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ABSTRACT
Many popular data cleaning approaches are rule-based: Con-
straints are formulated in a logical framework, and data is
considered dirty if constraints are violated.These constraints
are often discovered from data, but to ascertain their valid-
ity, user verification is necessary. Since the full set of discov-
ered constraints is typically too large for manual inspection,
recent research integrates user feedback into the discovery
process. We propose a different approach that employs user
interaction only at the start of the algorithm: a user manu-
ally cleans a small set of dirty tuples, and we infer the con-
straint underlying those repairs, called an explanation. We
make use of conditional functional dependencies (CFDs) as
the constraint formalism. We introduce XPlode, an on-
demand algorithm which discovers the best explanation for
a given repair. Guided by this explanation, data can then
be cleaned using state-of-the-art CFD-based cleaning algo-
rithms. Experiments on synthetic and real-world datasets
show that the best explanation can typically be inferred us-
ing a limited number of modifications. Moreover, XPlode
is substantially faster than discovering all CFDs that hold
on a dataset, and is robust to noise in the modifications.
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1. INTRODUCTION
Dirty data is a significant problem for any sizeable orga-

nization. The amounts of data being processed have sky-
rocketed, and manual cleaning has long become infeasible.
Research on data cleaning has provided methods for the au-
tomatic detection and repairing of various kinds of dirtiness.
These methods are often rule-based: Constraints to which
a database should adhere are encoded in some declarative
constraint formalism, and repair algorithms modify the data
such that no constraints are violated (see [23, 14] for an
overview of rule-based approaches to data cleaning).
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To use these repair methods, the challenge is then to ob-
tain the correct constraints for repairing. Constraints can
be discovered automatically from data [8, 16, 22, 31, 29, 34,
38, 19, 11], but such methods often discover an excessive
amount of constraints. Many of these are spurious or in-
valid, and hence not suitable for actually repairing the data.
To determine which constraints are semantically valid and
useful for repairing, semantic knowledge of the data is re-
quired, which typically only a human user can provide.

We thus wish to harness the user’s knowledge, while lim-
iting the amount of interaction required. We therefore con-
sider user interaction in the form of manual repairs. It is nat-
ural to assume that users know how certain errors should be
repaired, based on expertise. Nevertheless, the formal con-
straints underlying these repair actions may be unknown
to the user or hard to formulate precisely. Indeed, verify-
ing candidate constraints may involve the inspection of the
entire dataset to ensure that their violation sets coincide
precisely with the errors in the data. The initial user ef-
fort can possibly be guided by high-precision error detection
and data profiling methods [33, 3, 32]: even if such meth-
ods don’t detect all errors, and cannot repair them, they
can bootstrap the repairing process. We develop a method
that generates constraints that are consistent with the re-
pairs made by a user. We refer to such constraints as expla-
nations. Intuitively, when such an explanation is used for
repairing, the user provided repairs are left intact. As such,
we maximally take the user input into account. The actual
repairs, based on the explanations, can subsequently be per-
formed using any state-of-the-art repair algorithm, such as
those presented in [5, 13, 17, 18, 24, 26], among others.

In this paper we will focus on the problem of finding the
best possible explanation for a given (partial) repair. Hence,
our method should be seen as a single, core component in a
larger interactive data quality process in which a full repair is
gradually constructed – by interweaving manual repairs by a
user and automatic repairs based on explanations. As more
repaired tuples become available, the corresponding “best”
explanations become more likely to be the correct ones for
repairing, and better assistance can be offered to the user.

Methodology. As constraint formalism we use the class
of conditional functional dependencies (CFDs) [15], widely
used in data cleaning. CFDs are easy to interpret, yet more
expressive than regular functional dependencies (FDs). Our
proposed method, XPlode (for eXplanation on demand),
extracts a single constraint, the best explanation, from a
dirty dataset and an associated repair. We introduce a scor-
ing function to assess the quality of an explanation, and
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Table 1: Running example: A customers dataset.

TID CC AC PN NM STR CT ZIP

1 01 908 1111111 Mike Tree Ave. LA MH 07974
2 01 908 1111111 Rick Tree Ave. GLA MH07974
3 01 212 2222222 Joe 5th Ave NYC 01202
4 01 908 2222222 Jim Elm Str. MH 07974
5 44 131 3333333 Ben High St. EDI EH4 1DT
6 44 131 4444444 Ian High St. EDI EH4 1DT
7 44 908 4444444 Ian Port PI MH W1B1JH
8 44 01 131 2222222 Sean 3rd Str. UN 01202

prove that the outcome of XPlode is equivalent to a “naive”
method that first discovers all CFDs, and then uses post-
processing to find the explanation with maximal score.

Our algorithm is “on-demand” in that it dynamically gen-
erates candidate explanations, hereby attempting to quickly
discover the best possible explanation of the partial repair.
A similar on-demand exploration was used in [20] to discover
constant patterns that fit a single given CFD. We generalize
the theoretical foundation of their algorithm, extending it
to a larger class of evaluation functions, called loose anti-
monotonic [6]. This class includes useful functions such as a
minimum, maximum, or average, and our scoring function.

Underlying XPlode is a CFD discovery process that em-
ploys the user’s modifications to navigate the search space
of constraints, and quickly finds the best explanation. What
differentiates XPlode from other constraint discovery meth-
ods that employ user responses to prune the search space
[21, 35] is that we only require modifications as user input,
and consider general CFDs. By contrast, in [21] a constant
CFD discovery process is bootstrapped by only a single mod-
ification, followed by a number of questions to the user about
the validity of the constraints. Similarly, in [35] FDs captur-
ing errors are found by post-processing a set of approximate
FDs. The post-processing again involves questions to the
user about the validity of data and constraints. Our method
only requires positive feedback in the form of correct modifi-
cations as opposed to a user frequently having to invalidate a
candidate constraint. Hence, our method spends little time
on constraints that are not suitable for repairing. Moreover,
by considering all user feedback together, our method be-
comes more robust to small mistakes, instead of requiring
every individual user interaction to be fully correct.

Motivating Example. For illustration, we borrow the
running example from [16]. Table 1 shows a dirty version
Ddirty and a clean version Drep of the data. In the clean
version, the three crossed out values are replaced by those
next to it. In other words, a user is to repair Ddirty by
changing the cities (CT) in t1[CT] from “LA” to “MH” and
in t2[CT] from “GLA” to “MH”, and the country code (CC)
in t8[CC] from 44 to 01. We assume that a user is faced with
only the dirty data, and unable to exactly formalize the CFD
that is supposed to hold. Nevertheless, based on experience
or real-world knowledge, a user may be able to clean some
tuples. We then wish to derive a constraint underlying the
modifications made by the user. Since the obtained repair is
assumed to be partial, a CFD discovery algorithm can only
suggest a useful CFD by discovering approximate CFDs,
i.e., CFDs that only partially hold. However, there are too
many approximate CFDs for a user to inspect. Instead, we
discover CFDs based on corrections made by the user.

For example, suppose that the user corrects the “error”
in t1 by restoring t1[CT] back to its correct value of “MH”.

Suppose that an algorithm is at hand that only discovers
CFDs that somehow “explain” this correction. Intuitively,
this corresponds to the CFDs “becoming cleaner” in the re-
paired version. Two such FDs are ([ZIP,AC] → CT) and
([AC,CC]→ CT). Indeed, if t1[CC] =“MH”, then both FDs
can be made to hold by removing a single tuple (t2). Be-
fore the correction, two deletions were required. That is,
these FDs have become cleaner. When considering CFDs
as well, ([CC,PN] → CT, (01, 1111111,MH)) and (NM →
CT, (Mike,MH)), and many other CFDs become candidate
explanations. Previous approaches would now ask multiple
questions to the user, as to which of the candidate CFDs are
(in)valid, until a semantically valid CFD is obtained. In this
paper, we propose to let the user continue with repairing the
dirty instance. For example, the user may decide to correct
t8[CC] back to 01. One can verify (as we did experimentally)
that, for certain thresholds on support and confidence, as
will be defined later, only the FD ϕ = ([AC,CC]→ CT) can
be related to the two modifications made by the user. This
FD, saying that country code and area code uniquely de-
termine city, is known to be semantically valid on this data.
Moreover, ϕ can now be used to automatically correct t2[CT]
to “MH”, using any CFD-based repair algorithm.

Summary of Contributions.
1. We formally define what it means for a CFD to explain

a set of modifications. To differentiate between different ex-
planations, we define a scoring function based on the number
of explained modifications. (Section 3)

2. We design an algorithm, XPlode, that discovers the
best explanation, i.e., the explanation of highest score. More-
over, XPlode is an on-demand algorithm that avoids a full
exploration of the search space, when possible. To this aim,
XPlode leverages an upper bound of the scoring function
which is loose anti-monotonic. We discuss how XPlode can
be modified to discover multiple explanations. (Section 4)

3. To further increase the efficiency of XPlode, we intro-
duce an approximate scoring function that can be computed
in time linear in the number of changes made by the user.
By contrast, the actual scoring function has an inherent ex-
ponential dependency on the number of changes. (Section 5)

4. We experimentally show that our method can discover
the correct CFD for repairing from only a small number of
modifications, saving considerable user effort compared to
manual validation of constraints ranked by baselines such
as confidence. Moreover, XPlode is robust to noise in the
modifications, i.e., mistakes made by the user, and outper-
forms a post-processing approach that discovers all expla-
nations and then finds the highest scoring one. (Section 6)

2. PRELIMINARIES
We consider a relation schema R defined over a set A of

k attributes, where each attribute Ai ∈ A is associated with
a domain dom(Ai). A tuple t over R is simply an element of
dom(A1)×· · ·×dom(Ak). A (database) instance D of R is a
finite set of tuples over R. For a set X of attributes in A and
tuple t over R, t[X] denotes the projection of that tuple on
the attributes in X. We assume that each tuple t ∈ D has a
unique identifier tid, e.g., a natural number. We denote by
D[tid] the tuple t in D with identifier tid.

A conditional functional dependency (CFD) [15] ϕ over R
is a pair (X→ A, tp), where (i) X is a set of attributes in A,
and A is a single attribute in A; (ii) X → A is a standard
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functional dependency (FD); and (iii) tp is a pattern tuple
with attributes in X and A, where for each B in X∪{A}, tp[B]
is either a constant ‘b’ in dom(B), or an unnamed variable
‘ ’. A CFD ϕ = (X → A, tp) in which tp[A] = is called
variable, otherwise it is called constant. For constant CFDs,
tp[X] may be assumed to consist of constants only. An FD
is a (variable) CFD with tp consisting solely of variables ‘ ’.

The semantics of a CFD ϕ = (X→ A, tp) on an instance D
is defined as follows. A tuple t ∈ D is said to match a pattern
tuple tp in attributes X, denoted by t[X] � tp[X], if for all
B ∈ X, either tp[B] = , or t[B] = tp[B]. The tuple t violates
a variable CFD ϕ = (X → A, tp) if t[X] � tp[X] and there
exists another tuple t′ in D such that t[X] = t′[X] and t[A] 6=
t′[A]. A tuple t violates a constant CFD ϕ = (X→ A, tp) if
t[X] = tp[X] and t[A] 6= tp[A]. The set of all tids of tuples in
D that together violate a CFD ϕ is denoted by VIO(ϕ,D).
If VIO(ϕ,D) = ∅, then D satisfies ϕ, denoted by D |= ϕ.

The support of a CFD ϕ = (X→ A, tp) in D, denoted by
supp(ϕ,D), is defined as the number of tuples t ∈ D such
that t[X] � tp[X], i.e., the support is the number of tuples
in D that match the pattern of ϕ on the attributes in X.
In line with the commonly used notion of confidence for ap-
proximate FDs [25, 22], we define the confidence of a CFD

ϕ = (X → A, tp) in D as conf(ϕ,D) = 1 − |D′|
supp(ϕ,D)

, where

D′ ⊆ D is a minimal subset such that D\D′ |= ϕ. This def-
inition is suited to variable CFDs, where the set VIO(ϕ,D)
contains all tuples that together violate the CFD, but are
not necessarily violations by themselves. For instance, if a
violation set for a variable CFD contains two tuples with
different A-values, the CFD can be made to hold by altering
just one of the tuples. In other words, |D′| is the minimum
number of tuples that need to be altered or removed for ϕ
to be satisfied. For a constant CFD, |VIO(ϕ,D)| = |D′|,
and hence this definition of confidence reduces to the stan-
dard confidence of an association rule. We observe that
conf(ϕ,D) = 1 means that D |= ϕ and conf(ϕ,D) = 0
means that all tuples matching tp[X] need to be altered.

3. EXPLAINING REPAIRS
We here formalize the problem of discovering a single CFD

that best explains an observed, possibly partial, repair of
the data. Such repairs are represented by modifications. We
describe what modifications are in Section 3.1. Explaining
modifications in terms of CFDs, and differentiating between
explanations based on a scoring function, is discussed in
Section 3.2. Our problem statement is given in Section 3.3.

3.1 Modifications
We consider a setting in which no CFDs are provided.

Instead, we have at our disposal two database instances, Drep

and Ddirty, where Drep is obtained from the “dirty” instance
Ddirty by applying a number of modifications to tuples. We
assume that these instances have the same set of tids, such
that tuples Drep[tid] and Ddirty[tid] are both well-defined for
every tid occurring in either instance. Every changed tuple
in Drep contains one or more modifications:

Definition 1 (Modification). A modification m is a
quadruple m = (tid,A, vd, vc), where tid is the identifier of
the tuple that is being changed, A is the attribute that is
changed, vd is the dirty value which was replaced, and vc
is the new, clean value, different from vd. Given Ddirty

and Drep, a modification m = (tid,A, vd, vc) is consistent

with Ddirty and Drep when, for tuples s = Ddirty[tid] and
t = Drep[tid], s[A] = vd and t[A] = vc.

Given Ddirty and Drep, we denote by M(Ddirty, Drep) the
set of all modifications that are consistent with Ddirty and
Drep. Observe that M can contain at most one modification
for each tid and attribute. It should be clear that Ddirty and
Drep uniquely determine M(Ddirty, Drep), as it is merely the
“diff” of these two instances. We simply write M whenever
the dirty and modified instances are clear from the context.

Given a set of modifications M ⊆M(Ddirty, Drep), we de-
note by Ddirty⊕M the version of Ddirty on which the modifi-
cations in M are applied. Consequently, Ddirty⊕{∅} = Ddirty

and Ddirty ⊕M(Ddirty, Drep) = Drep. We let σM (D) denote
the set of tuples in D that are involved in a modification,
i.e., whose tids occur in a modification in M . Furthermore,
σtid
M (D) denotes the set of tids in σM (D).

Example 1. In our running example, M consists of mod-
ifications m1 = (1,CT,LA,MH), m2 = (2,CT,GLA,MH),
and m3 = (8,CC, 44, 01). Both σM(Ddirty) and σM(Drep)
consist of tuples t1, t2 and t8, with tids 1, 2 and 8. ♦

3.2 Explaining a Repair
Suppose that we are given a repair, represented by a set of

modifications. These modifications are made by a user with-
out any assumed knowledge of CFDs that may be required
to hold on the data, capturing the semantics of “clean data”.
As explained in the introduction, we want to recommend a
CFD based on the current repair, such that this CFD may
be used to detect further errors and suggest modifications.

(ε, δ)-CFDs. Intuitively, we relate candidate CFDs for
“explaining” the current repair to Drep, as this database
instance is regarded to be cleaner than Ddirty. To narrow
down such candidate CFDs, consider the following example.

Example 2. Consider the partial repair in our running
example corresponding to the single modification m1 =(1,CT,
LA,MH). The CFD ϕ1 = (NM → CT, (Mike,MH)) could
serve as an explanation for this modification as it is satis-
fied on the partial repair and relates to tuple t1. It is un-
likely, however, that this CFD is useful. Indeed, ϕ1 is only
supported by a single tuple (t1) and does not relate at all
to, for example, modification m2 = (2,CT,GLA,MH) that
will be made by the user to tuple t2. Consider next CFD
ϕ2 = (∅ → CT, (MH)), stating that all cities should be MH.
It is a well-supported CFD (its support is the entire data-
base) and relates to m1 and m2. It may not be useful, how-
ever, for further cleaning of the data. Indeed, ϕ2 has a very
low confidence: more than half of the data violates this CFD
and hence too many tuples may be flagged as dirty. ♦

This example illustrates the need for ensuring that expla-
nations have sufficient support, as this excludes CFDs that
are only supported by remaining errors and noise in Drep. At
the same time, since Drep is only a partial repair, we should
focus on explanations that only hold approximately in Drep.
All combined, this motivates the following definition.

Definition 2 ((ε, δ)-CFD). A CFD ϕ on Drep is an
(ε, δ)-CFD if conf(ϕ,Drep) ≥ 1 − ε and supp(ϕ,Drep) ≥ δ.
We denote by Σ(ε,δ)(Drep) the set of all such (ε, δ)-CFDs.

From here on, the set Σ(ε,δ)(Drep) is our candidate set of
CFDs for explaining repairs. But what does it mean to
“explain a repair”? We next address this question.
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M-Repair Explanations. Our definition for explana-
tions is based on the following intuitive condition:

“A CFD explains a repair if the repair improves
the cleanliness of the data w.r.t. the CFD.”

We formalize this intuition by imposing three natural con-
ditions on CFDs ϕ in Σ(ε,δ)(Drep). Let M = M(Ddirty, Drep).

1. The confidence of ϕ in Drep should have increased com-
pared to its confidence in Ddirty as the result of the modifica-
tions made to Ddirty. Since a confidence of 1 means that ϕ is
no longer violated, an increase in confidence brings ϕ closer
to being satisfied in the repair. Note that if the confidence
of ϕ increases, then ϕ was necessarily violated in Ddirty.

2. We require that at least one of the violations of ϕ in
Ddirty has a tid occurring in σtid

M(Ddirty), i.e., a tid of a mod-
ified tuple. This ensures that the increase in confidence, as
required by the first condition, is the deliberate effect of re-
solving a violation of ϕ. Such a condition is necessary: in
the running example, the CFD (CC→ PN, (01, 2222222)) is
not violated on t8 in the dirty data. However, modification
m3 in t8 does increase the confidence of this CFD.

3. We require that ϕ is not violated in σM(Drep), the part
of the data that was specifically cleaned by the user. This
ensures that if one uses ϕ later for further repairing, using
any state-of-the-art CFD-based repairing algorithm, the tu-
ples in σM(Drep) will not be altered, i.e., they remain clean.

We next state these conditions more generally in terms of
a set M ⊆M(Ddirty, Drep) of modifications:

Definition 3 (M-Repair Explanation). Consider
instancesDdirty andDrep, modificationsM ⊆M(Ddirty, Drep).
The CFD ϕ = (X→ A, tp) is an M-repair explanation if

1. conf(ϕ,Ddirty ⊕M) > conf(ϕ,Ddirty);
2. VIO(ϕ,Ddirty) ∩ σtid

M (Ddirty) is not empty; and
3. VIO(ϕ, σM (Ddirty ⊕M)) is empty.

We denote by Explain(ε,δ)(Ddirty ⊕M) the set of M -repair
explanations in Σ(ε,δ)(Ddirty ⊕M).

Of particular interest is the case when M = M and hence
Ddirty ⊕ M = Drep. In this case, we also call CFDs in
Explain(ε,δ)(Drep) global explanations. The set of global ex-
planations, however, can be quite sizeable, as we will show in
the experimental section (Section 6). Worse still, explana-
tions in this set do not necessarily relate to all modifications
in M. In fact, a CFD may be an explanation because of just
one of many modifications, as is illustrated next.

Example 3. When discovering global explanations in our
example dataset, with ε = 0.25 and δ = 2, there are 18 can-
didate CFDs. Among these, FD ([AC,CC] → ZIP, ( , , ))
is a global explanation, for M = {m1,m2,m3}, yet it is only
related to one modification, namely m3. ♦

In order to distinguish between such “good” and “bad”
explanations, we need to strengthen the connection between
explanations and modifications. Instead of enforcing extra
conditions on global explanations, we assign to them a qual-
ity metric. Observe that in the previous example, the CFD
([AC,CC] → ZIP, ( , , )) is a global explanation, i.e., it is
an M -repair explanation for the entire set of modifications
M = M, thanks to m3, but it is not an M -repair explana-
tion for the subset M = {m1,m2}. We therefore introduce
the concept of locally explaining modifications, on which we
will base our quality metric.

Local Repair Explanations. Example 3 indicates that
good global explanations should also explain the modifica-
tions involved locally. Intuitively, this means that the three
conditions stated in Definition 3 should not only hold for
the entire M , but also for subsets M ′ ⊆M . Requiring these
conditions to hold for all subsets of M is too strong, how-
ever, as there may not exist any global explanations with
this property. We start by defining what it means for a
CFD to locally explain a set of modifications.

Definition 4 (Local Repair Explanation).Given a
CFD ϕ in Explain(ε,δ)(Drep), we say that ϕ locally explains

a set M ⊆ M if for every non-empty subset M ′ ⊆ M , ϕ is
an M ′-repair explanation.

In other words, when a global explanation ϕ locally ex-
plains M , it explains all repairs Ddirty ⊕M ′ that can be ob-
tained from applying modifications M ′ ⊆M to Ddirty. That
is, in any order in which the modifications in M are applied,
the cleanliness of the data w.r.t. ϕ improves at every step.

This notion gives rise to the following quality metric. Let
ϕ be a global explanation in Explain(ε,δ)(Drep). Then,

score(ϕ,M) :=max{|M | |M ⊆M and ϕ locally explains M}.

If ϕ has a score close to |M|, then almost all modifications
in M are both globally and locally explained. We are thus
interested in global explanations with a high score.

Example 4. In the running example, the CFD ([CC,AC]
→ ZIP, ( , , )) has a score of 1, since it only explains mod-
ification m3. Indeed, it is easily verified that m1 and m2 do
not improve the confidence of this CFD. Moreover, if a user
would only supply m1 and m3, this CFD could not be used
to automatically clean the remainder of the data (i.e., apply
m2). On the other hand, the CFD ([CC,AC]→ CT, ( , , ))
can explain all 3 modifications, leading to a perfect score
of 3. Even if only m1 and m3 were supplied by the user,
this CFD would have the highest score of 2, and could auto-
matically apply m2. This example strengthens our argument
that user-supplied modifications can guide the CFD discov-
ery process towards the CFD that is most useful for cleaning
the remainder of the data. ♦

3.3 Problem Statement
We now have all ingredients for our problem statement:

PROBLEM: Repair Explanation Discovery

INPUT: Instances Ddirty and Drep, modifications M(Ddirty,
Drep), thresholds ε and δ.

OUTPUT: A global explanation ϕ ∈ Explain(ε,δ)(Drep) such
that score(ϕ,M) is maximal.

In other words, we want to find the global explanation that
also locally explains the largest subset of modifications of
M. Any solution to this problem has somehow embedded in
it the problem of discovering CFDs. Lattice traversal algo-
rithms for CFD discovery [16, 8], exhibit an inherent expo-
nential dependency in |A|d, where |A| is the number of at-
tributes and d is the maximum number of values occurring in
any attribute. We will show that testing whether or not can-
didate CFDs satisfy the support and confidence thresholds
and are global explanations imposes minimal overhead on
the overall CFD discovery process. The score computation,
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however, has a severe impact on the performance. Indeed,
for each candidate global explanation it requires (worst case)
to consider all subsets of M. Not all is lost, however. We will
show in Section 5, that an efficient and good approximation
of the scoring function can be computed.

4. DISCOVERING REPAIR EXPLANATIONS
We next describe an algorithm for discovering the best

repair explanation, as defined in our problem statement.
A solution to this problem is to first discover all CFDs
which globally explain the observed repair, and then return
the CFD with the highest score in a post-processing step.
Clearly, this method does a lot of unnecessary work. In-
stead, we present an on-demand algorithm XPlode, which
returns the best explanation as soon as it is known. We
begin in Section 4.1 with a detailed overview of XPlode.
Correctness of XPlode is shown in Section 4.2, contingent
on the availability of a loose anti-monotonic upper bound
function on the scores of certain sets of CFDs. Examples of
such upper bounds are provided as well. In Section 4.3, we
briefly discuss how to modify XPlode for returning multiple
CFDs. Implementation details are presented in Section 4.4.

4.1 XPlode: Explanations On-Demand
We first provide a detailed overview of algorithm XPlode

(for eXPlanations on-demand) and refer to Algorithm 1
for its pseudo-code. At the core of XPlode is a traversal
of a lattice, commonly used in FD and CFD discovery algo-
rithms, in combination with the use of equivalence partitions
to check whether CFDs are global explanations. These par-
titions, also used in FD and CFD discovery algorithms such
as Tane [22] and CTane [16], respectively, are well suited
for the (ε, δ)-thresholds that we impose on confidence and
support. We elaborate further on this partitioning technique
in Section 4.4. For now, we assume that we can efficiently
check whether or not a CFD ϕ is in Explain(ε,δ)(Ddirty ⊕M)
for a given instance Ddirty and set M of modifications, and
that score(ϕ,M) can be computed easily.

The description below focuses instead on how the best ex-
planation can be found during the exploration of the lattice,
rather than by post-processing Explain(ε,δ)(Ddirty⊕M). The
challenge is to quickly pinpoint a CFD in Explain(ε,δ)(Ddirty⊕
M) with guaranteed highest score.

To explain the workings of XPlode, we need to intro-
duce some concepts. First of all, the lattice that we tra-
verse is the power set lattice of all attribute/value combi-
nations (including the wildcard ‘ ’ as a special value). As
in CTane [16], we denote the lattice elements by (X, tp),
where X is a set of attributes and tp is a pattern tuple over
X. Hence, (X, tp) ⊆ (Y, sp) iff X ⊆ Y and tp = sp[X]. In this
case, we also say that (Y, sp) is a child of (X, tp) and the
children of (X, tp) are thus obtained by expanding (X, tp)
with all possible attribute/value pairs (A, a) where A 6∈ X
and a ∈ dom(A)∪{ }. Furthermore, since we are only inter-
ested in CFDs of high support, it suffices to only consider
pairs (A, a) that have sufficient support in Drep. That is, the
number of tuples t ∈ Drep such that t[A] � a should exceed δ.

Second, as in CTane, an element (X, tp) represents a set
of candidate CFDs, denoted by CandCFD(X, tp), consisting
of all CFDs of the form (X \ {A} → A, tp), for A ∈ X.

Finally, let UB(X, tp) be an upper bound on score(ϕ,M)
for any ϕ ∈ CandCFD(X, tp). As will be explained shortly,
this upper bound function is used as a guide for the traversal

through the lattice, and serves to ensure that the highest-
score global explanation can be identified without the need
for exploring the full lattice.

Algorithm XPlode relies on a traversal of the lattice such
that its elements (X, tp) are visited in descending order ac-
cording to their upper bound UB(X, tp). To this aim, we
keep generated elements in a priority queue Φ, initially con-
taining (∅, ∅) with upper bound +∞ (line 3). During the
run of the algorithm, we also maintain the global explana-
tion ϕmax with highest score seen so far, denoting its score
by “max”. Initially, ϕmax is set to nil and max = 0 (line 4).
The algorithm ensures that, at any time, the queue Φ will
only consist of elements (X, tp) such that UB(X, tp) > max.
In other words, we only visit elements if a better explanation
can possibly be found among its candidate CFDs.

Suppose XPlode is currently exploring element (X, tp),
i.e., the foremost element in the queue Φ with highest upper
bound (line 6). For the current element (X, tp), a CFD ϕ in
CandCFD(X, tp) is selected, that (i) is a global explanation;
and (ii) has highest score among all other global explana-
tions in CandCFD(X, tp), if such a CFD exists (line 7). The
score of ϕ, and the scores of all CFDs in CandCFD(X, tp)
have already been computed at an earlier stage of the algo-
rithm, when (X, tp) was generated. We expand on this later.

If ϕ exists and score(ϕ,M) > max, then ϕ is a better
explanation than ϕmax. In this case, ϕmax is set to ϕ and
max to score(ϕ,M) (line 9). Furthermore, the queue Φ is
updated by removing each element with an upper bound
smaller than or equal to the new max-value (line 10). This
guarantees that all elements in Φ have an upper bound larger
than the current max-value, as pointed out previously.

Finally, all children (Y, sp) of (X, tp) are generated and the
scores of all candidate CFDs in CandCFD(Y, sp) are com-
puted (lines 11-13). We can thus indeed assume, as we did
earlier, that when XPlode considers (Y, sp) at a later stage,
all scores of its candidate CFDs are available. Furthermore,
if UB(Y, sp) > max, then (Y, sp) is inserted in Φ with up-
per bound value UB(Y, sp) (line 15). This guarantees that Φ
contains only elements with a sufficiently high upper bound.

When the queue is empty, the algorithm terminates by
returning ϕmax (line 16). If ϕmax 6= nil, the CFD ϕmax is
guaranteed to be a global explanation. In the next section,
we identify sufficient conditions on the upper bound function
such that ϕmax is a global explanation with maximal score.

Remarks. (1) Multiple elements in Φ may hold the same
maximal UB-value. We break ties by prioritizing on ele-
ments (X, tp) with the highest-score CFD in CandCFD(X, tp).
If ties persist, we pick (X, tp) containing the highest number
of wildcards in tp. These choices can lead XPlode quicker to
elements that represent the best global explanation. (2) One
may wonder why, when generating a child (Y, sp) of (X, tp),
we compute the scores of all its candidate CFDs (lines 11-
13), and do not limit the score computation to candidate
CFDs that are in fact global explanations. Indeed, CFDs
that do not globally explain repairs do not impact the fi-
nal result and consequently, their score could be simply set
to 0. This would result in avoiding potentially expensive
score computations. However, since scores are used for tie-
breaking, experiments show that it is more efficient if we
do compute all scores. Intuitively, more scores lead more
quickly towards elements with higher scores, leading to a
swifter discovery of an explanation with maximal score.
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Algorithm 1 On-demand algorithm XPlode for obtaining
the best explanation for a set M of modifications.

1: procedure XPlode(Ddirty,Drep,M, ε, δ, score(·), UB(·))
2: Φ← ProrityQueue({})
3: Insert (∅, ∅) into Φ with upper bound +∞
4: ϕmax ← nil, max← 0
5: while Φ is not empty do
6: (X, tp)← Pop(Φ)
7: Let ϕ ∈ CandCFD(X, tp) such that ϕ is a global

explanation with highest score among all the global
explanations in CandCFD(X, tp)

8: if ϕ exists and score(ϕ,M) > max then
9: ϕmax ← ϕ, max← score(ϕ,M)

10: Delete from Φ all elements with UB-value ≤ max

11: for all children (Y, sp) of (X, tp) do
12: for all ψ ∈ CandCFD(Y, sp) do
13: Compute score(ψ,M)

14: if UB(Y, sp) > max then
15: Insert (Y, sp) into Φ with value UB(Y, sp).

16: return ϕmax.

4.2 Correctness and Upper Bound Functions
We next show how to guarantee that when XPlode out-

puts a global explanation, it is a global explanation of max-
imal score. The correctness of XPlode entirely relies on
the upper bound function UB(·), as this function determines
which elements are in the priority queue, and in what order.
We first identify sufficient conditions on UB(·) to guarantee
correctness. Examples of “good” upper bound functions are
described at the end of this section.

Correctness. XPlode returns ϕmax when the priority
queue Φ is empty. Clearly, every element that was ever gen-
erated has either been visited, or is not in the queue because
its UB-value is below the score max of ϕmax. Observe that
for any element (X, tp), its upper bound UB(X, tp) is larger
than the score of any candidate CFD of (X, tp). This implies
that none of the elements generated during execution, have
a candidate CFD with a score higher than max.

Correctness of XPlode then requires that, when ϕmax

is returned as the best global explanation, then any ele-
ment (X, tp) in the lattice whose upper bound value is larger
than max must have been added to the queue at some prior
stage. To this aim, we require that the upper bound func-
tion UB(·) is loose anti-monotonic [6]: For any (X, tp) there
exists a parent (Y, sp) = (X \ {B}, tp[X \ {B}]) such that
UB(X, tp) ≤ UB(Y, sp). That is, every element in the lattice
has at least one parent with a higher or equal UB-value. The
proof of correctness is deferred to the online appendix [1].

Proposition 1. On input Ddirty, Drep, M, ε, δ, score(·),
and UB(·), the algorithm XPlode returns the global expla-
nation with maximal score, if it exists, provided that UB(·) is
loose anti-monotonic and for any element (X, tp), UB(X, tp)
is larger than the score of any of its candidate CFDs.

Loose Anti-monotonic Upper Bounds. The ques-
tion is now whether there exist non-trivial 1 upper bound
functions that satisfy the conditions in Proposition 1. We
answer this affirmatively in this section. Defining UB(X, tp)

1One can choose a constant function UB(·). XPlode then
performs an exhaustive breadth-first lattice traversal.

as the maximal score of the candidate CFDs of (X, tp) does
not suffice, however, as the following example illustrates.

Example 5. We return to the running example, and con-
sider the CFD ϕ = (CC → CT, ( , )), which locally ex-
plains all modifications {m1,m2,m3}. Hence, its score is
3 (but it is not sufficiently confident, for ε = 0.25, to be
a global explanation). This is a candidate CFD for the el-
ement ({CC,CT}, ( , )) in the lattice, with parents (CC, )
and (CT, ). However, the CFDs ϕ1 = (∅ → CT, ( )) and
ϕ2 = (∅ → CC, ( )) only have scores of 2 and 1, respectively.
Indeed, ϕ1 locally explains {m1,m2} and ϕ2 locally explains
m3. No larger sets are locally explained by these CFDs. ♦

Instead, we observe the following. For a CFD ϕ, we de-
fine ModVIO(ϕ,Ddirty,M) as the set of modifications in M
that apply to tuples in VIO(ϕ,Ddirty). Here, a modification
m applies to a tuple t when they share the same tid-value.
It follows directly from Definition 4 that the set of modi-
fications that a global explanation can also locally explain,
consists at most of those modifications involved in violations
of that explanation in the dirty database instance. Hence,
score(ϕ,M) ≤ |ModVIO(ϕ,Ddirty,M)|. We can now define
our upper bound function UB0; we defer the proof of valid-
ity of the upper bound to the online appendix [1].

Definition 5 (Upper bound). Let (X, tp) be a lattice
element, Ddirty a dirty dataset, and M a set of modifications.

UB0(X, tp) := max
ϕ∈CandCFD(X,tp)

|ModVIO(ϕ,Ddirty,M)|.

Proposition 2. The upper bound function UB0(·) satis-
fies the conditions of Proposition 1.

We also introduce another upper bound, based on UB0(·),
with the difference that it also takes into account the at-
tributes in ModVIO covered by explanations. More specifi-
cally, for a CFD ϕ, we define AttVIO(ϕ,Ddirty,M) as the set
of attributes occurring in ModVIO(ϕ,Ddirty,M). Further-
more, we let λ be a parameter such that 0 ≤ λ · |A| < 1,
where |A| is the number of attributes in the relation R. We
define UBλ(X, tp) as the maximum value of

|ModVIO(ϕ,Ddirty,M)|+ 1− λ|X ∪ AttVIO(ϕ,Ddirty,M)|,

where, as before, ϕ ranges over all CFDs in CandCFD(X, tp).
The intuition behind the additional negative term, com-
pared to UB0(·), is to prioritize explanations to more general
CFDs (containing a smaller number of attributes) during
the execution of XPlode. The additional “+1” is to ensure
that score(ϕ,M) remains smaller than UBλ(X, tp) for every
of its candidate CFDs ϕ, since λ · |A| ≤ 1. Hence, UBλ(·)
only affects the priority among those CFDs explaining an
identical number of modifications. The proof that UBλ(·) is
loose anti-monotonic is deferred to the online appendix [1].

4.3 Discovering Multiple Explanations
As mentioned in the introduction, we have devised algo-

rithm XPlode to be the core component of an interactive
cleaning system. While finding the best explanation given
a set of modifications is the crucial step in this system, in
practice one might desire the algorithm to return multiple
CFDs. We briefly discuss how XPlode can be altered to
discover (a) the top-k explanations for the current set of
modifications, and (b) a sequence of i modifications that in-
crementally explain the modifications. We believe a combi-
nation of these techniques covers most real-world scenario’s.
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Discovering Top-k Explanations. Turning XPlode
into a top-k algorithm requires limited changes to the pseu-
docode shown in Algorithm 1. On line 4, we now initialize
ϕmax as a list of length k. On line 7, the algorithm has
to be changed such that all ϕ ∈ CandCFD(X, tp) with score
> max are processed, not just the highest-scoring ϕ. Finally,
on line 9, the identified ϕ is added to (the list) ϕmax, and if
more than k CFDs are present in ϕmax, the lowest-scoring
one is removed. The value of max is subsequently set to the
lowest score of those CFDs in ϕmax.

Incrementally Explaining Modifications. We next
discuss how to discover CFDs that incrementally explain
observed modifications. In other words, the best explanation
is first discovered, and then the search is continued in order
to find the best explanation for the modifications that have
not yet been explained. To do this efficiently, we first make a
change to the lattice elements: instead of associating a score
with each CFD, we attach the set of modifications the CFD
explains. This allows us to efficiently recompute the score
of a CFD after removing already-explained modifications.

The main change to the algorithm is that we introduce a
list backup to store generated lattice elements, in addition
to the priority queue. After line 15 in the algorithm, each
generated lattice element (Y, sp) is inserted into backup if
UB(Y, sp) > 0, i.e., if a CFD in the element or its children
can explain some modification. When the regular XPlode
algorithm finishes, because the best explanation ϕmax is
found, we now remove all modifications explained by ϕmax

from M. Subsequently, the list backup is examined, and the
scores of its elements are updated. All elements (Y, sp) with
UB(Y, sp) = 0 are removed, and the others are used to re-
initialize the priority queue Φ. The algorithm then repeats,
until all modifications are explained.

4.4 Implementation Details
We conclude this section by elaborating on how XPlode

checks the support and confidence thresholds and how global
explanations are filtered out. These all crucially rely on
so-called equivalence partitions, commonly used in (C)FD
discovery algorithms.

Equivalence Partitions. These partitions, introduced
in [12] and used in CTane [16] for CFD discovery (and in its
predecessor Tane [22] for FD discovery), are compact rep-
resentations of sets of tuples that agree on sets of attributes.

More specifically, given (X, tp), where X is a set of at-
tributes and tp is a pattern tuple over X, we say that two
tuples s and t in Drep are equivalent relative to (X, tp) if
s[X] = t[X] � tp. For a tuple s ∈ Drep, [s](X,tp) denotes the
equivalence class consisting of the tids of all tuples t ∈ Drep

that are equivalent with s relative to (X, tp). The (equiv-
alence) partition of (X, tp), denoted by Π(X, tp), is the col-
lection of [s](X,tp) for s ∈ Drep. The size of Π(X, tp), de-
noted by |Π(X, tp)|, is the number of equivalence classes in
Π(X, tp). We use ‖Π(X, tp)‖ to denote the number of tids in
Π(X, tp). For instance, in the running example we have that
Π({CC,CT}, (44, )) = {{5, 6}, {7}} with size |Π({CC,CT},
(44, ))| = 2 and ‖Π({CC,CT}, (44, ))‖ = 3.

One of the key uses of equivalence partitions in discov-
ery algorithms is to check the validity of CFDs [16]. It
is easily verified that Drep |= (X → A, tp) if and only if
|Π(X, tp[X])| = |Π(X ∪ {A}, tp)|. That is, the number of
equivalence classes relative to (X, tp[X]) remains the same
when adding (A, tp[A]). Yet another way of phrasing this

is as follows. For an equivalence class eq ∈ Π(X, tp[X]), we
let Refine(eq, (A, tp[A])) be the set of equivalence classes in
Π(X∪{A}, tp) that subsume eq. Then, Drep |= ϕ if and only
if |Refine(eq, (A, tp[A]))| = 1 for every eq ∈ Π(X, tp[X]). We
use this formulation below.

Equivalence partitions can also be used to check support
and confidence thresholds and for checking whether or not
a CFD is a global explanation, as will be explained be-
low. For this reason, we compute equivalence partitions
during XPlode’s lattice traversal. More precisely, just as
in CTane, we start by computing equivalence partitions for
attribute/value pairs (A, a) with a ∈ dom(A)∪{ } with sup-
port at least δ. Then, when children are generated, the
equivalence partition for (X, tp) is obtained by intersecting
the partitions of two parents of (X, tp). Here, intersecting
means intersecting every pair of equivalence classes from the
two partitions. We implement this intersection as in Tane
by means of a linear time algorithm based on lookup ta-
bles [22]. Only partitions of high support are retained. Since
support is anti-monotonic, neither elements with insufficient
support nor their children need to be considered.

Checking for (ε, δ)-CFDs. Consider a CFD ϕ = (X→
A, tp). Since the corresponding lattice element (X∪ {A}, tp)
was added to the priority queue, it must have sufficient sup-
port. Due to the anti-monotonicity of support, the same is
true for all its subsets, and hence supp(ϕ,Drep) ≥ δ. Check-
ing whether conf(ϕ,Drep) ≥ 1 − ε can be done in terms of
equivalence partitions along the same lines as the error of
FDs is computed in Tane [22]. It is now easily verified (as
in [22]) that conf(ϕ,Drep) is equal to

1

‖Π(X, tp[X])‖

 ∑
eq∈Π(X,tp[X])

|eq| − arg max
eq′∈Refine(eq,(A,a))

|eq′|

 .

Indeed, intuitively, this expression tells that in order to re-
solve violating tuples with tids in eq by deleting a mini-
mal number of tuples (as required by the definition of con-
fidence), all tuples have to be removed that do belong to
classes in Refine(eq, (A, a)), except for one class of maximal
size. We note that conf(ϕ,Drep) is computed when element
(X ∪ {A}, tp) is considered. By contrast to CTane, element
(X, tp[X]), needed to compute conf(ϕ,Drep), may not have
been visited yet due to the way the lattice is traversed. In
this case, we compute Π(X, tp[X]) on-the-fly from the equiv-
alence classes Π(B, b) for B ∈ X and b = tp[B].

Checking for global explanations. In addition to sat-
isfying support and confidence thresholds, for a CFD to be
a global explanation, three more conditions (as stated in
Definition 3) need to be verified. We next show how these
checks can be done by using equivalence partitions. As be-
fore, let ϕ = (X → A, tp). We start with condition (3), as
it is the easiest one. Recall that this condition states that
we wish to discover CFDs ϕ that are not violated on re-
paired tuples. In other words, VIO(ϕ, σM(Drep)) should be
empty. As already mentioned, checking for violations corre-
sponds to finding equivalence classes eq ∈ Π(X, tp[X]) such
that |Refine(eq, (A, tp[A]))| > 1. Since condition (3) only
applies to tuples in σM(Drep), it suffices to check whether
there is an equivalence class eq ∈ Π(X, tp[X]) for which there
are tids in σM(Drep) that belong to two different classes in
Refine(eq, (A, tp[A])). Such a check can be easily integrated
during the confidence computation of ϕ.
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Conditions (1) and (2) in Definition 3 are a bit more chal-
lenging, as they require computations over Ddirty, whilst we
only have equivalence partitions over Drep. Suppose for the
moment that we also have equivalence partitions over Ddirty

at our disposal. We denote these by Πd(X, tp[X]) (with sub-
script “d” for dirty). Recall that condition (2) requires that
VIO(ϕ,Ddirty) ∩ σtid

M(Ddirty) is not empty. Given equivalence
classes over Ddirty, this condition can be checked along the
same lines as done for condition (3). Indeed, we compute
conf(ϕ,Ddirty) and along the way we check for violations
involving tids in σM(Ddirty), just as before. As a positive
side-effect, condition (1) requires comparing conf(ϕ,Ddirty)
and conf(ϕ,Drep), both of which are now already computed.

Pulling back the equivalence partitions. It remains
to explain how equivalence partitions Πd(Y, sp) are com-
puted. Instead of recomputing them from scratch on Ddirty,
we “pull them back” from Π(Y, sp), the partition of the el-
ement in Drep. A description and pseudocode of this tech-
nique is available in the online appendix [1].

5. APPROXIMATING THE SCORE
As already observed in Section 3.3, the computation of

score(ϕ,M), as defined in Definition 4, is quite expensive.
Indeed, it requires the traversal of a power set lattice whose
elements consist of all subsets of the modifications in M.
In this section we propose an approximate scoring function,
denoted by UC-score2, which is easy to compute. Moreover,
experiments show that UC-score(ϕ,M) is a good approx-
imation of score(ϕ,M). We show that UC-score(ϕ,M) ≤
score(ϕ,M) and hence, UC-score(ϕ,M) ≤ UB0(X, tp) (or
UBλ(X, tp)). This implies that XPlode can also be used for
computing the global explanation with maximal UC-score.

5.1 Rationale Behind UC-score
We first observe that for constant CFDs ϕ, different viola-

tions are independent of each other (after all, constant CFDs
concern violations consisting of single tuples only). Further-
more, let us call a set M ⊆M valid if every modification in
M refers to a unique tuple. In other words, no two modi-
fications in a valid set relate to the same tuple. Then, for
constant CFDs and valid sets M , if each single modification
m ∈ M is locally explained by ϕ, then also the entire set
M is locally explained by ϕ. No exhaustive enumeration of
subsets of M is thus needed to check for local explainability.
To obtain the best possible approximation of score(ϕ,M) in
this way, it thus suffices to count the number of tids that
occur in a modification in M that is locally explained by ϕ.

Definition 6 (UC-score(·), const. CFD). Let ϕ be a
constant CFD and M a set of modifications. We define

UC-score(ϕ,M) := max{|M | |M ⊆M is valid and

each m ∈M is locally explained by ϕ}.

As observed earlier, the UC-score(·) is equal to the size of
the largest valid set M that is locally explained.

The situation for variable CFDs is quite different, how-
ever, due to dependencies between violations.

Example 6. Consider modification m3 = (8,CC, 44, 01)
from the running example. A variable CFD that locally ex-
plains this modification is ϕ = (CC → PN, ( , )). Now,

2The “UC” in UC-score refers to Unions of Constant CFDs.

assume a different modification, m4 = (3,PN, 2222222, 1111
111). By itself, this modification is also explained by ϕ.
When applying both modifications, however, tuples t3, t8 have
CC = 01, but a different PN, violating the CFD ϕ. ♦

To define an efficient, yet useful scoring function for vari-
able CFDs, we will treat a variable CFD ϕ = (X→ A, (tp, ))
as a union of a finite number of constant CFDs, say Σ =
{ϕ1, · · · , ϕm}3. Moreover, when we allow unions of constant
CFDs to serve as the constraint language for global expla-
nations, they inherit the nice properties of single constant
CFDs, with some restrictions.

Definition 7 (UC-score(·), union of const. CFDs).
Let ϕ be a CFD, Σϕ = {ϕ1, · · · , ϕm} a union of constant
CFDs, and M a set of modifications. We define

UC-score(Σϕ,M) := max{|M | |M ⊆M is Σ-valid and

each m ∈M is locally explained by ϕ}.

It again holds that UC-score(Σ,M) is the size of the largest
Σ-valid set of modifications that is locally explained by Σ,
and can be computed as the number of tids that occur in a
modification in M that is locally explained by Σ. This prop-
erty is crucial for the efficient computation of UC-score(Σ,M).
We explain the notion of Σ-valid set in the next section.

Consider now a variable CFD ϕ = (X → A, (tp, )). We
convert ϕ into a union Σϕ of constant CFDs as follows:
for each equivalence class eq ∈ Πd(X, tp), we denote by ceq

the projection on the X-attributes of a tuple in eq (more
precisely, a tuple with a tid in eq). Furthermore, we let aeq be
the most frequent A-value in all tuples in eq. We then define
ϕeq = (X→ A, (ceq, aeq)) and represent ϕ as the union Σϕ =
{ϕeq | eq ∈ Πd(X, tp)} of constant CFDs. Intuitively, the
most frequent A-value in each equivalence class is expected
to reflect the correct value in that equivalence class. More
importantly, recall that the confidence of ϕ (see Section 4.4)
is computed by “removing tuples that do belong to classes
in Refine(eq, (A, a)), except for those tuples in the class of
maximal size”. Thus, the most frequent A-value directly
relates to the confidence of the CFD. In conclusion, given a
variable CFD ϕ, we define

Definition 8 (UC-score(·) of a CFD). Let ϕ be any
CFD, Σ = {ϕ1, · · · , ϕm} a union of constant CFDs, and M
a set of modifications. We define

UC-score(ϕ,M) := UC-score(Σϕ,M).

In the remainder of this section we describe the crucial
property underlying the definition of UC-score, show that
UC-score(ϕ,M) is smaller than or equal to score(ϕ,M), and
verify that UC-score(ϕ,M) is easy to compute. The proofs
of these properties can be found in the online appendix [1].

5.2 Properties of UC-score
Consider a variable CFD ϕ = (X → A, (tp, )) and let

Σϕ = {ϕeq | eq ∈ Πd(X, tp)} be the set of constant CFDs
obtained from ϕ 4. We call a set M ⊆ M, Σϕ-valid if it is
valid and, in addition, for all tuples t ∈ σM (Ddirty⊕M) there
either exists a constant CFD ϕeq = (X→ A, (ceq, aeq)) ∈ Σϕ
such that t[X] = ceq, or t[X] 6� tp. Intuitively, a set M of

3We represent a union of CFDs as a set of CFDs.
4To uniformly treat variable and constant CFDs, for a con-
stant CFD ϕ we let Σϕ be the singleton CFD {ϕ}.
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modifications is Σϕ-valid when in σM (Ddirty⊕M), either the
violations of ϕ on Ddirty are repaired in accordance with the
constant CFDs in Σϕ, or these violations are repaired by
invalidating the constants in the pattern tuple tp of ϕ. By
focusing on a set Σϕ of constant CFDs, and Σϕ-valid sets of
modifications, we can indeed efficiently approximate score:

Proposition 3. For any Σϕ-valid set of modifications
M ⊆M, M is locally explained by Σϕ if and only if each m ∈
M is locally explained by Σϕ. Furthermore, UC-score(Σϕ,M)
is equal to the number of tids that occur in a modification
in M that is locally explained by Σϕ.

In other words, computing the score relative to M does not
require an exhaustive exploration of all subsets of M , in
contrast to the computation of score(ϕ,M) defined in Sec-
tion 3.3. An important property is that:

Proposition 4. For every global explanation ϕ and set
M of modifications, UC-score(ϕ,M) ≤ score(ϕ,M).

Proof. (sketch) We show that if Σϕ locally explains a
Σϕ-valid set M , then ϕ also locally explains M . Thus,
UC-score(Σϕ,M) ≤ score(ϕ,M) for every Σϕ-valid M .

Consequently, UC-score(ϕ,M) ≤ score(ϕ,M) ≤ UB0(X, tp)
(and UBλ(X, tp)) when ϕ is of the form (X\A→ A, tp); hence
XPlode finds the global explanation of highest UC-score.

5.3 Computation of UC-score
We conclude by explaining how UC-score(ϕ,M) can be

efficiently computed. Proposition 3 tells that it suffices to
count the number of tids that occur in a modification in M
that is locally explained by Σϕ. This is checked as follows:

Proposition 5. Let Σϕ be the set of constant CFDs of
CFD ϕ = (X → A, tp). Let m = (tid,B, vd, vc) ∈ M , with
M ⊆ M a Σ-valid set of modifications, s = Ddirty[tid] and
t = (Ddirty⊕m)[tid]. Then Σϕ locally explains m if and only
if there exists a constant CFD ϕeq = (X→ A, (ceq, aeq))∈ Σϕ
such that s[X] = ceq and s[A] 6= aeq (s violates ϕeq), and:

1. either t[A] = aeq (t satisfies ϕeq); or
2. there exists another ϕeq′ ∈ Σϕ such that t[X] = ceq′

and t[A] = aeq′ (t satisfies some other CFD in Σϕ); or
3. t[X] 6� tp ((ϕ no longer applies to t).

Of course, for constant CFDs ϕ, Σϕ = {ϕ} and hence only
cases (1) and (3) in the Proposition apply. Although Def-
inition 3 also requires checking whether conf(Σϕ, Ddirty) <
conf(Σϕ, Ddirty⊕m), as part of the proof of Proposition 5 we
show that this is implied by the conditions in its statement.

The pseudo-code for computing UC-score, shown in Algo-
rithm 2, is based on Propositions 3 and 5. We first convert
the CFD ϕ into its set Σϕ, using function ConvertCFD,
as previously explained. Then, VIO(Σϕ, Ddirty) is computed.
By Proposition 5 it suffices to only consider m ∈ M that
relate to tids in VIO(Σϕ, Ddirty). We partition modifications
in M according to their tid. Let M[tid] be the set of modifi-
cations in M that relate to tid. Since every modification
occurs in exactly one attribute, we can further partition
M[tid] into M[tid,X] and M[tid,A], consisting of modifica-
tions on attributes in X and A, respectively. For modifica-
tions m = (tid,B, vd, vc) in M[tid,X], we increment the score
on two occasions: (i) on line 7, if tp[B] is a constant for
the attribute B in which a change happens, then clearly the

Algorithm 2 Computing the UC-score of a CFD ϕ.

1: procedure UC-Score(Ddirty,Drep, M, ϕ : (X → A, tp))
2: Σϕ ← ConvertCFD(ϕ)
3: ucscore← 0
4: for all tid ∈ VIO(Σϕ, Ddirty) do
5: M[tid]← {m ∈M | m relates to tid}
6: for all m = (tid,B, vd, vc) ∈M[tid,X] do
7: if tp[B] 6= ‘ ’ then
8: Increment ucscore and go to next tid
9: else if ∃ϕeq′ , t = Drep[tid], t[X] = ceq′ then

10: if t[A] = aeq′ then
11: Increment ucscore and go to next tid

12: for all m ∈M[tid,A] do
13: if ∃ϕeq, s = Ddirty[tid], s[X] = ceq then
14: if t[A] = aeq for t = Drep[tid] then
15: Increment ucscore and go to next tid

16: return ucscore

change makes ϕ inapplicable to the tuple in question (con-
dition 3 in Proposition 5); and (ii) on lines 9 and 10, if the
change results in the tuple satisfying some constant CFD
ϕeq′ ∈ Σϕ (condition 2 in Proposition 5). Finally, on lines
13–14, we perform a similar computation for modifications
in M[tid,A]: We determine the constant CFD ϕeq that was
violated in the tuple s in Ddirty, and increment the score
if attribute A was modified such that tuple t satisfies ϕeq

(condition 1 in Proposition 5). As soon as a modification is
explained for a given tid t, it is counted, and the algorithm
proceeds to the next tid.

Table 2: Statistics of the used datasets.

Dataset #Tuples #Attributes %MinSupp
Abalone 8354 9 10%
Adult 97684 11 1%
Soccer 200000 10 10%
SP500 245148 7 1%

6. EXPERIMENTS
We experimentally validate our repair explanation method.

Experiments illustrating the benefit of the optimizations dis-
cussed in Section 4, are postponed to the online appendix [1].

6.1 Experimental Setup
Hardware. All our experiments were performed on an

Intel Core i7 Processor (2.3GHZ) with 16GB of memory
running OS X. All algorithms are implemented in C++ and
run entirely in main memory. All code and data is available
on the CodeOcean platform for reproducible research5.

Datasets. We use four datasets: Abalone and Adult
are small datasets from the UCI Repository [27]; Soccer is
a synthetic dataset about soccer players and their teams6,
and finally, SP500 is a real-world dataset about stock trad-
ing from [10]. To ensure that CFD violations can occur,
we duplicate every tuple in these datasets. On the Adult
dataset we only use constants CFDs, since mining general
CFDs on this dataset is too time-consuming, because Adult
has a higher number of attributes and many frequent con-
stant patterns. Statistics of the data are shown in Table 2.

5https://bit.ly/2MYzjcH
6http://www.db.unibas.it/projects/bart/
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Error Generation. We make use of the BART tool [2]
for introducing violations in the datasets. BART takes a
dataset and a set of data quality rules as input, and in-
serts a predefined percentage of violations into the data.
The used percentages are reported in the %Error column
in Table 4. To get the required quality rules, we used our
implementation of CTane [16] to discover 100% confident
CFDs on the datasets, using the minimum support percent-
ages shown in Table 2. As a note aside, support thresh-
old δ is then simply 1

100
(#Tuples×%MinSupp). These

thresholds were set empirically, low enough to ensure that
a reasonable number of 100% confident CFDs were found
on the datasets, i.e., at least 50; yet high enough for the
runtime to remain practical for experimenting. Combining
the clean and dirty datasets, we generate partial repairs by
starting from the dirty dataset, and replacing a subset of the
dirty tuples with their clean variants. For each dataset, we
obtain 3 different dirty datasets by using 3 different CFDs
discovered on the clean data, denoted by CFD 1, CFD 2,
and CFD 3. When considering a dirty dataset correspond-
ing to a CFD i, then CFD i is the target CFD. In other
words, it is the CFD we want to discover by repairing the
corresponding dirty dataset. Obviously, CFD i is different
for each dataset.

Falcon. We compare with Falcon [21], a system which
discovers a SQL Update Statement (equivalent to a constant
CFD) that explains a single modification. Since such a mod-
ification does not contain sufficient information to reliably
discover the underlying CFD, Falcon employs user interac-
tion to narrow down the search space. Feedback is received
in the form of a user asserting the (in)validity of a given
CFD. Using the fact that all generalizations of an invalid
CFD are also invalid, and all specializations of a valid CFD
are also valid, an efficient binary search algorithm limits the
amount of user feedback required.

6.2 Experimental Results
Usefulness of Explaining from Repairs. Before eval-

uating the performance of our method for discovering CFDs
that explain repairs, we first show that user-supplied modi-
fications are indeed a good instrument to guide CFD discov-
ery towards a CFD that is useful for repairing. We perform
CFD discovery on the dirty data, and rank the discovered
approximate CFDs by confidence and rule length, and com-
pare this to a ranking using UC-score(·) on partially cleaned
data, with 2 and 5 modifications, respectively.

In Table 3, we show the position of the target CFD in a
list of CFDs ranked according to the different criteria (po-
sition 1 denotes the top of the ranking). The results clearly
show that, when using confidence or rule size, the target
is typically quite deep in the ranking. It is infeasible for
a user to manually validate all of these CFDs one by one.
This illustrates the need for integrating user feedback into
the ranking function. Indeed, using information from mod-
ifications consistently quickly brings the target to the front,
ratifying our approach. Repairing a handful of tuples auto-
matically invalidates many CFDs, saving much user effort.

Explaining Full Repairs. To illustrate the efficacy of
our method, we first perform explanation discovery on full
repairs, i.e., using the fully clean data as Drep. We are thus
only interested in CFDs that are not violated on Drep, and
set ε = 0. The minimum support threshold is set accord-
ing to the percentages from Table 2. These thresholds en-

sure that the target CFD is among the (ε, δ)-CFDs that
are the candidates for global explanations. In this experi-
ment, we first want to get an idea about the total number of
global explanations. Therefore, we use the post-processing
method: Run CTane to find (ε, δ)-CFDs; then filter out all
the global explanations. We find that the number of (0, δ)-
CFDs that are global explanations is typically too large for
manual inspection, ranging from around 40 on the Adult
dataset up to 400 on the Soccer dataset. On partial repairs
(when ε > 0), this number will only increase since the num-
ber of (ε, δ)-CFDs will increase considerably, up to 1500 on
Abalone for ε = 0.1. Secondly, we want to validate that the
target CFD is indeed the highest scoring (for UC-score(·))
global explanation when considering full repairs. Indeed, on
all datasets the target CFD was discovered. It shows that
the UC-score(·) is a good measure for repair explanations.

Scoring Function. We have also evaluated whether the
scoring function UC-score(·) is indeed a suitable surrogate for
score(·), the exact scoring function. Since score(·) requires
an expensive computation, which we implemented using a
brute-force approach, we performed the experiment only on
the smallest dataset, Abalone. We computed both the rank-
ing difference and the absolute difference between both scor-
ing functions. Due to space limitations, we postpone the
results to the online appendix [1]. We learn that the top po-
sitions in the ranking are unaffected by the choice of scoring
function. Moreover, the absolute error remains very small
throughout the entire ranking. Hence, UC-score(·) offers a
good approximation for score(·), and is unlikely to change
which global explanation is returned by XPlode, compared
to score(·). We use UC-score(·) in all remaining experiments.

Explaining Partial Repairs. Our first experiment sho-
wed that the target CFD, the one used to dirty the data,
can be recovered from a full repair. We now want to answer
the question, “how many modifications are needed for a par-
tial repair to recover the target CFD?”. We created partial
repairs using an increasing number of modifications, and
report the number and percentage of modifications needed
until XPlode returns the target CFD. On each dataset,
we use the error percentage of the data as ε in the confi-
dence threshold 1 − ε; the support threshold δ is derived
from the difference of (i) the minimum support percentage
used to mine the CFDs and (ii) the error percentage of the
data. For instance, on Abalone with 1% errors, we pick
δ = (10%− 1%)× 8354 and ε = 0.01. As before, these guar-
antee that the target CFD is among the (ε, δ)-CFDs that are
explored. Furthermore, we use UBλ(·) as upper bound func-
tion in XPlode. Experiments (not reported) show that this
loose anti-monotonic function guides XPlode more quickly
towards the desired CFD than UB0(·), since the λ penalty
assigns a lower priority to lattice elements containing irrele-
vant attributes, i.e., attributes that do not occur in AttVIO.

The results for this experiment on all four datasets and
CFD 1, CFD 2, CFD 3, are shown in Table 4. Here, the
columns %Error and #Error contain, respectively, the
percentage and absolute number of violations inserted by
BART. The columns %M(i) and #M(i) display the per-
centage and number of modifications required before the tar-
get CFD is returned, for CFD i. We see that the percentage
of modifications required to find the target CFD is typically
low, and does not change much when the dirtiness of the
data increases. This implies that our method has a greater
benefit when cleaning dirtier data: if the target CFD can be
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Table 3: Position of target CFD among all approximate CFDs according to various ranking criteria.

Dataset CFD Length (Asc) Conf (Asc) Conf (Desc) UC-score2(·) UC-score5(·)

Abalone
1 907 249 4617 18 2
2 1825 1500 3703 12 3
3 2492 305 4565 244 3

Adult
1 153006 143303 62202 256 10
2 31948 141376 64517 15 1
3 10064 191665 27548 2 1

Soccer
1 3896 806 11953 49 3
2 1505 1424 11046 3 3
3 1232 1385 12329 14 9

SP500
1 150 126 258 4 1
2 171 127 248 42 2
3 166 127 255 46 2

Table 4: Number and percentage of modifications required to retrieve the target CFD, for 3 different CFDs.

Dataset %Error #Error %M(1) #M(1) %M(2) #M(2) %M(3) #M(3)

Abalone
0.1 8 100% 8 50% 4 100% 8
1 83 10% 8 5% 4 14% 12
10 835 1% 8 1% 8 2% 18

Adult
0.1 97 20% 19 6% 6 30% 29
0.5 488 5% 24 2% 12 0.6% 3
1 976 2% 24 0.4% 4 5% 48

Soccer
0.1 200 9% 17 11% 22 1% 2
1 2000 0.3% 7 1% 22 0.1% 2
10 20000 0.2% 30 0.1% 20 0.1% 25

SP500
0.1 245 3% 7 3% 7 0.8% 2
0.5 1225 0.5% 7 0.5% 7 0.1% 2
1 2451 0.1% 3 0.1% 3 0.1% 3

found by manually cleaning 1% of the violations, then 99%
of the violations may be cleaned automatically. Moreover,
the number of attributes has a higher impact on the number
of required modifications than the number of tuples.

Comparison with Falcon. We next compare XPlode
and Falcon [21], for the case where the target CFD is a
constant CFD7 The experiment was done on the Soccer
dataset, using 3 constant CFDs. Only modifications that
relate to the consequent of the CFDs were considered, as
Falcon supports only these. Falcon was able to recover
each of the target CFDs using a single modification and 2
user questions, taking between 1 and 4 seconds. In compari-
son, XPlode recovers the target CFD using 3 to 5 modifica-
tions, with a runtime around 4 seconds each time. Since the
runtimes were obtained on different hardware, it is hard to
compare efficiency. Nevertheless, the experiment suggests
that XPlode, although not specialized only towards con-
stant CFDs, is comparable to Falcon.

We remark that this changes in the case of variable CFDs.
Indeed, in this case Falcon finds a constant CFD for ev-
ery constant pattern relating to the variable CFD. For each
such CFD, a single modification and some user questions
would be required. We consider again the Soccer dataset,
this time using 3 variable CFDs. XPlode can recover the
single target CFD using, on average, 12 modifications. How-
ever, in order to capture all the errors in these datasets using
constant CFDs, on average 55 constant CFDs are needed.
This implies that Falcon would require this amount of user
modifications, and outputs a large number of CFDs as well.
A similar scenario occurs when considering modifications on
attributes in the antecedent of CFDs, since Falcon assumes
that modifications pertain only to the consequent of a rule.

7Due to IP restrictions, we were unable to obtain the code
and perform an in-depth comparison. P. Papotti and E.
Veltri, co-authors of [21], kindly performed an experiment.
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Figure 1: Noise-robustness of XPlode.

Robustness to Noise. So far, we have run experiments
using only modifications that belong to a single CFD, and
as such, the returned CFD explains all the given modifi-
cations. However, when a user is manually cleaning data,
without knowing the target CFD, corrections may be made
in positions unrelated to the target CFD. We now verify
whether XPlode is robust to such “noise”.

We consider again a full repair, and add random modifica-
tions throughout the data, not connected to the target CFD.
In Figure 1, we report how many random modifications can
be added without distorting the output of XPlode, up to
50% of the total number of modifications, i.e., as many ran-
dom modifications as correct modifications. The results for
SP500 and Soccer, available in the online appendix [1], are
similar to Abalone.

The results show that our method is very robust to ran-
dom noise, especially as more modifications are considered.
On the Adult dataset, where we only consider constant CFDs,
noise seems to have no impact. This make sense: as variable
CFDs can capture a larger variety of errors, they are also
more likely to accidentally explain a random modification,
whereas constant CFDs are unable to connect the random
modifications to each other.
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Figure 2: Runtime performance of XPlode, com-
pared to post-processing and CTane.

Runtime Performance. Finally, we evaluate the run-
time performance of XPlode on full repairs. We compare
XPlode with two benchmarks: firstly, discovering all global
explanations and then computing all the scores, and sec-
ondly, the discovery of all (ε, δ)-CFDs using the CTane al-
gorithm. Figure 2 shows the runtimes (in seconds) averaged
over 3 independent runs with different CFDs. Algorithm
XPlode clearly outperforms post-processing in every case,
and is typically faster than a full CTane execution. Over-
all, results indicate that the error percentage has little im-
pact on runtimes. The only exception is the Adult dataset:
here, the runtime deteriorates with a higher percentage of
errors. We suspect that, for constant CFDs, checking for
global explanations accounts for more of the total runtime.
With more modifications, computing equivalence partitions
in Ddirty becomes harder, as the difference betweenDdirty and
Drep increases. Moreover, Adult shows a greater increase in
the number of global explanations as dirtiness increases.

7. RELATED WORK
Our work is situated in the area of constraint-based data

quality (see [14, 23] for surveys) and is based on CFDs [15].
Underlying XPlode is a constraint discovery process. By

contrast to traditional (C)FD discovery algorithms [8, 16,
22, 31, 29] (see also [31, 28, 14, 23] for overviews) that aim
to find all constraints that approximately hold on the data,
we aim to find those CFDs that explain a partial repair. Tra-
ditional methods do not consider our notions of explanation
and scoring function. To find explanations, these algorithms
have to be combined with a post-processing step, which is
expensive both in time and user interaction. In XPlode,
post-processing is avoided by carefully integrating the no-
tion of explanations in the discovery process. The resulting
on-demand algorithm is similar in spirit to the method pre-
sented in [20], where constants patterns for a fixed FD are
found that best describe the data. Our search strategy al-
lows for general loose anti-monotonic functions [6], such as
our scoring function, instead of the strictly anti-monotonic
functions of support and confidence used in [20]. In addition,
we explore the entire space of CFDs instead of requiring the

embedded FD to be fixed. We leverage equivalence parti-
tions [12] as commonly used in constraint discovery [22, 16].
None of the traditional methods consider user interaction,
which is essential for our method. Other discovery meth-
ods that leverage user interaction are [21, 35]: The Falcon
system [21], described in Section 6.1, is most closely related.
It finds constant CFDs based on a single modification and
afterwards relies on a “user oracle” to (in)validate the pro-
posed rules. The emphasis is on limiting calls to this oracle.
By contrast, we only use information stemming from multi-
ple modifications and have no need for a “black box” oracle.
Our method is capable of handling variable CFDs, providing
more flexibility and more compact explanations of modifi-
cations, since a variable CFD can represent a large number
of constant CFDs. In addition, our method is on-demand.
The UGuide system [35] aims to find a set of FDs such
that their violation set overlaps maximally with the tuples
holding true errors, whilst minimizing the number of viola-
tions that are not true errors. We aim to explain repairs
rather than errors. UGuide asks users to either (in)validate
FDs, or specify whether given cells or tuples are true errors
or not. It is a best effort method given a budget on the
number of user interactions. We treat both types of user
interaction uniformly through modifications: by incorporat-
ing information on how errors should be repaired, we can
zoom in directly to CFDs that are useful for repairing and
not only for error detection. By contrast, UGuide initially
uses all approximate FDs, which is costly and leads to users
invalidating an excessive amount of spurious dependencies.
Finally, we consider general CFDs rather than just FDs.
Other forms of user interaction in data cleaning are consid-
ered in works such as [37, 36, 39]. In these works, the set of
(valid) constraints (FDs, CFDs, or other) is assumed to be
available already. User involvement is used to determine the
right repairs relative to the constraints. Our work leverages
user interaction in an earlier phase, to find valid constraints
for repairing. Finally, we rely on users to make some initial
repairs, after which existing data repairing algorithms [5, 13,
17, 18, 24, 26] can be used. Our approach is complementary
to any of these repairing algorithms. In [7], a description
of errors by means of a small set of conjunctive queries is
discovered, without considering user interaction or repair-
ing. Our repair explanations could also be of use to update
constraints over evolving data [9, 4, 30].

8. CONCLUSION
We considered the problem of finding a CFD that best

explains a partial repair. Our on-demand algorithm, called
XPlode, shows great promise for finding such explanations.
Underlying the efficacy of the method is a scoring function
and its efficient approximation, that counts the number of
modifications explained. A search space traversal based on
loose anti-monotonic bounds on the scores, leads to an im-
provement in efficiency, compared to a post-processing ap-
proach to the problem. Experiments show high precision
in discovering the correct explanation, using few modifica-
tions. Future work includes the investigation of alternative
scoring functions, and extending XPlode towards discover-
ing multiple explanations. Furthermore, the general concept
of inferring constraints from a repair can be investigated in
the context of other constraint formalisms [34, 38, 19, 11].
Suggesting modifications based on explanations also seems
a natural extension of our framework.
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