to a buffer block
which can be configured as a register (flip-flop). The output
is also fed to a multiplexer (MUXCY in Figure 2), which
allows the implementation of fast carry logic.

3.2 Hardware Setup
FPGAs are typically available pre-mounted on a circuit

board that includes additional peripherals. Such circuit
boards provide an ideal basis for the assessment we per-
form here. Quantitative statements in this report are based
on a Xilinx XUPV2P development board with a Virtex-II
Pro XC2VP30 FPGA chip. Relevant for the discussion in
this paper are the DDR DIMM socket which we populated
with a 512 MB RAM module. For terminal I/O of the soft-
ware running on the PowerPC, a RS232 UART interface is
available. The board also includes a 100 Mbit Ethernet port.

The board is clocked at 100 MHz. This clock drives both,
the FPGA-internal buses as well as the external I/O con-
nectors, such as the DDR RAM. The PowerPC cores are
clocked at 300 MHz.

4. A STREAMING MEDIAN OPERATOR
As a running example suitable to illustrate the design of

data processing operations in FPGAs, we have implemented
an operator that covers many of the typical aspects of data
intensive operations such as comparisons of data elements,
sorting, and I/O issues. In this way the lessons learned from
implementing this operator can be generalized to other op-
erators using similar building blocks. The design illustrates
many of the design constraints in FPGAs, which are very
different from the design constraints encountered in conven-
tional database engines. For instance, parallelism in a nor-
mal database is limited by the CPU and memory available.
In an FPGA, it is limited by the chip space available. In
a CPU, parallel threads may interfere with each other. In
an FPGA, parallel circuits do not interfere at all, thereby
achieving 100 % parallelism. Similarly, algorithms in a CPU
look very different from the same algorithms implemented
as circuits and, in fact, they have very different behavior
and complexity patterns.

We illustrate many of these design aspects using a median
operator over a count-based sliding window implemented on
the aforementioned Xilinx board. This is an operator com-
monly used to, for instance, eliminate noise in sensor read-
ings [25] and in data analysis tasks [26]. For illustration
purposes and to simplify the figures and the discussion, we
assume a window size of 8 tuples. For an input stream S,
the operator can then be described in CQL [3] as

Select median(v)
From S [ Rows 8 ] .

(Q1)

The semantics of this query are illustrated in Figure 3.
Attribute values vi in input stream S are used to construct
a new output tuple T ′i for every arriving input tuple Ti. A
conventional (CPU-based) implementation would probably
use a ring buffer to keep the last eight input values (we as-
sume unsigned integer numbers), then, for each input tuple
Ti,

(1) sort the window elements vi−7, . . . , vi to obtain an or-
dered list of values v′1 ≤ · · · ≤ v′8 and

(2) compute the mean value between v′4 and v′5,
v′
4+v′

5
2

, to
construct the output tuple T ′i (for an odd-sized window,
the median would instead be the middle element of the
sorted sequence).

We will shortly see how the data flow in Figure 3 directly
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Figure 3: Median aggregate over a count-based slid-
ing window (window size 8).

leads to an implementation in FPGA hardware. Before that,
we discuss the algorithmic part of the problem for Step (1).

4.1 Sorting
Sorting is the critical piece in the median operator and

known to be particularly expensive on conventional CPUs.
It is also a common data processing operation that can be
very efficiently implemented in FPGAs using asynchronous
circuits. Highly tuned and vectorized software implementa-
tions require in the order of fifty cycles to sort eight numbers
on modern CPUs [6].

Sorting Networks. Some of the most efficient conven-
tional approaches to sorting are also the best options in the
context of FPGAs. Sorting networks are attractive in both
scenarios, because they (i) do not require control flow in-
structions or branches and (ii) are straightforward to par-
allelize (because of their simple data flow pattern). On
modern CPUs, sorting networks suggest the use of vector
primitives, which has been demonstrated in [9, 11, 17].

Figure 4 illustrates two different networks that sort eight
input values. Input data enters a network at the left end. As
the data travels to the right, comparators each exchange
two values, if necessary, to ensure that the larger value al-
ways leaves a comparator at the bottom. The bitonic merge
network (Figure 4(a)) is based on a special property of bi-
tonic sequences (i.e., those that can be obtained by con-
catenating two monotonic sequences). A component-wise
merging of two such sequences always yields another bitonic
sequence, which is efficiently brought into monotonic (i.e.,
sorted) order afterward.

In an even-odd merge sorting network (Figure 4(b)), an
input of 2p values is split into two sub-sequences of length
2p−1. After the two 2p−1-sized sequences have been sorted
(recursively using even-odd merge sorting), an even-odd mer-
ger combines them into a sorted result sequence. Other sort-
ing algorithms can be represented as sorting networks, too.
For details we refer to the work of Batcher [4] or a textbook

[20].

Sorting Network Properties. As can be seen in the two
example networks in Figure 4, the number of comparisons
required for a full network implementation depends on the
particular choice of the network. The bitonic merge sorter
for N = 8 inputs in Figure 4(a) uses 24 comparators in total,
whereas the even-odd merge network (Figure 4(b)) can do
with only 19. For other choices of N , we listed the required
number of comparators in Table 2.

The graphical representation in Figure 4 indicates another
important metric of sorting networks. Comparators with in-
dependent data paths can be grouped into processing stages
and evaluated in parallel. The number of necessary stages
is referred to as the depth S(N) of the sorting network. For
eight input values, bitonic merge networks and even-odd
merge networks both have a depth of six.

Compared to even-odd merge networks, bitonic merge
networks observe two additional interesting characteristics:

(i) all signal paths have the same length (by contrast, the
data path from x0 to y0 in Figure 4(b) passes through three
comparators, whereas from x5 to y5 involves six) and

(ii) the number of comparators in each stage is constant (4
comparators per stage for the bitonic merge network, com-
pared with 2–5 for the even-odd merge network).

CPU-Based Implementations. These two properties are
the main reason why many software implementations of sort-
ing have opted for a bitonic merge network, despite its higher
comparator count (e.g., [9, 11]). Differences in path lengths
may require explicit buffering for those values that do not
actively participate in comparisons at specific processing
stages. At the same time, additional comparators might
cause no additional cost in architectures that can evaluate
a number of comparisons in parallel using, for instance, the
SIMD instruction sets of modern CPUs.

4.2 An FPGA Median Operator
Once the element for sorting is implemented using a sort-

ing network, the complete operator can be implemented in
an FPGA using the sketch in Figure 3. Each of the solid
arrows corresponds to 32 wires in the FPGA interconnect
fabric, carrying the binary representation of a 32-bit integer
number. Sorting and mean computation can both be pack-
aged into logic components, whose internals we now present.

Comparator Implementation on an FPGA. The data
flow in the horizontal direction of Figure 4 also translates
into wires on the FPGA chip. The entire network is obtained
by wiring a set of comparators, each implemented in FPGA
logic. The semantics of a comparator is easily expressible
in the hardware description language VHDL (where <= in-
dicates an assignment):

entity comparator is

port (a : in std_logic_vector(31 downto 0);

b : in std_logic_vector(31 downto 0);

min : out std_logic_vector(31 downto 0);

max : out std_logic_vector(31 downto 0));

end comparator;

architecture behavioral of comparator is

min <= a when a < b else b;

max <= b when a < b else a;

end behavioral;

The resulting logic circuit is shown in Figure 5. The
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Figure 4: Sorting networks for 8 elements. Dashed comparators are not used for the median.
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exact C(N) = N(N−1)
2

C(2p) = (p2 − p+ 4)2p−1 C(2p) = (p2 + p)2p−2

S(N) = 2N − 3 S(2p) = p(p+1)
2

S(2p) = p(p+1)
2

asymptotic C(N) = O(N2) C(N) = O
(
N log2(N)

)
C(N) = O

(
N log2(N)

)
S(N) = O(N) S(N) = O

(
log2(N)

)
S(N) = O

(
log2(N)

)
N = 8 C(8) = 28 C(8) = 19 C(8) = 24

S(8) = 13 S(8) = 6 S(8) = 6

Table 2: Comparator count C(N) and depth S(N) of different sorting networks.
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Figure 5: FPGA implementation of a 32-bit com-
parator. Total space consumption is 48 slices (16 to
compare and 32 to select minimum/maximum val-
ues).

32 bits of the two inputs a and b are compared first (up-
per half of the circuit), yielding a Boolean output signal
c for the outcome of the predicate a ≥ b. Signal c drives
2 × 32 multiplexers that connect the proper input lines to
the output lines for min(a, b) and max(a, b) (lower half of
the circuit). Equality comparisons = and multiplexers

each occupy one lookup table on the FPGA, resulting
in a total space consumption of 48 FPGA slices for each
comparator.

The FPGA implementation in Figure 5 is particularly
time efficient. All lookup tables are wired in a way such
that all table lookups happen in parallel. Outputs are com-
bined using the fast carry logic implemented in silicon for
this purpose.

The Right Sorting Network for FPGAs. To imple-
ment a full bitonic merge sorting network, 24 comparators
need to be plugged together as shown in Figure 4(a), re-
sulting in a total space requirement of 1152 slices (or 8.4 %
of the space of our Virtex-II Pro chip). An even-odd merge

network (Figure 4(b)), by contrast, can do the same work
with only 19 comparators, which amount to only 912 slices
(≈ 6.7 % of the chip). Available slices are the scarcest re-
source in FPGA programming. The 20 % savings in space,
therefore, makes even-odd merge networks preferable over
bitonic merge sorters on FPGAs. The runtime performance
of an FPGA-based sorting network depends exclusively on
the depth of the network (which is the same for both net-
works).

Optimizing for the Median Operation. Since we are
only interested in the computation of a median, a fully
sorted data sequence is more than required. Even with the
dashed comparators in Figure 4 omitted, the average over
y3 and y4 will still yield a correct median result.

This optimization saves 2 comparators for the bitonic, and
3 for the even-odd sorting network. Moreover, the even-odd-
based network is now shortened by a full stage, reducing its
execution time. The optimized network in Figure 4(b) now
consumes only 16 comparators, i.e., 768 slices or 5.6 % of
the chip.

Averaging Two Values in Logic. To obtain the final
median value, we are left with the task of averaging the two
middle elements in the sorted sequence. The addition of two
integer values is a classic example of a digital circuit and,
for 32-bit integers, consists of 32 full adders. To obtain the
mean value, the 33-bit output must be divided by two or—
expressed in terms of logic operations—bit-shifted by one.
The bit shift, in fact, need not be performed explicitly in
hardware. Rather, we can connect the upper 32 bits of the
33-bit sum directly to the operator output.

Overall, the space consumption of the mean operator is
16 slices (two adders per slice).

Sliding Windows. The sliding window of the median op-
erator is implemented as a 32-bit wide linear shift register
with depth 8 (see Figure 6). The necessary 8× 32 flip-flops
occupy 128 slices (each slice contains two flip-flops).
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4.3 Generalization to Other Operators
The ideas presented here in the context of the median

operator are immediately applicable to a wide range of other
common operators. Operators such as selection, projection,
and simple arithmetic operations (max, min, sum, etc.) can
be implemented as a combination of logical gates and simple
circuits similar to the ones presented here. We described one
strategy to obtain such circuits in [23].

As the designs described showed, the overhead of oper-
ators implemented in an FPGA is very low. In addition,
as shown in the examples, it is possible to execute many
such operators in parallel, which yields higher throughput
and lower latency than in the typical sequential execution
in CPUs.

Sorting is a common and expensive operation in many
queries. Data processed by the FPGA and forwarded to
the CPU or the disk can be sorted as explained with little
impact on performance. Similarly, using asynchronous cir-
cuits, subexpressions of predicates of selection operators can
be executed in parallel.

5. SYSTEM DESIGN
So far we have looked at our FPGA-based database oper-

ator as an isolated component. However, FPGAs are likely
to be used to complement regular CPUs in variety of config-
urations. For instance, to offload certain processing stages
of a query plan or filter an incoming stream before feeding
it into the CPU for further processing.

In conventional databases, the linking of operators among
themselves and to other parts of the system is a well under-
stood problem. In FPGAs, these connections can have a
critical impact on the effectiveness of FPGA co-processing.
In addition, there are many more options to be considered in
terms of the resources available at the FPGA such as using
the built-in PowerPC CPUs and soft IP-cores implementing
communication buses or controller components for various
purposes. In this section we illustrate the trade-offs in this
part of the design and show how hardware connectivity of
the elements differs from connectivity in software.

5.1 System Overview
Using the Virtex-II Pro-based development board described

in Section 3.2, we have implemented the embedded system
shown in Figure 7. We only use one of the two available
PowerPC cores (our experiments indicate that the use of a
second CPU core would not lead to improved throughput).
The system further consists of two buses of different width
and purpose. The 64-bit wide processor local bus (PLB)

512 MB
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Figure 7: Architecture of the on-chip system:
PowerPC core, 3 aggregation cores, BRAM for pro-
gram, interface to external DDR RAM and UART
for terminal I/O.

is used to connect memory and fast peripheral components
(such as network cards) to the PowerPC core. The 32 bit-
wide on-chip peripheral bus (OPB) is intended for slow pe-
ripherals, to keep them from slowing down fast bus transac-
tions. The two buses are connected by a bridge. The driver
code executed by the PowerPC core (including code for our
measurements) is stored in 128 kB block RAM connected to
the PLB.

Two soft IP-cores provide controller functionality to ac-
cess external DDR RAM and a serial UART connection link
(RS-232). They are connected to the input/output blocks
(IOBs) of the FPGA chip. We equipped our system with
512 MB external DDR RAM and used a serial terminal con-
nection to control our experiments.

Our streaming median operator participates in the sys-
tem inside a dedicated processing core, dubbed “aggregation
core” in Figure 7. More than one instance of this compo-
nent can be created at a time, all of which are connected to
the PLB. An aggregation core consists of user logic, as de-
scribed in detail in the previous section. A parameterizable
IP interface (IPIF, provided by Xilinx as a soft IP-core)
provides the glue logic to connect the user component to
the bus. In particular, it implements the bus protocol and
handles bus arbitration and DMA transfers. A similar IPIF
component with the same interface on the user-logic side is
also available for the OPB. However, since we aim for high
data throughput, we chose to attach the aggregation cores
to the faster PLB.

5.2 Putting it All Together
Many operators involve frequent iteration over the data;

data transfers to and from memory; and data acquisition
from the network or disks. As in conventional databases,
these interactions can completely determine the overall per-
formance. It is thus of critical importance to design the
memory/CPU/circuits interfaces so as to optimize perfor-
mance.

To illustrate the design options and the trade-offs involved,
we consider three configurations (attachments of the aggre-
gation core to the CPU) of the FPGA. These configurations
are based on registers connected to the input signals of the
IP-core and mapped into the memory space of the CPU.
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Information can then be sent between the aggregation core
and the CPU using load/store instructions.

Configuration 1: Slave Registers. The first approach
uses two 32-bit registers DATA IN and AGG OUT as shown in
Figure 8. The IP interface is set to trigger a clock signal
upon a CPU write into the DATA IN register. This signal
causes a shift in the shift register (thereby pulling the new
tuple from DATA IN) and a new data set to start propagating
through the sorting network. A later CPU read instruction
for AGG OUT then will read out the newly computed aggregate
value.

This configuration is simple and uses few resources. How-
ever, it has two problems: lack of synchronization and poor
bandwidth usage.

In this configuration the CPU and the aggregation core
are accessing the same registers concurrently with no syn-
chronization. The only way to avoid race conditions is to
add artificial time delays between the access operations.

In addition, each tuple in this configuration requires two
32-bit memory accesses (one write followed by one read).
Given that the CPU and the aggregation core are connected
to a 64-bit bus (and hence could transmit up to 2× 32 bits
per cycle), this is an obvious waste of bandwidth.

Configuration 2: FIFO Queues. The second configura-
tion we explore solves the lack of synchronization by intro-
ducing FIFO queues between the CPU and the aggregation
core (Figure 9). Interestingly, this is the same solution as
the one adopted in data stream management systems to de-
couple operators.

The CPU writes tuples into the Write-FIFO (WFIFO)
and reads median values from the Read-FIFO queue (RFIFO).
The two queues are implemented in the IPIF using addi-
tional block RAM components (BRAM). The aggregation
core independently dequeues items from the Write-FIFO
queue and enqueues the median results into the Read-FIFO
queue. Status registers in both queues allow the CPU to
determine the number of free slots (write queue) and the
number of available result items (read queue).

This configuration avoids the need for explicit synchro-
nization. There is still the drawback that the interface uses
only 32 bits of the 64 available on the bus. The mismatch
between a 64-bit access on the CPU side and a 32-bit width
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Figure 9: Attachment of aggregation core through
Write-FIFO and Read-FIFO queues.

on the aggregation core turns out to be an inherent prob-
lem of using a general-purpose FIFO implementation (such
as the one provided with the Xilinx IPIF interface). Re-
implementing the FIFO functionality in user logic can rem-
edy this deficiency, as we describe next.

Configuration 3: Master Attachment. In the previ-
ous configuration, access is through a register that cannot
be manipulated in 64-bit width. Instead of using a register
through a bus, we can use memory mapping between the ag-
gregation core and the CPU to achieve a full 64 bit transfer
width. The memory mapping is now done on the basis of
contiguous regions rather than a single address. Two regions
are needed, one for input and one for output. These mem-
ory regions correspond to local memory in the aggregation
core and are implemented using BRAMs.

We can improve on this approach even further by tak-
ing advantage of the fact that the transfers to/from these
regions can be offloaded to a DMA controller. We have con-
sidered two options: one with the DMA controller run by
the CPU and one with the DMA controller run in (the IPIF
of) the aggregation core. Of these two options, the latter
one is preferrable since it frees the DMA controller of the
CPU to perform other tasks. In the following, we call this
configuration master attachment. In Figure 10, we show all
the memory mapped registers the CPU uses to set up the
transfers, although we do not discuss them here in detail for
lack of space. The figure also shows the interrupt line used
to notify the CPU that new results are available.

The master attachment configuration has the advantage
that the aggregation core can independently initiate the
write-back of results once they are ready, without having
to synchronize with an external DMA controller. This re-
duces latency, uses the full available bandwidth, and gives
the aggregation core control over the flow of data, leaving
the CPU free to perform other work and thereby increasing
the chances for parallelism.

6. EVALUATION
We evaluated the different design options described above.

All experiments were done on the Xilinx XUPV2P develop-
ment board. Our focus is on the details of the soft IP-core
and we abstract from effects caused for example by I/O (net-
work and disks) by performing all the processing into and
out of off-chip memory (512 MB DDR RAM).
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supporting through DMA transfers to external
memory.

6.1 Asynchronous vs. Synchronous Designs
We first consider and evaluate possible implementations of

the sorting network discussed in Section 4.1. As indicated,
the even-odd merge network is more space efficient so this
is the one we consider here. The implementation options
are important in terms of the overall latency of the operator
which, in turn, will determine how fast data streams can be
processed.

Asynchronous design. We start by considering an asyn-
chronous design. The eight 32-bit signals are applied at the
input of the sorting network and then ripple down the stages
of the sorting network. Until the correct result has stabilized
at the output, signals have to traverse up to five compara-
tor stages. The exact latency of the sorting network, the
signal propagation delay, depends on the implementation of
the comparator element and on the on-chip routing between
the comparators.

The total propagation delay is determined by the longest
signal path. For a single comparator, this path starts in the
equality comparison LUT, passes through 32 carry logic mul-
tiplexers, and ends at one min/max multiplexer. According
to the FPGA data sheet [28] the propagation delay for a
single 4-input LUT is 0.28 ns. The carry logic multiplexers
and the switching network cause an additional delay. The
overall latency for the median output to appear after the
input is set can be computed with a simulator provided by
Xilinx that uses the post-routing and element timing data
of the FPGA.1

For our implementation we obtain a latency of 13.3 ns. An
interesting point of reference is the performance of a tuned
SIMD implementation on current CPU hardware. It has
been suggested that 50 CPU cycles is the minimum required
to sort 8 elements on a modern general-purpose CPU [6].

1One might be tempted to physically measure the latency of
the sorting network by connecting the median operator di-
rectly to the I/O pins of the FPGA. However, signal buffers
at the inputs and outputs (IOBs) of the FPGA and the
switching network in between add significant latency (up to
10 ns). Any such measurement is bound to be inaccurate.
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Figure 11: Synchronous implementation of the ag-
gregation core requires 6 clock cycles, i.e., 60 ns.
In an asynchronous implementation the output is
ready after 13.3 ns (the output signals can be read
after 2 cycles).

For a fast 3.22 GHz processor, this corresponds to ≈ 15 ns,
13 % more than the FPGA used in our experiments. The
short latency is a consequence of a deliberate design choice.
Our circuit operates in a strictly asynchronous fashion, not
bound to any external clock.

Synchronous design. In a traditional synchronous imple-
mentation all circuit elements use a common clock. Regis-
ters are then necessary between each of the five stages of the
sorting network.

A synchronous implementation of the sorting network in
Section 4 inherently uses six clock cycles (i.e., 60 ns in a
100 MHz system) to sort eight elements.

Both design choices are illustrated in Figure 11. In this fig-
ure, the gray-shaded time intervals indicate switching phases
during which actual processing happens (i.e., when signals
are changing). During intervals shown in white, signals are
stable. The registers are used as buffers until the next clock
cycle. As the figure shows, the switching phase is shorter
than the clock length.

Comparison. The latency of the asynchronous design is
13.3 ns. Taking into consideration that the sorting net-
work needs to be connected to other elements that are asyn-
chronous, the effective latency is 2 clock cycles or 20 ns. The
latency of the synchronous design is 60 ns or 6 cycles, clearly
slower than the asynchronous circuit. On the other hand,
the synchronous circuit has a throughput of one tuple per
cycle while the asynchronous circuit has a throughput of 1
tuple every 2 cycles. The synchronous implementation re-
quires more space due to the additional hardware (flip-flops)
necessary to implement the registers between the compara-
tor stages. The space needed is given by:

(5 stages × 8 elements + 1 sum) × 32 bits =

1312 flip-flops/core ≡ 5% of the FPGA/core .

The higher complexity of asynchronous circuits has led



 0.1

 1

 10

 100

 1000

 10000

16 B 256 B 4 kB 64 kB

ex
ec

ut
io

n 
tim

e 
[µ

s]

data size

DMA master attachment
slave register

Figure 12: Total execution time to process data
streams of different size on the FPGA-based aggre-
gation core.

many FPGA design to rely solely on synchronous circuits
[13]. Our results indicate, however, that for data process-
ing there are simple asynchronous designs that can signifi-
cantly reduce latency (at the cost of throughput). In terms
of transforming algorithms into asynchronous circuits, not
all problems can expressed in an asynchronous way. From
a theoretical point of view, every problem where the only
dependence of the output signal are the input signals, can
be converted into an asynchronous circuit (a combinatorial
circuit). The necessary circuit can be of significant size,
however (while synchronous circuits may be able to re-use
the same logic elements in more than one stage). A more
practical criterion can be obtained by looking at the algo-
rithm that the circuit mimics in hardware. As a rule of
thumb, algorithms that require a small amount of control
logic (branches or loops) and have a simple data flow pat-
tern are the most promising candidates for asynchronous
implementations.

6.2 Median Operator
We now compare two of the configurations discussed in

Section 5.2 and then evaluate the performance of the com-
plete aggregation core using the best configuration.

We compare configuration 1 (slave register) with configu-
ration 3 (master attachment). We use maximum-sized DMA
transfers (4 kB) between external memory and the FPGA
block RAM to minimize the overhead spent on interrupt
handling. We do not consider configuration 2 (FIFO queues)
because it does not offer a performance improvement over
configuration 1.

Figure 12 shows the execution time for streams of varying
size up to 64 kB. While we see a linearly increasing execution
time for configuration 1, configuration 2 requires a constant
execution time of 96 µs for all data sizes up to 4 kB, then
scales linearly with increasing data sizes (this trend contin-
ues beyond 64 kB). This is due to the latency incurred by
every DMA transfer (up to 4 kB can be sent within a sin-
gle transfer). 96 µs are the total round-trip time, measured
from the time the CPU writes to the control register in or-
der to initiate the Read-DMA transfer until it receives the
interrupt.

These results indicate that configuration 1 (slave registers)
is best for processing small amounts of data or streams with
low arrival rates. Configuration 3 (master attachment) is
best for large amounts of data (greater than 4 kB) or data
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Figure 13: Execution time for processing a single
256 MB data set on different CPUs using different
sorting algorithms and on the FPGA.

streams with very high arrival rates so that the tuples can
be batched.

Using configuration 3, we have also measured the time it
takes for the complete median operator to process 256 MB
of data consisting of 4-byte tuples. It takes 6.173 seconds to
process all the data at a rate of more than 10 million tuples
per second. This result is shown as the horizontal line in
Figure 13.

6.3 FPGA Performance in Perspective
FPGAs can be used as co-processor of data processing en-

gines running on conventional CPUs. This, of course, pre-
sumes that using the FPGA to run queries or parts of queries
does not result in a net performance loss. In other words,
the FPGA must not be significantly slower than the CPU.
Achieving this is not trivial because of the much slower clock
rates on the FPGA.

Here we study the performance of the FPGA compared to
that of CPUs when running on a single data stream. Later
on we are going to consider parallelism.

To ensure that the choice of a software sorting algorithm
is not a factor in the comparison, we have implemented eight
different sorting algorithms in software and optimized them
for performance. Seven are traditional textbook algorithms:
quick sort, merge sort, heap sort, gnome sort, insertion sort,
selection sort, and bubble sort. The eighth is an implemen-
tation of the even-odd merge sorting network of Section 4.1
using CPU registers.

We ran the different algorithms on several hardware plat-
forms. We used an off-the-shelf desktop Intel x86-64 CPU
(2.66 GHz Intel Core2 quad-core Q6700) and the following
PowerPC CPUs: a 1 GHz G4 (MCP7457) and a 2.5 GHz
G5 Quad (970MP), the PowerPC element (PPE not SPEs)
of the Cell, and the embedded 405 core of our FPGA. All
implementations are single-threaded. For illustration pur-
poses, we limit our discussion to the most relevant subset of
algorithms.

Figure 13 shows the wall-clock time observed when pro-
cessing 256 MB (as 32-bit tuples) through the median sliding
window operator. The horizontal line indicates the execu-
tion time of the FPGA implementation. Timings for the
merge, quick, and heap sort algorithms on the embedded
PowerPC core did not fit into scale (303 s, 116 s, and 174 s,
respectively). All our software implementations were clearly



Intel Core 2 Q6700:
Thermal Design Power (CPU only) 95 W
Extended HALT Power (CPU only) 24 W
Measured total power (230 V) 102 W

Xilinx XUPV2P development board:
Calculated power estimate (FPGA only) 1.3 W
Measured total power (230 V) 8.3 W

Table 3: Power consumption of an Intel Q6700-
based desktop system and the Xilinx XUPV2P
FPGA board used in this paper. Measured values
are under load when running median computation.

CPU-bound. It is also worth noting that given the small
window, the constant factors and implementation overheads
of each algorithm predominate and, thus, the results do not
match the known asymptotic complexity of each algorithm.

The performance observed indicates that the implemen-
tation of the operator on the FPGA is comparable to that
of conventional CPUs. In the cases where it is worse, it is
not significantly slower. Therefore, the FPGA is a viable
option for offloading data processing out of the CPU which
then can be devoted to other purposes. When power con-
sumption and parallel processing are factored in, FPGAs
look even more interesting as co-processors for data man-
agement.

6.4 Power Consumption
While the slow clock rate of our FPGA (100 MHz) re-

duces performance, there is another side to this coin. The
power consumption of a logic circuit depends linearly on the
frequency at which it operates (U and f denote voltage and
frequency, respectively):

P ∝ U2 × f .

Therefore, we can expect our 100 MHz circuit to consume
significantly less energy than the 3.2 GHz x86-64.

It is difficult to reliably measure the power consumption of
an isolated chip. Instead, we chose to list some approximate
figures in Table 3. Intel specifies the power consumption
of our Intel Q6700 to be between 24 and 95 W (the for-
mer figure corresponds to the “Extended HALT Powerdown
State”) [18]. For the FPGA, a power analyzer provided by
Xilinx reports an estimated consumption of 1.3 W.

More meaningful from a practical point of view is the
overall power requirement of a complete system under load.
Therefore, we took both our systems, unplugged all periph-
erals not required to run the median operator and measured
the power consumption of both systems at the 230 V wall
socket. As shown in Table 3, the FPGA has a 12-fold ad-
vantage (8.3 W over 102 W) compared to the CPU-based
solution here.

As energy costs and environmental concerns continue to
grow, the consumption of electrical power (the “carbon foot-
print” of a system) is becoming an increasingly decisive fac-
tor in system design. Though the accuracy of each individ-
ual number in Table 3 is not high, our numbers clearly show
that adding a few FPGAs can be more power-efficient than
simply adding CPUs in the context of many-core architec-
tures.

Modern CPUs have sophisticated power management such
as dynamic frequency and voltage scaling that allow to re-

cores flip-flops LUTs slices %

0 1761 1670 1905 13.9 %
1 3727 6431 4997 36.5 %
2 5684 10926 7965 58.2 %
3 7576 15597 11004 80.3 %
4 9512 20121 13694 100.0 %

Table 4: FPGA resource usage. The entry for 0
cores represents the space required to accommodate
all the necessary circuitry external to the aggrega-
tion cores (UART, DDR controller, etc.).

duce idle power. FPGAs offer power management even be-
yond that, and many techniques from traditional chip design
can directly be used in an FPGA context. For example, us-
ing clock gating parts of the circuit can be completely dis-
abled, including clock lines. This significantly reduces the
idle power consumption of the FPGA chip.

6.5 Parallelism: Space Management
Another advantage of FPGAs is their inherent support

for parallelism. By instantiating multiple aggregation cores
in FPGA hardware, multiple data streams can be processed
truly in parallel. The number of instances that can be cre-
ated is determined both by the size of the FPGA, i.e., its
number of slices, and by the capacity of the FPGA inter-
connect fabric.

We placed four instances of the median aggregation core
on the Virtex-II Pro. Table 4 shows the resource usage de-
pending on the number of aggregation cores. We also give
the usage in percent of the total number of available slices
(13,696). Note that there is a significant difference in size
between the space required by the median operator (700 to
900 slices) and the space required by the complete aggrega-
tion core (about 3000 slices). This overhead comes from the
additional circuitry necessary to put the median operator
into the configuration 3 discussed above.

The use of parallelism brings forth another design trade-
off characteristic of FPGAs. To accommodate four aggre-
gation cores, the VHDL compiler starts trading latency for
space by placing unrelated logic together into the same slice,
resulting in longer signal paths and thus longer delays. This
effect can also be seen in Figure 14, where we illustrate
the space occupied by the four aggregation cores. Occupied
space regions are not contiguous, which increases signal path
lengths.

The longer path lengths have a significant implication for
asynchronous circuits. Without any modification, the me-
dian operator produces incorrect results. The longer signal
paths result in longer switching phases in the sorting net-
work, leading to an overall latency of more than two cycles
(20 ns). Incorrect data reading can be avoided by intro-
ducing a wait cycle and reading the aggregation result three
cycles after setting the input signals. This implies that asyn-
chronous circuits need to be treated more carefully if used in
high density scenarios where most of the FPGA floor space
is used.

Other FPGA models such as the Virtex-5 have signifi-
cantly larger arrays (7.6 times larger than our Virtex-II Pro)
and higher clocks (5.5 times). On such a chip, assuming that
a single core requires 3,000 slices, we estimate that ≈ 30 ag-
gregation cores can be instantiated, provided that the mem-
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Figure 14: Resource usage on the FPGA chip (floor-
plan) by the 4 aggregation cores and the remaining
system components.
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ory bandwidth does not further limit this number.

6.6 Parallelism: Performance
We used the four aggregation cores mentioned above to

run up to four independent data streams in parallel. We
ran streams of increased size over configurations with an in-
creasing amount of cores. Figure 15 shows the wall-clock
execution times for processing multiple data streams in par-
allel, each on a separate aggregation core. Table 5 summa-
rizes the execution times for a stream of 64 MB (column
‘FPGA’).

The first important conclusion is that running additional
aggregation cores has close to no impact on the other cores.
The slight increase with the addition of the fourth core
comes from the need to add the wait cycle mentioned above.
This shows that by adding multiple cores throughput is in-
creased as multiple streams can be processed concurrently
(Table 5). The second observation is that the execution
times scale linearly with the size of the data set as it is to
be expected. The flat part of the curves is the same effect
observed before for stream sizes smaller than 4 kB. The
graph also indicates that since each core is working on a dif-
ferent stream, we are getting linear scale-out in throughput

PowerPC 405 speedup
streams FPGA seq. alt. seq. alt.

1 1.54 s 10.1 s – 7× –
2 1.56 s 20.2 s 36.7 s 13× 24×
3 1.58 s 30.4 s 55.1 s 19× 35×
4 1.80 s 40.5 s 73.5 s 22× 41×

Table 5: Execution times for different number of
concurrent streams (64 MB data set per stream).

with the number of aggregation cores. It is also interesting
to note that with four cores we did not reach the limit in
memory bandwidth, neither on the DDR RAM nor on the
PLB.

One last question that remains open is whether a similar
parallelism could be achieved with a single CPU. Table 5
contains the execution times obtained with a CPU-only im-
plementation for multiple streams, assuming either sequen-
tial processing (one stream after the other) or tuple-wise
alternation between streams. Cache conflicts lead to a sig-
nificant performance degradation in the latter case.

Clearly, a single CPU cannot provide the same level of
parallelism as an FPGA. Obviously, this could be achieved
with more CPUs but at a considerable expense. From this
and the previous results, we conclude that FPGAs offer a
very attractive platform as data co-processors and that they
can be effectively used to run data processing operators.

7. SUMMARY
In this paper we have assessed the potential of FPGAs

as co-processor for data intensive operations in the context
of multi-core systems. We have illustrated the type of data
processing operations where FPGAs have performance ad-
vantages (through parallelism and low latency) and discuss
several ways to embed the FPGA into a larger system so
that the performance advantages are maximized. Our ex-
periments show that FPGAs bring additional advantages in
terms of power consumption. These properties make FPGAs
very interesting candidates for acting as additional cores in
the heterogeneous many-core architectures that are likely to
become pervasive. The work reported in this paper is a first
but important step to incorporate the capabilities of FPGAs
into data processing engines in an efficient manner. The
higher design costs of FPGA-based implementations may
still amortize, for example, if a higher throughput (using
multiple parallel processing cores as shown in the previous
section) can be obtained in a FPGA-based stream process-
ing system for a large fraction of queries.

As part of future work we intend to explore a tighter inte-
gration of the FPGA with the rest of the computing infras-
tructure, an issue also at the top of the list for many FPGA
manufacturers. Modern FPGAs can directly interface to
high-speed bus systems, such as the HyperTransport bus,
or even intercept the execution pipeline of general-purpose
CPUs, opening up many interesting possibilities for using
the FPGA in different configurations.
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