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ABSTRACT

Given two large lists of records, the task in entity resolution (ER)
is to find the pairs from the Cartesian product of the lists that cor-
respond to the same real world entity. Typically, passive learning
methods on such tasks require large amounts of labeled data to
yield useful models. Active Learning is a promising approach for
ER in low resource settings. However, the search space, to find
informative samples for the user to label, grows quadratically for
instance-pair tasks making active learning hard to scale. Previous
works, in this setting, rely on hand-crafted predicates, pre-trained
language model embeddings, or rule learning to prune away un-
likely pairs from the Cartesian product. This blocking step can miss
out on important regions in the product space leading to low recall.
We propose DIAL, a scalable active learning approach that jointly
learns embeddings to maximize recall for blocking and accuracy for
matching blocked pairs. DIAL uses an Index-By-Committee frame-
work, where each committee member learns representations based
on powerful pre-trained transformer language models. We high-
light surprising differences between the matcher and the blocker
in the creation of the training data and the objective used to train
their parameters. Experiments on five benchmark datasets and a
multilingual record matching dataset show the effectiveness of our
approach in terms of precision, recall and running time.
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1 INTRODUCTION

Entity resolution (ER) is a crucial task in data integrationwhose goal
is to determine whether two mentions refer to the same real-world
entity. With a history going back at least half a century (following
Fellegi and Sunter [20]’s seminal work), the task goes by various
names and formulations, with the most common one being: Given
two sets 𝑅 and 𝑆 , for each pair of instances (𝑟, 𝑠) ∈ 𝑅 × 𝑆 classify
(𝑟, 𝑠) as either being a match or a non-match. In essence, this is
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Figure 1: Traditional paired classification AL.

an instance of paired classification that requires learning a highly
accurate binary-class classifier or matcher.

ER has a rich history of employing active learning (AL) [60]
instead of supervised or passive learning which harbors some ad-
vantages such as incrementally adding labeled pairs instead of
requiring voluminous labeled data up-front to train the matcher. A
variety of previous works on ER [29, 39, 40, 54, 58] have utilized the
AL workflow shown in Figure 1, with minor modifications. In each
iteration, the learning algorithm (learner) learns a matcher (shown
in an ellipse which we use to denote model components) from 𝑇 ,
the labeled pairs collected from the (human) labeler so far, while the
example selector (selector) chooses the most informative unlabeled
pairs to acquire labels for. After including the new labels into 𝑇 ,
the process repeats until we learn a matcher of sufficient quality.
Popular choices for matcher includes support vector machines [58],
random forests [39], and neural networks [29]. Popular choices for
selector includes query-by-committee [21, 61] which has seen wide
usage in ER [11, 40] and uncertainty sampling [29].

To efficiently pare down the number of unlabeled pairs in 𝑅 × 𝑆
that the selector needs to choose from, one usually employs a pre-
specified blocking function. Commonly used blocking functions
include string similarity measures (e.g. Jaccard similarity) to com-
pare string representations of 𝑟 and 𝑠 , and keep only those pairs
whose similarity exceeds a pre-determined threshold [39]. Konda
et al. [31] recommend that the user acquire some domain knowl-
edge about 𝑅, 𝑆 so as to be able to specify an effective blocker. Even
if domain knowledge is available, the user’s choice may still be sub-
optimal. In some situations, it may even be impossible to acquire
such knowledge, for example when one of 𝑅 or 𝑆 is in a language
unfamiliar to the user (aka cross-lingual ER [38]). The other, possi-
bly more disconcerting, conceptual issue with Figure 1 is that the
blocker is removed from the matcher. To be clear, both matcher
and blocker are paired classifiers but the requirements of them are
different. While the matcher needs to provide high classification
accuracy, the blocker only needs to efficiently identify matches
while rejecting as many non-matches as possible (in other words,
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Figure 2: Deep, indexed AL with a committee of encoders.

high recall is desired). This implies that ideally, the blocker should
be integrated into the AL feedback loop. As we obtain more labeled
data, we expect both matcher and blocker to benefit instead of
benefiting one and not the other as Figure 1 indicates. While there
exist proposals to learn the blocking function automatically [8],
these require copious amounts of labeled data up-front and thus
it is not clear how to combine this with low-resource AL setting
where such labeled data may not be available. Optionally, DeepER
[17] encodes 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 into fixed-dimensional vectors or
encodings 𝐸 (𝑟 ) and 𝐸 (𝑠), respectively, (see dashed edges in Figure
1). Similar pairs (𝑟, 𝑠) may then be retrieved via nearest neighbor
search implemented using locally sensitive hashing. However, even
in this case the blocker is not integrated with the AL feedback loop.

Given the previous discussion, our goal is to propose a new AL
approach for ER that satisfies the following desiderata:
• To ensure that both benefit from newly acquired labels, the
blocker and matcher should be integrated.
• Slightly at logger heads with the previous property, we would
also like to train the matcher and blocker with distinct loss
functions since they need to satisfy distinct requirements.
• Need to achieve all this without adversely affecting scalability,
since this is one of the purposes of the blocker in Figure 1.

Our proposed integrated matcher-blocker combination and new
AL workflow is shown in Figure 2. Compared to Figure 1, the two
most notable differences are 1) the blocker (dashed box) is now
part of the AL feedback loop, and 2) the matcher is a component
within the blocker. As base matcher, we use transformer-based pre-
trained language models (TPLM) [16, 35] which have recently led
to excellent ER accuracies in the passive (non-AL) setting [34].
Before we describe details of the proposed approach, please note
that TPLMs can be invoked in two distinct modes. To obtain a
prediction for a pair (𝑟, 𝑠), we invoke the matcher, a (fine-tuned)
instance of TPLM, in paired mode where we concatenate string
representations of 𝑟 and 𝑠 to obtain a joint representation. Single
mode is where we input one of 𝑟 or 𝑠’s string representation to
obtain its encoding. To implement blocking, we invoke TPLM in
single mode by first populating an index structure (FAISS [28])
with 𝐸 (𝑟 ), ∀𝑟 ∈ 𝑅, followed by probing with 𝐸 (𝑠) given 𝑠 ∈ 𝑆 to
retrieve potentially similar pairs for the selector to choose from.
Since the blocker needs to attain high recall, we find that one
encoding of 𝑟 or 𝑠 is not sufficient, improved recall can be achieved
if we allow minor variations of 𝐸 (𝑟 ) and 𝐸 (𝑠). To this end, we allow

for multiple, distinct affine transformations of the base TPLM’s last
layer. This combination of TPLM, multiple encoders enc1, . . . enc𝑚
and indices idx1, . . . idx𝑚 , referred to as index by committee (IBC),
is pictorially depicted in Figure 2. While previous works on AL and
ER have attempted to learn committees instead of a single classifier
[11, 39, 40, 58], none of them consider TPLMs, and none of them
use committee for designing a high recall blocker.

A primary challenge of our integrated matcher-blocker system
is training them simultaneously so that the blocker recalls all likely
duplicates based on embedding similarity, and the matcher pre-
cisely separates duplicates from non-duplicates in paired mode.
We show that the conventional classification loss on labeled ex-
amples that trains the matcher well, performs very poorly on the
blocker. This led us to design a new contrastive training objective
for the blocker that separates labeled duplicates from random non-
duplicate pairs. In entity resolution tasks, random non-duplicates
are generally much easier to separate out than the difficult non-
duplicates selected during active learning [58]. While such difficult
near-duplicates are essential for training a precise matcher, they
interfere with the goals of co-embeddings duplicates during block-
ing. We observe dramatic drops in recall when blocker embeddings
are trained with actively labeled non-duplicates, likewise dramatic
drop in precision when the matcher’s classifier is trained with ran-
dom negatives. These findings were key to our jointly training the
matcher and blocker in an active learning loop so as to match or
even surpass the yield obtained by hand-designed rules on exist-
ing benchmarks. Additionally, on heterogeneous entity lists where
existing methods relied on pre-trained embeddings, we obtained
significantly higher recall with our method of training the blocker.
Our contributions are:
• To the best of our knowledge, ours is the first active learning
ER proposal to integrate the matcher with the blocker. With
availability of more labels, improvements in the former directly
benefits the latter.
• We design a novel method of learning record embeddings
for the blocker using (1) a contrastive training objective and
(2) random non-duplicates. This design choice is crucial to
achieve high recall; and provides as much as 25 points increase
compared to using matcher embeddings as-is.
• Learning a committee of encodings is in itself a novel con-
tribution. To the best of our knowledge, we are not aware
of any previous work that can learn a committee of TPLMs.
By combining with indexing, leads to IBC, a novel, fast and
effective example blocking technique.
• We evaluate the efficacy of our learned blocker by comparing
with (1) hand-crafted blocking functions used in popular ER
datasets, and (2) state of the art learned embeddings methods
on a multilingual dataset and five ER datasets.
• DIAL provides an absolute improvement on the F1 scores by
6 − 20% on two product datasets, 4 − 10% on a bibliographic
dataset, 40 − 55% on a textual dataset, and 5 − 18% on a multi-
lingual dataset, over baseline approaches demonstrating the
effectiveness of DIAL across various real world datasets. On
some of these datasets DIAL produces even better recall than
hand-tuned blocking functions without any external knowl-
edge about the domain and with only limited number of judi-
ciously chosen label.
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2 PRELIMINARIES AND BACKGROUND

We formally state our problem and provide relevant background in
this section.

2.1 Problem Statement

Given two large lists 𝑅 and 𝑆 of entities, our goal is to design an
end to end system that can identify the subset dups of 𝑅 × 𝑆 that
are duplicates across the two lists. 𝑅 and 𝑆 could be the same list,
and the matchings could be many to many. Each entry 𝑟 ∈ 𝑅 or
𝑠 ∈ 𝑆 could consist of one or more attributes that are predominantly
textual. In general, the attributes across the lists may not be aligned,
and the space of their values may be incomparable. For example,
list 𝑅 may list product names and descriptions in German whereas
list 𝑆 may be in English. Our goal is to learn in an integrated active
learning loop (1) a blocker to efficiently identify the subset cand of
𝑅 × 𝑆 that are likely duplicates, and (2) a matcher to assign a final
verdict of duplicate or not for each entity pair (𝑟, 𝑠) in the filtered set
cand. We are given three types of resources: a transformer based
pretrained language model (TPLM), a small seed labeled dataset 𝑇
of duplicates and non-duplicate pairs, and a labeling budget 𝐵 of
getting human labels on pairs selected from 𝑅 × 𝑆 to augment 𝑇 .

2.2 Pre-trained Language Models

Transformer based pretrained LMs (TPLM) such as BERT [16] and
RoBERTa [35] have been shown to transfer remarkably well to
many different tasks and domains. The input to the transformer
is a sequence of tokens. The transformer uses multiple layers of
self-attention to output for each token a fixed dimensional con-
textual embedding. The hundreds of million parameters used in
a transformer are pre-trained using large amounts of unlabeled
text corpus e.g. Wikipedia. This results in assigning each word an
embedding that captures its semantics in the context of the current
sentence. These highly contextual embeddings have been found
useful in a number of downstream NLP tasks. In ER they have been
shown to lead to robustness to spelling mistakes, and abbreviations,
and provide state of the art performance on "dirty" datasets [10, 34].
A standard approach to use these models in a new task is to add
task specific layers on top of the transformer and fine-tune using a
task specific objective. There are two common modes to fine-tune
a transformer for a pairwise classification task required in ER.

2.2.1 Paired mode. In this mode the transformer is fed a concate-
nation of the tokens of the two records as follows:

[CLS], 𝑟1 . . . 𝑟𝑛, [SEP], 𝑠1 . . . 𝑠𝑚, [SEP] (1)
where 𝑟1, . . . 𝑟𝑛 denote tokens of record 𝑟 , 𝑠1 . . . 𝑠𝑚 denote tokens
of 𝑠 , CLS denotes a special start token and SEP denotes a special
separator token. The last layer of the transformer assigns fixed 𝑑
dimensional contextual embeddings to all𝑚 + 𝑛 + 3 tokens. The
contextual embedding of the [CLS] token is treated as an embed-
ding 𝐸 (𝑟, 𝑠) of the pair. This embedding is used to classify the pair
as duplicates or not via additional light-weight layers. This is the
mode we use for the matcher since the learned attention across to-
kens in the records can focus on distinguishing words. Consider an
example of a pair of records describing two different editions of the
same book. An embedding based model can have a hard time trying
to distinguish these two instances, however, a transformer model

can by aligning the attention between the tokens corresponding to
book edition between the two instances. Other examples include
the price attribute in a products dataset, and house number in a
postal addresses dataset.

2.2.2 Single mode. The above paired mode is not practical to in-
voke on every (𝑟, 𝑠) in the Cartesian product 𝑅 × 𝑆 . A second way
is to first separately encode each record. For a record 𝑥 in 𝑅 or 𝑆
we obtain its embedding from the TPLM by first feeding to the
transformer:

[CLS], 𝑥1 . . . 𝑥𝑛 [𝑆𝐸𝑃] (2)
where 𝑥1, . . . 𝑥𝑛 denote the tokens in record 𝑥 . We obtain fixed
𝑑 dimensional contextual embeddings 𝐸 (𝑥1), . . . 𝐸 (𝑥𝑛) from the
TPLM. We then define the embedding of the record 𝑥 as the mean
of its token embeddings.

𝐸 (𝑥) = 1
𝑛

𝑛
𝑖=1

𝐸 (𝑥𝑖 ) (3)

For a pair of records (𝑟, 𝑠) we separately compute embeddings 𝐸 (𝑟 )
and 𝐸 (𝑠) and decide on whether they are duplicate or not based
only on these fixed embeddings. A well-known example is Sen-
tenceBERT [56] whose classifier takes as input the concatenation
of the embedding 𝐸 (𝑟 ) of 𝑟 , embedding 𝐸 (𝑠) of 𝑠 , and the absolute
element-wise difference between the two embeddings |𝐸 (𝑟 ) − 𝑆 (𝑠) |
and adds a linear layer above it. After training with appropriate
labeled data, these embeddings can be used for efficient nearest
neighbour search to retrieve likely duplicates. We will harness the
single mode for the design of our blocker.

2.3 Example selection for ER

2.3.1 Query-by-Committee via Bootstrap. Query-by-Committee
(QBC) [21, 61] has a rich history of application in ER going back to
ALIAS [58]. We review 1) the bootstrap-based classifier-agnostic ap-
proach towards building a committee [40], followed by 2) selecting
examples for labeling using said committee. While there exist many
techniques to build a committee of classifiers given the same labeled
data, most of these are specifically designed for certain classifiers,
e.g., randomizing the choice of the feature to split on while adding a
node in the decision tree is a specific technique to learn a committee
of decision trees [58]. Mozafari et al. propose bootstrap as a way
to build a committee that is agnostic to the classifier being used.
Given labeled data 𝑇 , bootstrap creates multiple versions 𝑇1, . . .𝑇𝑚
by sampling from 𝑇 with replacement so that each 𝑇𝑖 contains the
same number of pairs as 𝑇 . Subsequently, one may use 𝑇𝑖 to train
a member of the committee by using it as training data. Given an
unlabeled pair (𝑟, 𝑠), one may then compute the variance in its
predicted label as:

𝑣𝑎𝑟 (𝑟, 𝑠) = #match(𝑟, 𝑠)
𝑚


1 − #match(𝑟, 𝑠)

𝑚


where #match(𝑟, 𝑠) denotes the number of committee members
predicting (𝑟, 𝑠) to be a duplicate out of the 𝑚-sized committee.
Pairs with higher variance are selected for labeling.

2.3.2 Uncertainty Sampling. Besides variance, other metrics are
also available to measure the uncertainty of the prediction for (𝑟, 𝑠).
These may be used independent of the committee, especially when
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the classifier produces prediction probabilities besides the label.
DTAL [29] uses (conditional) entropy:

𝐻 (𝑝) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝) (4)

where 𝑝 denotes Pr(𝑦 = match| (𝑟, 𝑠)), the predicted probability of
(𝑟, 𝑠) being a match.

2.3.3 High Confidence Sampling with Partition. Besides entropy,
DTAL [29] also proposes High Confidence Sampling with Partition.
They divide the candidate set into two subsets consisting of pairs
that are predicted as positives, and negatives respectively by the
matcher. From both these sets they choose an equal amount of most
confident and least confident pairs, based on their entropy, giving
four sets, 𝑝ℎ𝑐 , 𝑝𝑙𝑐 , 𝑛ℎ𝑐 , 𝑛𝑙𝑐 representing high and low confidence
positives, and high and low confidence negatives respectively. They
query the user to label 𝑝𝑙𝑐 and 𝑛𝑙𝑐 , but they do NOT query the user
to label 𝑝ℎ𝑐 and 𝑛ℎ𝑐 . Instead, they directly add them to the labeled
positives and negatives, i.e. 𝑇𝑝 ← 𝑇𝑝 ∪ 𝑝ℎ𝑐 and 𝑇𝑛 ← 𝑇𝑛 ∪ 𝑛ℎ𝑐
2.3.4 BADGE. In a batch active learning setup, BADGE [5] tries
to combine uncertainty and diversity for example selection by com-
puting hallucinated gradient embeddings. Given a neural network
classifier 𝑓 (𝑥 ;𝜃 ), with weights 𝜃0, and a query point 𝑥 from the can-
didate set, BADGE calculates𝑦, the most likely label for 𝑥 according
to the class probabilities output by 𝑓 . It then uses 𝑦 to compute the
gradient embedding

𝑔𝑥 =
𝜕

𝜕𝜃out
ℓ (𝑓 (𝑥 ;𝜃 ), 𝑦)


𝜃=𝜃0

where 𝜃out refers to the parameters of the output layer, and ℓ is a
loss function, usually taken to be the standard cross entropy loss.
Notice that the magnitude of these gradient embeddings can be used
as a proxy for uncertainty, as confident samples will have lower
gradient magnitudes. To incorporate diversity, examples to query
the user are selected using the k-means++ [4] seeding algorithm
on the set {𝑔𝑥 : 𝑥 ∈ cand}.

3 DIAL

DIAL starts with an initial set of labeled pairs 𝑇 of duplicates and
non-duplicates and iteratively collects 𝐵 more labeled pairs in an
active learning loop. In each iteration of the loop, it performs the
following steps: (1) trains a Matcher model that given a pair of
records can assign a probability of the pair being duplicate, (2) trains
a Blocker model to encode records in 𝑅 or 𝑆 so that duplicates are
close, (3) performs an indexed nearest neighbor search over the
encodings to filter a candidate set cand ⊂ 𝑅 × 𝑆 of likely duplicate
pairs, (4) selects a subset sel of cand using uncertainty assignments
from Matcher, (5) collects user’s duplicate or not labels on pairs
in sel and augments 𝑇 . At the end of the loop, all pairs in the
candidate set predicted duplicates by the Matcher are returned as
the duplicate set. This labeling loop differs from earlier AL-based
ER systems in one crucial way. While existing systems assume
a fixed candidate set cand under a user-provided or pre-trained
blocking function, we propose to learn a Blocker and adaptively
create candidates cand within the AL loop. Our challenge then is
how to perform this step while ensuring that our learned Blocker
can match hand-crafted rules in terms of recall, and do that without
enumerating the Cartesian product 𝑅 × 𝑆 .

Ourmatcher and blocker are integrated and both leverage TPLMs.
We present the design of the main modules of DIAL. An overview
appears in Figure 3.

3.1 Matcher

For each record pair (𝑟, 𝑠) the matcher needs to assign a probability
Pr(𝑦 = 1| (𝑟, 𝑠)) of the pair being a duplicate. The matcher uses
the transformer in the paired mode described in Section 2.2.1 to
get a joint embedding 𝐸 (𝑟, 𝑠) ∈ 𝑅𝑑 of (𝑟, 𝑠). Let Θ denote all the
parameters of the transformer. These embeddings are converted
into a probability of the pair being duplicates using additional
neural layers 𝐹𝑊 : 𝑅𝑑 ↦→ 𝑅:

Pr(𝑦 = 1| (𝑟, 𝑠)) = (1 + exp(−𝐹𝑊 (𝐸 (𝑟, 𝑠)))−1 (5)

where𝑊 denote parameters of the matcher specific layers to be
learned along with parameters Θ of the transformer. In our case,
𝐹𝑊 comprised of a linear layer, followed by a tanh activation, fol-
lowed by another linear layer to get a single scalar score which is
then converted into a probability using the above sigmoid function.
During training, the initial values of parameters Θ are from the
TPLM whereas𝑊,𝑏 take random values. All three sets of param-
eters are optimized using the standard cross entropy loss on the
labeled training set 𝑇 .

min
Θ,𝑊


(𝑟 𝑖 ,𝑠𝑖 ) ∈𝑇𝑝

log(1 + exp(−𝐹𝑊 (𝐸Θ (𝑟 𝑖 , 𝑠𝑖 ))))

+


(𝑟 𝑖 ,𝑠𝑖 ) ∈𝑇𝑛
log(1 + exp(𝐹𝑊 (𝐸Θ (𝑟 𝑖 , 𝑠𝑖 ))))

(6)

where 𝑇𝑝 denotes the duplicate pairs in 𝑇 and 𝑇𝑛 = 𝑇 −𝑇𝑝 denotes
the non-duplicates. In the above we put the subscript Θ on the
embeddings to denote that the transformer parameters are further
fine-tuned to achieve the matcher’s goal of assigning probability
close to 1 to the duplicates and close to 0 to the non-duplicates. See
Step 1 in Figure 3 for a summary of this part.

3.2 Blocker

Here our goal is to obtain embeddings of each record in 𝑅 and 𝑆

so we can retrieve likely duplicates via nearest neighbor search.
Existing methods for getting such embeddings is to use the trans-
former in single mode as outlined in Section 2.2.2, either as-is or
with further fine-tuning using 𝑇 as in SentenceBERT [34, 56]. We
will show in Section 4.4 that both methods perform surprisingly
poorly in retrieving duplicates. The blocker in DIAL makes three
important design choices that jointly provide significant gains over
existing methods. We outline each of these next.

3.2.1 Index by Committee of Embeddings (IBC). Our blocker as-
signs a committee of 𝑁 different embeddings to a record in 𝑅 or 𝑆 .
Traditionally in AL, committees (Section 2.3.1) are used to assign
uncertainty values during example selection. Here, we propose to
use multiple embeddings for a different goal of casting a wider
net so that all likely duplicates are covered in any one of the 𝑁

embeddings.
We start with the 𝑑-dimensional embeddings 𝐸 (𝑥) obtained from

the Matcher-trained Transformer operating in single mode as de-
scribed in Equation 3. Then we create a committee of 𝑁 different
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Step 1:  Train matcher using labeled data

Sample  from Labeled Data 

CLS tokens( ) SEP SEP tokens( ) SEP

TPLM 

Train  with Cross Entropy Loss

Step 2:  Train the Blocker

Sample  

CLS tokens( ) SEP

TPLM 
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TPLM 
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Index 1 Index N

Step 3:  Create indices
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Weight
sharing in

, TPLM  

For 

Index 1 Index N
Probe KNN
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Figure 3: Outline of the proposed system. DIAL integrates TPLM based matcher and blocker models. In each iteration of the

active learning loop, it performs the following steps: trains aMatchermodel that given a pair of records can assign a probability

of the pair being duplicate, trains a Blocker model to independently encode records in 𝑅 or 𝑆 , and performs an indexed nearest

neighbor search over the encodings to filter a candidate set cand ∈ 𝑅 × 𝑆 of likely duplicate pairs. Candidate set cand is used

by the selector to obtain a subset of samples to be labeled by the user.

light-weight layers to produce a set of 𝑁 𝑑-dimensional embed-
dings: 𝐸1, . . . 𝐸𝑁 . Each committee member 𝑘 , first chooses a fixed
random mask 𝑀𝑘 ∈ {0, 1}𝑑 to retain only a random fraction 𝑝 of
the initial embeddings 𝐸 (𝑥). This step is inspired by the choice
of random attribute selection in random forests [9]. Then a linear
layer transforms the masked embeddings via learned parameters
to obtain the 𝑘-th embedding vector 𝐸𝑘 (𝑥) as:

𝐸𝑘 (𝑥) = tanh(𝑈𝑘 (𝑀𝑘 ⊙ 𝐸 (𝑥), 1)) (7)

where𝑈𝑘 ∈ 𝑅𝑑 (𝑑+1) denote the learned parameters used to obtain
the 𝑘-th embedding vector of record 𝑥 . The transformer parameters
Θ used to compute 𝐸 (𝑥) are not trained by the blocker. We next
describe how we train the𝑈𝑘 parameters.

3.2.2 Choice of Training data. One subtle problem we encountered
is using the labeled data 𝑇 collected via AL to train the blocker.
The negatives in 𝑇 are mostly near-duplicates and were chosen
by AL because they were hard to separate from duplicates. While
such hard negatives are extremely useful for learning a precise
matcher as several previous AL work have shown [29, 58], they are
detrimental to learning good embeddings for blocking where the
goal is high recall rather than high-precision. Embeddings trained
to separate the similar non-duplicates𝑇𝑛 from the actual duplicates
𝑇𝑝 , might also throw the unseen duplicates apart. We therefore
create easier non-duplicates in the following way:

Given a set 𝐷𝑝 of 𝑏 duplicates in a training batch, we randomly
sample a set rand(𝑅) of 𝑏 records from 𝑅 and an independent ran-
dom set rand(𝑆) of 𝑏 records from 𝑆 . We then obtain embeddings
𝐸 (𝑥) for all records in rand(R),rand(S), and each record in 𝐷𝑝 the
duplicate pairs. Now each committee randomly shuffles the set
of records in rand(𝑅), rand(𝑆) and obtains a random set of 𝑏 non-
duplicate pairs (𝑟1, 𝑠1) . . . (𝑟𝑏 , 𝑠𝑏 ) by concatenating the shuffled lists.
Further, for each duplicate pair (𝑟𝑝 , 𝑠𝑝 ) in the training batch 𝐷𝑝 we
obtain further non-duplicates as (𝑟𝑝 , 𝑠𝑖 ), (𝑟𝑖 , 𝑠𝑝 ) for 𝑖 = 1 . . . 𝑏.

3.2.3 Choice of Training Objective. Given the set of duplicates
and non-duplicates, a default training objective would be impose
a binary classification loss to separate them as is done for the
matcher in Eq 6. However, again considering the differing goals
of the two systems, we propose a different contrastive training
objective that jointly separates a duplicate from all non-duplicates.
The contrastive loss requires a similarity function sim(𝑢, 𝑣) between
any two embedding vectors 𝑢, 𝑣 . The training objective of the 𝑘-th
committee member is then

max
𝑈𝑘


(𝑟𝑝 ,𝑠𝑝 ) ∈𝑇𝑝

log


s(𝑟𝑝 , 𝑠𝑝 )

s(𝑟𝑝 , 𝑠𝑝 ) +
𝑏
𝑖=1


s(𝑟𝑖 , 𝑠𝑝 ) + s(𝑟𝑝 , 𝑠𝑖 ) + s(𝑟𝑖 , 𝑠𝑖 )



(8)

where 𝑠 (𝑟, 𝑠) = 𝑒sim(𝐸𝑘 (𝑟 ),𝐸𝑘 (𝑠))

We use the negative squared ℓ2 distance as a similarity func-
tion. Scaled cosine similarity is another good choice. The only
requirement is that we should be able to retrieve nearest neighbour
efficiently using that similarity function.

Step 2 in Figure 3 summarizes the training of the blocker. Notice
the differences in the input, the training objective, and the training
dataset with the training of the matcher in step 1.

3.3 Overall Algorithm

Algorithm 1 outlines the pseudo-code of DIAL. In each round of
Active Learning, DIAL first trains the TPLM parameters Θ, and pa-
rameters𝑊 of the matcher specific layer 𝐹𝑊 with the binary classi-
fication objective (Equation 6) on the labeled data 𝑇 . It then freezes
the weights of parameters Θ, and creates a committee where each
member implements an embedding layer as described in Section
3.2 (Equation 7). To train the committee, it samples duplicate pairs
from the labeled data𝑇𝑝 , creates random negative pairs (𝑟, 𝑠) where
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𝑟 ∈ rand(𝑅) and 𝑠 ∈ rand(𝑆), and individually obtains the trans-
former representations for each of these. Every committee member
computes individual embeddings for each of these instances, and is
trained using the contrastive objective (Equation (8)). After training
the committee, each member creates an index on the embeddings of
instances in𝑅, and queries this index to get the𝑘 nearest neighbours
for each instance in 𝑆 . The closest pairs across all members are used
to construct the set cand, which are fed to an active learning in-
stance selector to select the most informative 𝐵 pairs to be labeled
by the user. DIAL is agnostic to the specific selection algorithm
and we present results with many existing selection algorithms
in Section 4.7. Our default is uncertainty sampling (Eq 4). Figure
3 highlights the main operations performed by DIAL in an active
learning round, and clearly describes the data flow.

Algorithm 1 Pseudo-Code of the proposed system DIAL.
Require: TPLM with parameters Θ, Lists 𝑅 and 𝑆 , Seed Labeled

Data 𝑇 , cand Size, Labeling Budget per round 𝐵, Committee
Size 𝑁 , Number of neighbours 𝑘

1: for each round of Active Learning do
2: ⊲ Train the matcher

3: Find Θ,𝑊 that minimize Eq. (6) using 𝑇
4: ⊲Create committee: eachmember 𝑘 , has trainable pa-

rameters𝑈𝑘 , computes embedding 𝐸𝑘 (𝑥) using Eq. (7)

5: ⊲ Train the embeddings

6: for each committee member 𝑘 do

7: Find 𝑈𝑘 that maximize Eq. (8) using 𝑇𝑝 & Random Neg-
atives (See Sec 3.2.2)

8: end for

9: ⊲ Retrieving Pairs

10: Create Indexes IDX𝑖 for each committee member 𝑖
11: for each 𝑟 in 𝑅 do

12: Compute TPLM embedding 𝐸 (𝑟 )
13: for each committee member 𝑘 do

14: Add 𝐸𝑘 (𝑟 ) to IDX𝑘
15: end for

16: end for

17: Create list RP to store Retrieved Pairs
18: RP = []
19: for each 𝑠 in 𝑆 do

20: Compute TPLM embedding 𝐸 (𝑠)
21: for each committee member 𝑐 do
22: Add 𝑘 nearest neighbours of 𝐸𝑐 (𝑠) in IDX𝑐 to RP
23: end for

24: end for

25: Create cand containing the closest pairs from RP
26: Select 𝐵 pairs from cand & query user labels. (See Sec 4.7)
27: Update 𝑇 with the newly labeled data
28: end for

4 EXPERIMENTS

We present an extensive comparison of DIAL with existing methods
based on hand-crafted predicates, learned embeddings, and existing
meta-blocking methods. We also present a detailed ablation study
and analyze DIAL’s running time.

Table 1: Statistics reporting the scale of the datasets used to

evaluate DIAL.

Dataset |𝑅 | |𝑆 | |dups| | dups
𝑅×𝑆 | |Dtest |

Walmart-Amazon 2554 22074 1154 ∼ 2e−5 2049
Amazon-Google 1363 3226 1300 ∼ 3e−4 2293
DBLP-ACM 2616 2294 2224 ∼ 3e−4 2473
DBLP-Scholar 2616 64263 5347 ∼ 3e−5 5742
Abt-Buy 1081 1092 1097 ∼ 1e−3 1916
MultiLingual 100k 100k 100k ∼ 1e−5 2000

4.1 Datasets

We validate our approach on five widely used real world datasets
from DeepMatcher [41], ER Benchmark [32] and the Magellan
data repository [15] as summarized in Table 1. Walmart-Amazon,
Amazon-Google and Abt-Buy are product datasets, whereas DBLP-
ACM and DBLP-Scholar are citation datasets. Abt-Buy is a textual
dataset, whereas the other four are structured datasets. To use
Walmart-Amazon and Amazon-Google as structured datasets, we
follow the schema used by DeepMatcher [41]. As we motivated
in Section 2.1, there may be scenarios where the elements of lists
𝑅 and 𝑆 are incomparable, making rule based blocking methods
infeasible. To make a case for our method for such settings, we
also evaluate DIAL against baselines approaches on a multilingual
dataset [26]. Section 4.5 provides more information on the dataset,
as well as describes the corresponding experiments and results.

Evaluation Metrics. We are interested in three questions to eval-
uate our matcher and blocker system:
• Recall of the Blocker: What fraction of the duplicates dups
are retrieved in cand.
• Overall F1 score on unseen test pairs: How accurately can
our system classify unseen pairs from a test set, Dtest, into
duplicates and non duplicates. The overall system predicts a
record pair to be a duplicate only if the record pair is retrieved
in cand, and the matcher assigns a probability greater than
0.5 of the pair being a duplicate.
• Overall F1 score on all pairs: How accurately can our system
find all duplicate pairs from the set of all possible pairs in
the data? We compare the gold list of all duplicates in the
data, to pairs that our system predicts to be duplicates.

The test dataset, Dtest, is the same dataset used to evaluate Deep-
Matcher. Hence, the test set evaluation metric gives us a way to
compare our system with other approaches that may or may not be
using active learning. However, the evaluation on all pairs is more
aligned with the practical utility of any EM system.

4.2 Implementation Details

Compute. We implemented all the systems, and experiments, in
PyTorch 1.6 [52], and used transformers library by huggingface [68].
All experiments were conducted on a machine with 64 2.10GHz
Intel Xeon Silver 4216 CPUswith 1007GB RAM and a single NVIDIA
Titan Xp 12 GB GPU with CUDA 10.2 running Ubuntu 18.04. To
retrieve nearest neighbours we use the Facebook AI Similarity
Search (FAISS) [28] library.
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Model Architectures. We use the pre-trained RoBERTa model as our
base transformer. The RoBERTa model builds on BERT, but with a
careful selection of training sensitive hyperparameters like learning
rate, and batch size. The RoBERTa model was pre-trained on five
English corpora of 160GB total size, 10 times that used for BERT.
We use 6 layers out of the 12 layered uncased RoBERTa base model.
We use 12 attention heads, with 768 dimensional hidden vectors,
and limit the number of input tokens to 512. The paired classifier,
on top of the base RoBERTa model, is the default classification head
used in RoBERTa based models, consisting of two dropout layers
with dropout probability 0.1, a fully connected layer with a tanh
activation, and a softmax classifier layer. Unless stated otherwise,
DIAL uses a committee of size 𝑁 = 3, with each member using a
masking probability 𝑝 = 0.5.

Optimization. We use the AdamW (Adam with Weight Decay) opti-
mizer [36], with a learning rate of 3e − 5 for the base transformer,
and 1e − 3 for the embedding and classifier layers. We use a lin-
ear learning rate schedule with no warm-up steps. The choice
of optimizer parameters, and learning rate schedule, was based
on previous works [10, 34], and the standard choices for using
RoBERTa models for classification tasks. We did not tune these
hyper-parameters. The mini-batch size is 16. The number of epochs
is 20 for the matcher and 200 for the blocker.

Active Learning. We conduct 10 rounds of active learning, with a la-
beling budget of 𝐵 = 128 samples per round. We start with an initial
labeled seed set containing |𝑇𝑝 | = 64 positive and |𝑇𝑛 | = 64 negative
pairs. These pairs were sampled at random from the benchmarked
training splits of the datasets. All results are averaged over three
such randomly constructed labeled seed sets. The default value of
the candidate set size is |cand| = 3 · |𝑆 | where |𝑆 | denotes the size
of the second list. The number of nearest neighbours retrieved is
𝑘 = 3. The size of List 𝑆 , shown in Table 1, is very small for the Abt-
Buy dataset, hence we use a candidate set size of cand = 20 · |𝑆 |,
and 𝑘 = 20 for this dataset. We retrieve the nearest neighbours
based on the ℓ2 distance. We do not warm start the model param-
eters between active learning rounds, i.e. after each round 𝑀 is
re-initialized with the pre-trained weights of the TPLM.

Unless stated otherwise, all systems use uncertainty sampling
to select examples from the candidate set. In all our experiments,
we exclude the pairs in Dtest ∩ cand from the process of selecting
examples to query the labeler.

4.3 Methods Compared

We compare DIAL with four baseline approaches of blocking while
using a TPLM-based matcher in an active learning loop:

• PairedFixed uses a non adaptive blocking strategy, where
the candidate set is created by conducting a similarity search
on the embeddings obtained as is from the pre-trained TPLM,
i.e. no task specific finetuning is employed
• PairedAdapt uses the embeddings from the TPLM as it
gets finetuned by the matcher in paired mode as described
in Section 3.1. However, the candidate set is created in a
similar manner as PairedFixed, i.e. a similarity search on the
embeddings obtained from the TPLM in the single mode.

• SentenceBERT finetunes the TPLM and a SentenceBERT-
like classifier on the labeled data 𝑇 to obtain embeddings
conducive for similarity search. To keep comparisons uni-
form, even though the method is called SentenceBERT, we
use the same RoBERTa transformer in all methods. This
method is also what is called the Advanced Blocking method
in DITTO [34] except that we learn it in an Active Learning
setup much like DIAL.
• Rules depends on hand-crafted rules to perform blocking.
These exist only for the five benchmark datasets and not
for the multilingual dataset. These five benchmarks already
provide pairs after pre-blocking with human-designed rules,
so we did not create our own rules and instead define all
pairs in these pre-blocked datasets as the candidate set for
this method.

All baselines use a TPLM based matcher, similar to DIAL.
We further compare DIALwith three well-established non-TPLM

based methods. [40] conducted an exhaustive experimental study
to compare various active learning methods for entity resolution
on several real-world datasets and found that random forests with
learner-aware QBC, described in Section 2.3.1, perform remarkably
well. We compare DIAL with a Random Forest learner implemented
as an ensemble of 20 decision trees using QBC via bootstrap [40].

JedAI [47, 51] is another recent open-source toolkit for Entity
Resolution. JedAI offers highly scalable implementations of end-to-
end schema-based and schema-agnostic pipelines including meta-
blocking techniques. Schema-based workflows rely on similarity
joins, whereas schema-agnostic workflows leverage all attribute
values to extract overlapping blocks. We compare DIAL with the
best configuration [47] of both workflows, as found through Grid
Search on each dataset using the gold list of duplicates dups.

4.4 Overall Results

Figure 4 plots the progressive F1 scores obtained by overall system
of baseline methods and DIAL on the unseen test dataset as de-
scribed in Section 4.1. The x-axis denotes the increasing number of
example pairs in𝑇 as active learning progresses. In Table 2 we show
the efficacy of each system at the end of AL in retrieving all dupli-
cate pairs. Here we also show precision, recall and running time.
We find that DIAL provides significant gains in F1 over baselines
methods both at each stage of AL and at the end of AL.

Table 2 shows that DIAL produces the best F1 scores on all the
product datasets while performing close to the best on the citation
datasets. With respect to recall, we note that DIAL’s recall is often
close and in some cases, perhaps surprisingly, exceeds Rules’. The
intent behind Rules was to perform blocking which in turn, calls
for recall. So it is quite surprising that on datasets such as Walmart-
Amazon and Abt-Buy, without any external knowledge about the
domain and with only limited number of judiciously chosen labels,
DIAL produces even better recall than hand-tuned blocking func-
tions. Figure 5 provides a more detailed view of this phenomenon
by showing the recall of the candidate set cand at each stage of
AL. Here we see that the recall offered by DIAL’s blocker is signifi-
cantly higher than other methods. Note the recall of PairedFixed
and Rules does not change since the candidate set remains fixed. In
most cases PairedAdapt’s F1 is better than PairedFixed indicating
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Figure 4: Comparison of DIAL with baseline approaches with respect to F1 on a fixed test-set against increasing number of

instances selected by active learning. In all cases, DIAL provides significant gains over existing methods.

Table 2: Comparison of DIAL with baseline approaches with respect to Precision, Recall, and F1 evaluated on all pairs at the

end of the AL loop. DIAL achieves high recall and consequently high F1 scores. The RT column denotes time in seconds to

find All duplicate pairs and includes both blocking and matching time.

Method Walmart-Amazon Amazon-Google DBLP-ACM DBLP-Scholar Abt-Buy
P R F1 RT P R F1 RT P R F1 RT P R F1 RT P R F1 RT

Non TPLM based
Random Forest 96.5 63.0 76.2 1.1 84.7 54.6 66.3 1.1 99.0 99.1 99.0 1.3 97.2 96.3 96.7 2.7 83.9 52.4 64.4 0.9
JedAI:Schema-based 82.9 55.2 66.3 0.5 66.3 42.3 51.7 0.5 97.8 93.2 95.4 0.6 95.3 77.5 85.5 14 88.4 43.8 58.5 0.4
JedAI:Schema-agnostic 59.0 75.3 66.2 5.3 57.6 64.1 60.7 4.5 99.3 99.2 99.3 1.3 94.6 94.9 94.7 30 94.9 85.6 90.0 1.1

TPLM based
SentenceBERT 87.1 43.9 58.0 87.6 73.2 38.5 50.4 7.9 99.3 94.3 96.7 15.5 97.0 74.4 84.2 255 87.6 20.3 32.6 42
PairedFixed 96.6 71.2 82.0 87.6 94.9 52.1 67.2 7.9 99.6 93.6 96.5 15.5 98.5 74.2 84.6 255 97.9 33.0 49.3 42
PairedAdapt 96.3 61.2 74.4 87.6 91.6 58.3 71.1 7.9 99.7 98.0 98.8 15.5 98.2 85.8 91.6 255 97.6 23.4 37.7 42
Rules 93.7 77.3 84.7 9.2 85.4 75.2 79.9 5.6 99.4 99.2 99.3 15.1 96.3 98.0 97.1 26 96.3 87.2 91.6 15
DIAL 94.9 85.2 89.8 88.3 87.4 77.4 82.1 8.0 99.6 98.6 99.1 15.6 97.5 96.1 96.8 257 97.8 87.4 92.3 42
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Figure 5: Recall on cand against increasing number of instances selected by active learning. In all cases, DIAL provides signif-

icant gains over baseline methods and is able to achieve recall at par with hand crafted rule based blocking.

that fine-tuning the transformer parameters with the task specific
training data 𝑇 is helpful. The recall of SentenceBERT is worse
than PairedAdapt perhaps because the SentenceBert network ar-
chitecture, choice of training data, and training objective are not
effective in co-embedding duplicates. The finding on the poor per-
formance of SentenceBERT is significant because DITTO [34], a
recent state-of-the-art ER system proposed to use SentenceBERT
as its advanced blocking strategy on their large internal dataset.

In terms of running time, we observe that all deep-learning
(TPLM-based) methods are between one and two orders of magni-
tude slower than pre-deep learning methods in the first three rows.
However, given the substantial gains in accuracy that TPLM-based
methods provide, an end-user may be willing to invest in the extra
running time.

4.5 Multilingual Dataset

The multilingual dataset that we use is from [26]. The dataset, orig-
inally proposed for machine translation of structured data, consists
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Table 3: Precision, Recall, and F1 evaluated on all pairs on

theMultilingual dataset at the end of the 10AL rounds. DIAL

achieves higher almost 7.3 points higher F1 compared to ex-

isting practice of solving this task.

Method P R F1
PairedFixed 81.2 56.8 66.9
PairedAdapt 94.8 31.6 47.4
DIAL 92.2 62.3 74.3
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Figure 6: Comparison of DIALwith baselines on progressive

F1 scores on a fixed test-set. DIAL consistently outperforms

baseline methods.

of accurately-aligned parallel XML files in multiple languages. For
our experiments, we use the English-Deutsch subset. Concretely,
in our setup, each element of list 𝑅 is a string in English which can
contain HTML/XML tags, and similarly each element of list 𝑆 is a
string in German which can contain HTML/XML tags. As a result
of the parallel alignment in data, we have |dups| = |𝑅 | = |𝑆 |.

For the multilingual dataset, we use 6 layers out of the 12 layered
uncased multilingual BERT base model. This model was pre-trained
on 104 languages from the Wikipedia dataset using Masked Lan-
guage Modelling and Next Sentence Prediction [16]. Apart from
changing the base transformer all other implementation details,
including the architectures of the classifiers remain the same as
that for the earlier five benchmark datasets.

We now describe the construction of the labeled seed set. We
use a pre-trained 12 layered uncased multilingual BERT base model
and create an index on the embedding of each 𝑟 ∈ 𝑅. Then, we
query 𝑘 = 3 nearest neighbours in this index for the embedding
of each 𝑠 ∈ 𝑆 . Using the gold list of duplicates dups, we divide
these retrieved pairs into duplicates and non-duplicates. A random
sample of 64 duplicate, and 64 non-duplicate pairs, from these sets
respectively, is then chosen to create the labeled seed set. The
test set is constructed in a similar manner, except the index is
created, and probed, on the elements of the dev split of the dataset.
The multilingual BERT model, as mentioned above, is pre-trained
on 104 different languages and hence learns an extremely strong
prior. Moreover, the dataset that we use consists mostly of natural
language text, as opposed to the deepmatcher datasets involving
product or bibliographical data. These two key differences from the

Table 4: Comparing labeled negatives with random nega-

tives to train the committee embeddings in DIAL after 10
rounds of AL. Note the 12-25 points jump in recall with Ran-

dom negatives on product datasets.

Negatives W-A A-G D-A D-S A-B
Recall of cand

Labeled 80.94 76.54 99.02 93.47 66.45
Random 92.20 88.36 98.98 97.30 92.50

Test Evaluation
Labeled 75.47 67.93 98.75 93.32 69.74
Random 82.97 69.21 98.79 94.83 88.81

All Pairs Evaluation
Labeled 85.36 78.78 99.14 95.49 78.12
Random 89.80 82.07 99.13 96.81 92.31

previous setup influence the decision to fine-tune the TPLM, i.e. we
find that freezing the TPLM parameters leads to slightly better F1
scores.

Progressive F1 scores calculated on the test data can be found
in Figure 6. Table 3 compares DIAL against the PairedFixed and
PairedAdapt baselines on All-Pairs F1 scores calculated after 10
active learning rounds. We notice that on both evaluation measures,
DIAL outperforms baselines significantly. Compared to indexing the
transformer embeddings as-is, DIAL achieves more than 7 percent
points increase in F1!

4.6 Ablation Study

We next present a detailed ablation study to evaluate the impact of
the many design decisions we made in the design of DIAL.

4.6.1 Choice of Training Data. To validate the intuition presented
in Section 3.2.2, we compare DIAL, where the blocker is trained
to drive apart embeddings of “easy" non-duplicates, to where the
blocker is trained to separate the “difficult" labeled negatives (𝑇 −𝑇𝑝 )
chosen during DIAL’s AL loop. Table 4 evaluates, on all three met-
rics, the two systems. We observe that Random Negatives achieves
higher recall on cand providing absolute gains of 12− 25% over La-
beled negatives on the product datasets! This subsequently results
in much better F1 scores on both evaluation measures, compared
to Labeled Negatives. We note here that Random Negatives while
significantly improving recall of blocker, can be detrimental to pre-
cision if used to train the Matcher. On product datasets, a matcher
trained with random negatives suffers a loss of 30−60% in precision
compared to labeled negatives.

4.6.2 Choice of Training Objective. Once we have established that
random negatives are more effective than labeled negatives, we
evaluate the objective function to train the blocker for maximizing
recall. We compare our Contrastive objective, defined in Equation 8,
with two other objectives:
Classification objective as used in SentenceBert to separate dupli-
cates from non-duplicates using cross entropy (Eq 6)
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Table 5: Evaluation of DIALwith different objectives to train

the committee embeddings after 10 rounds of Active Learn-

ing. Contrastive objective consistently outperforms Classifi-

cation and Triplet objectives.

Objective W-A A-G D-A D-S A-B
Test Evaluation

Classification 79.63 67.40 98.75 93.28 70.90
Triplet 80.94 68.71 98.79 94.38 87.21
Contrastive 82.97 69.21 98.79 94.83 88.81

All Pairs Evaluation
Classification 84.88 79.17 99.05 95.15 76.03
Triplet 87.72 81.04 99.06 96.48 91.95
Contrastive 89.80 82.07 99.13 96.81 92.31

Table 6: Evaluation of DIAL with increasing candidate set

size after 10 rounds of Active Learning.

|cand| W-A A-G D-A D-S A-B
Recall

Small 55.78 79.31 98.98 92.55 71.92
Medium 92.20 88.36 98.98 97.30 86.54

Large 94.60 89.90 99.09 97.85 92.50
All Pairs Evaluation

Small 70.19 80.09 99.08 95.01 82.68
Medium 89.80 82.07 99.13 96.81 90.49

Large 90.80 81.41 99.19 97.00 92.31

Triplet Used in [64] for product matching with TPLM, a triplet
loss is computed on examples that are positive and negative with
respect to an anchor. This loss penalizes the model if the anchor
is farther away from the positive than the negative example. The
TripletObjective is expressed as

TripletObjective = max(𝑑 (𝑟𝑝 , 𝑠𝑝 ) − 𝑑 (𝑟𝑝 , 𝑠𝑟 ) +margin, 0))
+max(𝑑 (𝑠𝑝 , 𝑟𝑝 ) − 𝑑 (𝑠𝑝 , 𝑟𝑟 ) +margin, 0))

We use the euclidean distance metric 𝑑 , and set the margin to be 1.
However, unlike [64], we do not perform hard negative mining.

Table 5 reports the F1 scores on Test and All pairs evaluations at
the end of the active learning loop, for the three different training
objectives used to train the blocker. We see that the Contrastive
consistently outperforms Classification and Triplet objectives. The
similarity between instance embeddings of the positive (and nega-
tive) pairs is maximized (and minimized) explicitly in contrastive
and triplet objectives, whereas this is implicit in classification. The
contrastive objective is able to leverage multiple random negatives
as opposed to triplet which only uses 2, one for each instance as an
anchor.

4.6.3 Choice of Candidate Size. The size of Candidate set |cand|, is
an important factor that influences the overall recall of the system.
A small candidate set can lead to low recall, and a large candidate

Table 7: Evaluation of DIAL with increasing committee size

(𝑁 ) after 10 rounds of Active Learning.

𝑁 W-A A-G D-A D-S A-B
Test Evaluation

1 83.16 68.62 98.52 94.38 88.56
3 82.97 69.21 98.79 94.83 88.81
5 83.51 70.85 98.71 94.76 88.31

All Pairs Evaluation
1 89.85 80.82 99.20 96.21 92.22
3 89.80 82.07 99.13 96.81 92.31
5 90.19 82.14 99.10 96.66 92.79

set can inadvertently lead to low precision. Table 6 compares DIAL
with different candidate set sizes. Small corresponds to |cand| =
3 · |dups|. Medium and Large correspond to |cand| = 10 · |𝑆 | and
20 · |𝑆 | for Abt-Buy and |cand| = 3 · |𝑆 | and 5 · |𝑆 | respectively for
all other datasets. On average, All Pairs Evaluation is maximized
for Large |cand|.

4.6.4 Impact of Committee size in our blocker. Table 7 evaluates
DIAL with different committee sizes 𝑁 . As we motivate in Section
3.2.1, the committee is introduced to improve recall with the in-
tuition that as opposed to one embedding it is less likely that a
duplicate pair is missed by a committee of different embeddings.
We find that on average, having multiple members improves per-
formance as compared to a single member An immediate question
that then arises is, what is the cost of introducing an additional
member in the committee? In Section 4.8 we provide a running
time analysis varying the committee size. We show that DIAL is
optimized to efficiently handle large committee sizes.

4.7 Selection Strategies

Unless stated otherwise, we have used Uncertainty Sampling as the
example selection strategy for active learning. However, DIAL is ag-
nostic to the choice of selection strategy. In this section, we compare
different example selection strategies with DIAL. We implement
the following methods
• Random: The naive baseline of choosing samples at random
from the candidate set
• Greedy: Selecting the most similar pairs from the candidate
set. We use the negative ℓ2 distance as a similarity metric
• Partition: As explained in Section 2.3, High Confidence
Sampling with Partition is not strictly an Active Learning
selection strategy since it assumes labels not provided by
a human labeler. Hence, to use a similar method as [29] in
our setup, we implement two selection strategies. Partition-2
queries the user to label 𝑝𝑙𝑐 and 𝑛𝑙𝑐 , and Partition-4 queries
the user to label 𝑝ℎ𝑐 , 𝑝𝑙𝑐 , 𝑛ℎ𝑐 , 𝑛𝑙𝑐 .
• Query By Committee: Select pairs from the candidate set
which achieve the highest disagreement in a committee of
classifiers. If member 𝑘 of a committee of size 𝑁 assigns
a probability Pr𝑘 (𝑦 = 1| (𝑟, 𝑠)) to a pair (𝑟, 𝑠) of being a
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Table 8: Comparison of DIAL with different example selec-

tion strategies on F1 scores evaluated on all pairs after 10
rounds of active learning. DIAL is agnostic to the choice of

selection strategy, and hence can operate with many differ-

ent methods used in the active learning literature.

Method W-A A-G D-A D-S A-B
Random 58.8 63.0 97.8 89.5 78.2
Greedy 78.2 74.9 90.0 77.9 79.9
Partition-2 90.7 82.2 99.1 96.8 93.2
Partition-4 85.4 74.5 99.0 95.0 90.6
QBC 79.1 75.2 98.8 94.6 83.9
BADGE 90.5 82.8 99.1 96.8 92.5
Uncertainty 89.8 82.1 99.1 96.8 92.3

duplicate pair, then the disagreement is measured as

𝐻


1
𝑁

𝑁
𝑘=1

Pr
𝑘
(𝑦 = 1| (𝑟, 𝑠))


where 𝐻 (𝑥) is given by Equation 4. Note that, this is a “soft"
measure of disagreement, as opposed to the the hard dis-
agreement defined in Section 2.3.
• BADGE: Described in Section 2.3. For a record pair (𝑟, 𝑠) ∈
cand, the input 𝑥 is the joint encoding of 𝑟 and 𝑠 . The most
likely label 𝑦 is calculated based on the class probabilities
output by 𝐹𝑊 (𝐸 (𝑥)). The loss used to calculate the gradient
embedding is the standard cross entropy loss.

Figure 7 shows All-Pair F1 at each step of active learning and
Table 8 reports the All-Pair F1 scores after 10 active learning rounds
on each of the 5 datasets using different selection strategies. We find
that Partition-2 and BADGE provide gains over plain uncertainty
sampling, as well as beat all other strategies by a high margin
establishing their effectiveness for active learning.

4.8 Running time

Table 9 reports the time required by the different operations of DIAL
in the 10𝑡ℎ round of active learning on all datasets. We emphasize
here that matcher and committee training times are cumulative
training times, i.e. we measure the time taken to train on all data
labeled so far. We notice that the committee training time is compa-
rable to matcher training time, despite the fact that the committee
is trained for 10x more epochs than the matcher. The testing time
of DIAL with different committee sizes is reported in Table 10. We
notice that as the committee size is increased from 𝑁 = 1 to 10, the
corresponding testing time increases by less than 5% establishing
the scalability of Index-By-Committee.

5 RELATEDWORK

DIAL lies in the intersection of four distinct research areas: deep
learning, entity resolution, active learning, and blocking for ER. In
this section, we provide further details supporting the discussion
presented in Section 1 and review work from the broader literature.

Table 9: Time taken, in seconds, by the different operations

of DIAL in the 10𝑡ℎ round of active learning

Operation W-A A-G D-A D-S A-B
Train Matcher 109.8 71.5 147.0 110.1 161.9
Train Committee 102.0 132.2 141.2 145.7 35.3
Indexing & Retrieval 1.8 0.4 0.5 4.8 0.2
Selection 73.0 6.0 8.9 221.9 34.71

Table 10: Testing Times (in seconds) of DIAL with different

committee sizes

Method W-A A-G D-A D-S A-B
DIAL (𝑁 = 1) 87.6 7.9 15.5 254.8 41.8
DIAL (𝑁 = 3) 88.3 8.0 15.6 256.7 42.0
DIAL (𝑁 = 10) 90.8 8.2 15.8 263.1 42.0

5.1 Active Learning for Entity Resolution

Over the years, a number of works have applied active learning to
ER using a variety of (paired) classifiers including support vector
machines, decision trees [58, 63], explainable ER rules [3, 54, 55].
However, most of these assume that the blocking function is known.
In fact, some of the aforementioned works that attempt to learn
rules [54, 55] ask the user tomark every possible blocker in the input
feature space. DIAL attempts to improve upon these approaches
by not only learning the blocker but also via the use of a more
powerful paired classifier (pre-trained language models). Meduri
et al. [39] provide an in-depth comparison of various matchers and
example selectors but neither consider TPLMs nor address how
to learn a blocker. While HEALER [11] attempts to improve upon
Mozafari et al. [40]’s committee-based approach to ER by including
different kinds of matchers, it does not consider neural networks
or TPLMs in its heterogeneous committee.

Alongside AL for ER, another line of work attempts to solve ER by
crowd-sourcing [66]. The drawbacks of this approach include that
no model is learned (neither matcher nor blocker) thus incurring
monetory costs needed to pay the crowd each time we are faced
with new data to deduplicate. Distinct from DIAL’s, their focus is
more towards correcting the labels obtained from the crowd (may
not constitute experts) [23] and most efficient interface to elicit
most labels at least cost [65].

5.2 Deep Learning for Entity Resolution

Deep Learning has been used to tackle various aspects of the En-
tity Resolution task including blocking [17, 71], and matching
[10, 34, 41, 64, 67, 72], and detecting variations [19] which are dupli-
cates on a given set of base attributes but differ on other attributes.
The example used in the Section 2.2.1 of a pair of records describing
two different editions of the same book is an example of a variation.
We refer the reader to [6] for an extensive survey on deep learning
for entity matching. Deep learning methods for ER can be broadly
classified into methods which operate on separate embeddings
of instances 𝑟 and 𝑠 [17, 34, 71], and those which operate on the
joint embedding of the record pair (𝑟, 𝑠) [10, 34, 41, 43, 64]. While
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Figure 7: Comparison of DIALwith different selectionmethods onAll Pairs Evaluation against increasing number of instances

selected by active learning

joint embeddings provide more information useful for ER, DIAL
shows there is a place for both, i.e., jointly embedding the pair and
embedding them separately for use in blocking. DeepMatcher [41]
proposed one of the first neural network architectures for ER, which
was improved upon by DITTO [34]. Neither of these consider block-
ing nor active learning. In an effort to tackle ER in low-resource
settings such as scarcely available labeled data, DTAL [29] proposes
learning a neural network via active learning with uncertainty sam-
pling along with partitioning but does not consider TPLMs and
neither addresses learning a blocker. DIAL improves upon DTAL
by learning an integrated matcher and blocker where the matcher
is a more powerful TPLM, and DITTO’s advanced blocking in the
active learning setting as shown via our experiments.

5.3 Active Learning for Deep Learning

Perhaps the closest work to our setting is [42], which also considers
TPLMs for active learning on pairwise classification tasks. They
use a similar architecture as [25], i.e. a TPLM invoked and trained
in single mode to retrieve similar embeddings. Key differences from
DIAL are 1) They do not use random negatives, 2) They do not
consider separate models for matching and blocking, 3) They do
not create a committee of multiple embeddings.

At the intersection of committee based methods for active learn-
ing, and deep learning, lies [7] which creates a committee of Convo-
lutional Neural Networks (CNN) based classifiers for Active Learn-
ing in Image Classification. The area of Deep Active Learning is
rapidly growing with exciting works like BALD [22], Loss Predic-
tion [69], and Batch Aware methods like BatchBALD [30], BADGE
[5] and [59, 73]. A comprehensive survey of deep active learning
methods can be found in [57]. As stated earlier, most of these are
compatible for use as example selectors in DIAL.

5.4 Blocking

Besides hand-coded blocking functions, earlier methods for block-
ing relied on unsupervised clustering [37] and passive learning
with labeled data required up-front [8]. The latter uses red-blue set
cover to learn an effective blocking function but its need for labeled
data makes it ineffective in settings that call for active learning.
While other approaches for blocking are available, a number of
these utilize unsupervised learning [1, 24, 53].

Token Blocking [45] uses tokens from every attribute value as
blocking keys, and recordswith common tokens are put in one block.

This yield high recall at the cost of low precision. Several methods
have been proposed to deal with redundant and superfluous com-
parisons [2, 12, 27, 37, 44, 45, 48]. Meta-Blocking [46] operates on
redundancy-positive block collections where the number of shared
blocks indicate likelihood of matching. A blocking graph is created
from the given redundancy-positive block collection, and is pruned
using matching likelihoods [14, 18, 46, 48, 49, 62, 70].

AutoBlock [71] assumes knowledge of strong attributes (e.g.,
UPC code for grocery products), that may be used to produce la-
beled data for learning the blocking function. DIAL does not make
any such assumptions and can work with heterogeneous lists. Both
AutoBlock and DeepER [17] use Locality Sensitive Hashing (LSH)
for retrieval, and DITTO uses similarity search by blocked matrix
multiplication [1]. In contrast, DIAL uses FAISS [28], a highly opti-
mized library for k-selection which relies on product quantization
for fast asymmetric distance computations.

Another related task is training a retrieval system for entity
linkage [25]. Key similarities with our blocker model include fine-
tuning the TPLM in the single mode, and using random negatives
to train the TPLM. This work differs from our work in that it does
not perform active learning. We refer the reader to [12, 13, 33, 50]
for an extensive survey on blocking.

6 CONCLUSION

In this workwe present DIAL, a scalable active learning systemwith
an integrated matcher-blocker combination. As opposed to most
works in ER, DIAL learns the blocker in addition to the matcher.
Furthermore, the blocker and matcher are integrated in a way so
that improvements in one can benefit the other. We show that our
approach leads to improved recall during blocking and improved
matching via the use of transformer-based pre-trained language
models. We successfully train a committee on top of powerful TPLM
representations, and use it to perform Index-by-Committee, a novel
and efficient example retrieval technique. Our experimental results
on 5 real world datasets show that DIAL outperforms baseline
methods by a large margin while also requiring minimal human
involvement. We showcase our approach by reporting the effec-
tiveness of DIAL on a multilingual dataset where hand-coding a
blocking functionmay not be possible due to the different languages
involved.
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