NLProveNAns: Natural Language Provenance for
Non-Answers

Daniel Deutch Nave Frost

Amir Gilad Tomer Haimovich

danielde@post.tau.ac.il {navefrost, amirgilad, tomerhy@mail.tau.ac.il
Tel Aviv University

ABSTRACT

Natural language (NL) interfaces to databases allow users
without technical background to query the database and
get the results. Users of such systems may be surprised by
the absence of certain expected results. To this end, we
propose to demonstrate NLProveNAns, a system that allows
non-expert users to view explanations for non-answers of in-
terest. The explanations are shown in an intuitive manner,
by highlighting parts of the original NL query that are intu-
itively “responsible” for the absence of the expected result.
Our solution builds upon and combines recent advancements
in Natural Language Interfaces to Databases and models for
why-not provenance. In particular, the systems can pro-
vide explanations in one of two flavors corresponding to two
different why-not provenance models: a short explanation
based on the frontier picky model, and a detailed explana-
tion based on the why-not polynomial model.

PVLDB Reference Format:
Daniel Deutch, Nave Frost, Amir Gilad, Tomer Haimovich. NL-

ProveNAns: Natural Language Provenance for Non-Answers. PVLDB,

11 (12): 1986-1989, 2018.
DOI: https://doi.org/10.14778/3229863.3236241

1. INTRODUCTION

Natural Language (NL) interfaces to database systems
are often used as easy-to-understand gateways for access-
ing complex databases. In this work we build upon such NL
Interface called NaLIR [6]*, and enrich it with support for
explanations of non-answers.

Explaining non-answers, also termed why-not provenance,
has been the focus of multiple previous works (e.g. [3, 1]).
This type of provenance is used to explain why a certain
piece of information, that the user expected to see, was not
returned in response to the user query. Such information is

We are extremely grateful to Fei Li and H.V. Jagadish for
generously sharing with us the source code of NaLIR, and
providing invaluable support.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 11, No. 12

Copyright 2018 VLDB Endowment 2150-8097/18/8.

DOI: https://doi.org/10.14778/3229863.3236241

crucial for understanding the result, and debug and improve
the query and/or the input database.

To our knowledge, presenting why-not provenance to non-
experts has not been previously studied. We claim that it
is even of greater importance in the context of interfaces for
non-experts, because of the cumulative errors that arise in
such systems: first, the user has to specify her intent in a
question; a failure to specify a certain condition or a too spe-
cific query might result in tuple loss, simply because the user
performed an error in the query formulation. Then, an NL
query engine needs to parse the supplied sentence and con-
struct an SQL query. Failing to perform this task correctly.
Since the user has no means of viewing or understanding the
SQL query, this error may go unnoticed.

There are multiple approaches and models for captur-
ing why-not provenance; we focus here on explaining non-
answers through the parts of the query (a query operator or
a set thereof) that were responsible for the answers omission.
Our main observation is that when the original question was
given in NL, we can in many cases trace back a given query
operator to the part of the NL question that corresponds to
it. The latter is then natural to present to non-experts — in
our implementation, we simply highlight the relevant parts
of the NL question. This provides insights on the criteria
that had led to the answer being discarded.

As an illustration, consider the natural language query
depicted in Figure 3a, translated (by NaLIR) into the Con-
junctive Query depicted in Figure 3b. When this query is
evaluated and returned to the user, she might further wonder
why the specific author Marge, is not part of the result set.
The underlying reason for the absence of this name from the
results is that the author Marge did not publish papers after
2005. Using our system, the user will be shown her original
natural language question, with a emphasis on the relevant
words that caused this absence (see Figure 3c). This then
enables the user to better understand the query, validate the
translation process and the credibility of the database, and
reformulate her natural language query accordingly.

Our approach may be applied for any choice of query op-
erators that serve as why-not explanations. In particular,
we incorporate two previously proposed models, namely the
frontier picky model [3] and the polynomials model [1, 2].
The former explains a non-answer using a single query op-
erator, intuitively the last to contain in its input a matching
tuple. The latter provides a more extensive explanation, ac-
counting for all operators that could independently serve as
reasons for the non-answer (along with additional informa-
tion on the number of relevant tuples for each operator).

1986

Results +
Provenance

(Augmented) NLProv NLProveNAns

Highlighting

Why Not Models

Figure 1: System Architecture

Our solution leverages and extends multiple previously
proposed models and systems for NLIDBs and provenance,
and our high-level system architecture is depicted in Figure
1. We start by using NaLIR to parse the NL query, and
use our previously proposed implementation NLProv [4] to
further track provenance for the query during evaluation.
We augment NLProv (originally tracking “positive” prove-
nance) so that it also tracks provenance for non-answers,
using one of the two why-not models mentioned above. Af-
ter viewing the results, the user specifies a why-not question.
This may simply be a single hypothetical output tuple whose
non-existence had “surprised” the user, or a more general
specification of such queries (e.g. “why not authors from
Springfield”). For the latter we again leverage NaLIR, allow-
ing the user to phrase the why-not question in NL which is
translated into a formal selection query. Finally, we leverage
the obtained provenance along with mappings from question
parts to query operators computed by NLProv, to highlight
parts of the NL question that have intuitively contributed
to the non-existence of the tuples she was interested in.

Related Work. Why-not provenance has been studied by
several lines of work (e.g. [3, 1]), suggesting different mod-
els to capture the reason for non-answers, and focusing on
the query operators, rather than classic provenance that fo-
cuses on the data. Explaining non-answers to users was
also demonstrated in [2], with the major difference being
the target users. While [2] shows the raw SQL query and
its operators, NLProveNAns shows the explanations in natu-
ral language, assuming users do not necessarily understand
SQL. This constraint gives rise to several algorithmic chal-
lenges we detail in the sequel.

(dname=databases)

[”pyear>2005]

(a) Query Plan

(b) NL Query Parse Tree

Figure 2: Query Trees

2. TECHNICAL DETAILS

The architecture is presented in Figure 1 and we next
overview its main components.

return authors who published papers in database
conferences after 2005

(a) NL Query

query (aname) :- conf(cid, dname, cname),

dname = ’Databases’, pyear > 2005

pub(wid, aid, cid, ptitle, pyear), author(aid, aname, oid),

(b) Corresponding CQ
return authors who published papers in database
conferences after 2005

(c) Explanation for “Why not Marge?”

Figure 3: NL Query, CQ, and why-not explanation

2.1 Problem Statement

In the following let (Q be a query whose non-answers we
wish to explain.

Why-Not Question. We define a why-not question W as a
selection query over the schema of the output of Q. Intu-
itively each hypothetical output tuple of @) that matches the
criteria of W is a tuple whose non-existence in the answer
we wish to explain.

Word Highlights. The input to our problem is then an NL
query Qnr and an NL why-not question W, Its output is
a set of word indices in @1, where each index corresponds
to the position of a word that is intuitively “responsible” for
filtering out the tuples captured by W1, leading to their
non-existence in the result set of Qnr..

2.2 Provenance Generation

We explain next the processing of an NL query to obtain
a result set as well as why-not provenance. We focus here,
for ease of presentation, on the why-not model of Frontier
Picky [3]; then we explain the incorporation of the polyno-
mial model [1].

Frontier Picky. The why-not model of [3] explains non-
answers in the following manner. Based on the query plan,
the frontier picky operator is the last query operator such
that its input contains some tuples satisfying W. Note that
if there are multiple tuples satisfying W, the frontier picky
is the last operator out of the frontier picky operators for
each of them and is thus uniquely defined.

EXAMPLE 2.1. Consider the query evaluation plan in Fig-
ure 2a, for the query in Figure 3a. It queries 4 tables, au-
thors and conf, including author and conference information
respectively, papers including publications, and writes which
links authors and papers (this is a simplification of the actual
schema of [7]). Consider three authors “Homer”, “Marge”
and “Lisa”, where “Homer” is not a published author, so
his frontier picky operator is the join operator between the
authors and writes tables. “Marge” is a published author
but did not publish after 2005, so for her, opyear>2005 s the
frontier picky operator. “Lisa” is an author who published
after 2005 but not in database conferences, thus having the
join on the cid key as the frontier picky operator.

1987

Provenance-Aware Query Evaluation. Algorithm 1 then
implements query evaluation while storing why-not prove-
nance. It starts by translating the NL query to a formal one,
via the mechanism of NaLIR [6] augmented so that we keep
track of which word in the original NL question has been
mapped to which operator of the formal query, as done in
NLProv [4]. Then, in line 2 the query is evaluated. During
evaluation, whenever a tuple is removed (due to a selec-
tion operator or as part of a filtering join), we update the
mapping M ¢iiter, which maintains the relation between the
query operators and the tuples that were removed by them.

EXAMPLE 2.2. Re-consider our running example query,
and now consider the NL query in Figure 3a which is trans-
lated by NaLIR to the query in Figure 3b. First, algorithm 1
stores the mappings between words in the original sentence to
their respective operators: M[after 2005'] : pyear > 2005,
M/ database’] : dname = “Databases’” and M| authors'] :
query(aname).

During evaluation, Myiier tncludes tuples such as (Marge,
paperi, 1988), (Lisa, papera, 2007,V LDB) and their respec-
tive picky operators opyear>2005, Meid (the two tuples include
more attributes such as pid, which are omitted for brevity).

Algorithm 1: EvaluateWithProvenance

input : NL query Qnr, Database D
output: Result set and provenance for Qnr,

1 (Q,M) <+ NLToFormal(QnL);

2 (R, Myiiter) < ProvEval(Q, D);
3 return (R, Myiier);

Answering Why-Not. Algorithm 1 prepared the necessary
data structures. After viewing the evaluation results, the
user now formulates a why-not question in Natural Lan-
guage. We use NaLIR again, to convert this question into a
formal why-not selection query W. Its output is the set of
word indices to be highlighted.

Algorithm 2: Highlight
input : M, Mfilte'm W, R
output: Word highlight set
if R contains tuple t such that W (t) then

| return ¢;
3 reason <—

GetFrontier Picky(M f;iser.where(W (tuple)));

4 if reason == null then
L reason < GetProjectionOperator(Myiizer);

N =

91

6 return GetWords(reason);

Algorithm 2 operates as follows. In lines 1-2 it checks
whether the why-not question is valid, i.e. if there are indeed
no output tuples satisfying the criteria.

If this is not the case, it finds the frontier picky operator
(line 3) for each of the tuples satisfying the why-not pred-
icate W and returns the last of them which is the frontier
picky operator for W. We may obtain NULL as the op-
erator in the case where there is no match to the why-not
question in the input; in this case we consider the last pro-
jection operation that took place to be the “reason” (lines
4-5). We then (line 6) invoke algorithm 1 to track back the

words corresponding to the frontier picky operator. Once
the words are found, they are marked as highlighted.

Algorithm 3: GetWords

input : Query operator op
output: Set of word indices relevant to op

1 if op is 0(A = z) then
2 | return map(A) Umap(z);
3 if op is T 1 R then
4 if map(R) # ¢ then
5 | return map(R);
6 else
7 (left, right) = GetJoinedRelations(R);
8 while map(left)==¢ do
9 (left, -) =
GetJoinedRelations(left);
10 while map(right)==¢ do
11 (-, right) =
GetJoinedRelations(right);
12 | return GetPath(left, right);

Algorithm 3 operates as follows. The map function ex-
ploits the M data structure, and gets as input variable
names, values or table names that can be mapped back into
words in the original query. Generally, a selection opera-
tor is straightforward to map to words because the selec-
tion itself was expressed in the query. Join operations pose
further challenges. A join frontier picky operator may be
mapped directly into a word if both the joined relations are
words in the query, but may also be due to an in indirect
mapping, where the two joined relations are not part of the
query. Lines 7-12 are used to help link back the join op-
erators which could not be directly mapped to words. The
main idea is to exploit the typical scenario where unmapped
joins are used as means for the query generation engine to
link two other relations, which are directly referenced in
the NL query. The algorithm traverses the join operations
before and after the given join operator (by repeatedly call-
ing GetJoinedRelations()), until two operators, one before
and one after the join, which can be mapped into words
(left,right), are found. The returned indices are not of
these two words, but rather of the words between left and
right (by calling GetPath()), corresponding to the intuition
that the answer to the why-not question is an unmapped
operator between the two mapped operators.

EXAMPLE 2.3. Recall that the author “Homer” has no
published papers, so despite being contained in the authors
table he has no relevant tuple in the writes table. The fron-
tier picky operator would then be the join operation between
the two relations, as the only tuple relevant to this author is
dropped because no matches were found for it in the writes
table. Unfortunately, the writes table cannot be mapped into
a word in the original query because the word “writes” does
not even appear in it. The reason for the join operation be-
ing included is that the NL-to-SQL engine NaLIR has used
this table as a link between the authors table and the pa-
pers table. In this case, lines 7-12 are used to trace back the
joined relations. Left and right would be authors and papers
respectively, and the returned path would include only the

1988

word “published” as seen in Figure 2, thus our word high-
light answer would be: return authors who published papers
in database conferences after 2005.

2.3 Plugging in the Polynomial Model

The frontier picky approach is natural and easy to under-
stand, but (1) it returns only a single explanation for why-
not where there may be multiple relevant operators and (2)
it is sensitive to the query plan that is used. The latter
is problematic in our setting where the original question is
phrased in NL and is then translated into a formal one (with
the non-expert user being oblivious to the precise transla-
tion), and different engines may translate and execute it
differently.

To this end we may use a different explanation model
for why-not queries: the polynomial model described in [1].
Instead of answering why-not questions with a single oper-
ator, the output of this model is a polynomial of operators,
in which each additive term (addend) acts as an explanation
for a missing tuple described by the why-not predicate, and
consists of several operator-related reasons for not including
this tuple in the result set.

EXAMPLE 2.4. For instance, consider a different author
”Maggie”, who published 8 papers in DB conferences before
2005 and 5 papers in NLP conferences before 2005. The
question “Why not Maggie” will be answered in the polyno-
mial model with the polynomial 3op1 +50p10p2. This answer
should be read as “3 tuples matching the why-not predicate
were excluded because they represented papers which were
published before 2005 (op1), and 5 other tuples were excluded
because they represented papers which were published before
2005 and in a non-database conference (op2)”.

The resulting polynomial is invariant to query rewriting[1],
but on the other hand is much more complex than the fron-
tier picky. The polynomial may consists of many different
addends and each addend may include many operators.

Our algorithms all extend to support explanations based
on this model. We show the user several different word high-
lights based on the different addends in the polynomial. In-
stead of computing the frontier picky operator in Algorithm
2, we calculate the polynomial. Then, for each explanation
(addend), instead of starting with one possible operator in
Algorithm 3, we iterate over the set of relevant operators
and return the union of the returned sets.

The explanations are then ranked: firstly by the number of
operators in the addend, and then by the integer coefficient
of the addend, indicating how many tuples might be affected
by modifying the relevant operators thus reflecting on the
importance of the corresponding explanation.

EXAMPLE 2.5. The natural language word highlight ex-
planations for the predicate “Why not Maggie”, using the
polynomial model are:

1. “return authors who published papers in database con-
ferences after 2005”7

2. “return authors who published papers in database con-
ferences after 2005”

In the frontier picky model, only one explanation is dis-
played to the user: “return authors who published papers in
database conferences after 2005”. The explanation depends
upon the query plan, though, and different query plans may
lead to mon-intuitive answers.

3. SYSTEM OVERVIEW

NLProveNAns is implemented in JAVA, and runs on Win-
dows 10. It uses MySQL as its underlying database sys-
tem and uses two previously developed system prototypes,
namely NaLIR [6] and NLProv [4]. Figure 1 depicts the sys-
tem architecture. First, the user inputs a query in natu-
ral language and chooses between the two provenance mod-
els. This query is fed to the modified NaLIR implementation
which parses the sentence and generates an SQL query. This
query is then evaluated by SelP [5].

The user is then presented with the results of the initial
query along with natural language explanations for the re-
sult set tuples, generated by NLProv. In this step a why-not
question may be asked in order to assist the user in un-
derstanding why certain tuples are not visible in the result
set. This question is parsed by NLProveNAns and using the
information stored while processing the initial query, it com-
putes an answer for the why-not question using the chosen
provenance model, and uses this answer to produce a word
highlighting answer. The relevant words in the initial query
are highlighted based on the answer, and the user is invited
to refine the query and observe its effect on the result set.

4. DEMONSTRATION SCENARIO

We will demonstrate the system prototype using a sample
of the publications database of Microsoft Academic Search
[7]. We will design multiple complex questions over the
database of the flavour exemplified above, execute them over
the database and show the results along with their natural
language provenance. We will then demonstrate why-not
questions in Natural Language with respect to the query
results, and show the obtained why-not explanations for
both the Frontier Picky model and the why-not polyno-
mials model. We will allow the users to browse through
the obtained explanations. We will then allow the users to
pose their questions of choice in NL (using a pre-prepared
template), both for the original query and for the why-not
questions. Finally, we will allow the audience to look “under
the hood”, showing the intermediate results of the different
components, including the obtained SQL queries and a sam-
ple of the internal provenance representation.

Acknowledgments. This research was partially supported by
the Israeli Science Foundation (ISF, grant No. 1636/13), and by
ICRC - The Blavatnik Interdisciplinary Cyber Research Center.
The contribution of Amir Gilad is part of a Ph.D. thesis research
conducted at Tel Aviv University.

5. REFERENCES

[1] N. Bidoit, M. Herschel, and A. Tzompanaki. Efficient
computation of polynomial explanations of why-not
questions. In CIKM, 2015.

[2] N. Bidoit, M. Herschel, and K. Tzompanaki. EFQ: why-not
answer polynomials in action. PVLDB, 8(12):1980-1983,
2015.

[3] A. Chapman and H. V. Jagadish. Why not? In SIGMOD,
pages 523-534, 2009.

[4] D. Deutch, N. Frost, and A. Gilad. Nlprov: Natural
language provenance. PVLDB, 9(13):1537-1540, 2016.

[5] D. Deutch, A. Gilad, and Y. Moskovitch. Selective
provenance for datalog programs using top-k queries.
PVLDB, 8(12):1394-1405, 2015.

[6] F. Li and H. V. Jagadish. Constructing an interactive
natural language interface for relational databases. PVLDB,
8(1):73-84, 2014.

[7] MAS. http://academic.research.microsoft.com/.

1989

