
Intelligent Probing for Locality Sensitive Hashing:
Multi-Probe LSH and Beyond

Qin Lv
University of Colorado Boulder

qin.lv@colorado.edu

William Josephson
Solano Labs

wkj@morphisms.net

Zhe Wang
Datrium

zhewang@gmail.com

Moses Charikar
Stanford University

moses@cs.stanford.edu

Kai Li
Princeton University

li@cs.princeton.edu

ABSTRACT
The past decade has been marked by the (continued) ex-
plosion of diverse data content and the fast development of
intelligent data analytics techniques. One problem we iden-
tified in the mid-2000s was similarity search of feature-rich
data. The challenge here was achieving both high accuracy
and high efficiency in high-dimensional spaces. Locality sen-
sitive hashing (LSH), which uses certain random space par-
titions and hash table lookups to find approximate nearest
neighbors, was a promising approach with theoretical guar-
antees. But LSH alone was insufficient since a large number
of hash tables were required to achieve good search qual-
ity. Building on an idea of Panigrahy, our multi-probe LSH
method introduced the idea of intelligent probing. Given
a query object, we strategically probe its neighboring hash
buckets (in a query-dependent fashion) by calculating the
statistical probabilities of similar objects falling into each
bucket. Such intelligent probing can significantly reduce the
number of hash tables while achieving high quality. In this
paper, we revisit the problem motivation, the challenges, the
key design considerations of multi-probe LSH, as well as dis-
cuss recent developments in this space and some questions
for further research.

1. LOOKING BACK
In the late 1990s, digital data explosion was already oc-

curring across a broad range of application domains. In
addition to text documents, massive amounts of data with
diverse feature-rich content, such as images, audio, video,
and sensor data, were becoming widely available. The trend
motivated us to study similarity search for feature-rich data.
Since the features of a data object are often represented as a
high-dimensional feature vector, the basic problem for sim-
ilarity search is to find the (approximate) nearest neighbors
of a feature vector in a high-dimensional space.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

Studies had shown that traditional tree-based indexing
mechanisms did not work well for feature vectors with more
than tens of dimensions, due to the “curse of dimensionality”
and exponential growth of the search space. A few other
approaches were proposed for problems with low intrinsic
dimensionality. Still, there was no good solution for general
similarity search in high dimensions. The challenges lie in
the high dimensionality of the feature space (typically more
than a hundred dimensions) and massive scale (billions or
trillions of data objects).

Introduced by Indyk and Motwani in 1998, locality sensi-
tive hashing (LSH) [8] uses a family of locality sensitive hash
functions (i.e., certain random space partitions) to hash sim-
ilar objects into the same bucket of a hash table. With LSH,
nearby objects are more likely to be hashed to the same value
than objects that are further away. Typically, multiple LSH
functions are concatenated for each hash table to reduce
false positives, and multiple hash tables are needed to re-
duce false negatives. Although this basic LSH scheme had
shown some promising results for similarity search in high
dimensions, one major drawback was that a large number
of hash tables, usually on the order of tens or hundreds,
were needed to achieve good search quality. The issue was
that similar objects may not always fall into the same hash
buckets as the query object does, and many hash tables with
different sets of hash functions were needed to find that ex-
act match of all hash values. Hence the number of hash
tables needed to be very large, limiting the practicality of
LSH in real-world applications.

In 2006, Panigrahy proposed an entropy-based LSH scheme
and gave a theoretical analysis [13]. The idea was to ran-
domly perturb the query object q to generate multiple ob-
jects in its neighborhood, and use those perturbed objects as
extra query objects to identify more hash buckets to check
for q’s nearest neighbors. Intuitively, since the perturbed
objects are close to the query object, the buckets they are
hashed into may contain candidate objects that may also
be close to the query object q. Using the entropy-based
LSH scheme, multiple hash buckets can be checked in each
hash table, and can trade time for space, which increases
the query time but may increase the search quality (finding
more or closer neighbors) without increasing the number of
hash tables.

The idea of checking multiple hash buckets per table us-
ing randomly-perturbed objects was interesting, and was a
key motivation for our own work. However, the random

2021



perturbation process of entropy-based LSH was not very ef-
ficient. Some buckets (containing good nearest neighbors)
could be checked many times, while other buckets (relatively
unlikely to contain nearest neighbors) may also be checked,
thus incurring significant overhead. Furthermore, for both
theoretical analysis and practical use, the perturbation dis-
tance Rp (i.e., the distance between the nearest neighbor
p and query object q) is needed but often difficult to ob-
tain. Based on our own implementation and evaluation of
the entropy-based LSH scheme, it could reduce the number
of hash tables by a factor of 2 or 3, but increase the query
time by 30% – 210%, in our experiments.

Motivated by the potential and limitations of basic LSH
and entropy-based LSH, we investigated an intelligent prob-
ing technique for LSH-based indexing. The focus was on
“intelligent probing”, and we developed two important ideas
during our investigation.

• The first was direct and deterministic probing of the
hash buckets, as opposed to the random perturbation
of objects in entropy-based LSH. As such, all the hash
buckets we check are unique, and we can control the
specific order of buckets to check as needed. Further-
more, the buckets we check should be “neighboring”
buckets whose hash values are close to that of the query
object’s bucket.

• The second was query-dependent probing. Since we
have the raw feature vector of the query object, we
know not only the hash values and the bucket it is
hashed into, but also its exact position in the hash
space (e.g., distances to the left and right boundaries
of the hash slot). This allows us to determine the like-
lihood of the nearest neighbors being hashed to the left
or right side. This asymmetry between the informa-
tion available about the query and the indexed data is
also implicit in Panigrahy’s algorithm and analysis.

Our investigation led us to the design of multi-probe LSH [11],
an efficient similarity search method that strategically probes
a query objects neighboring hash buckets by calculating the
statistical probabilities of similar objects falling into each
bucket. By intelligently probing multiple buckets in each
hash table, based on their likelihood of containing the near-
est neighbors, multi-probe LSH can reduce the number of
hash tables by an order of magnitude while achieving high
search quality.

2. PROGRESS SINCE THEN

Adaptations
Since its original publication at VLDB 2007, multi-probe
LSH has been deployed in various systems to achieve a good
balance between search speed and good results. In [7], multi-
probe LSH was extended in the peer-to-peer Chord-style
overlay network to search for nearest neighbors. Bahmani et
al. [2] built a distributed search system using multi-probe as
the first layer of hashing, to achieve decreased network cost
while maintaining load balance between machines. Kalan-
tidis et al. [10] built multi-probe LSH index to speed up
search for clothing in an automatic product suggestion sys-
tem. Rublee et al. [15] deployed a real-world smartphone
application for object detection and patch-tracking on top of
multi-probe LSH index. Yu et al. [18] combined multi-probe

LSH with order statistics based LSH to build a scalable au-
dio content retrieval system. Fusco et al. [5] built a system
for on-the-fly compression, archiving and indexing of stream-
ing network traffic. Its on-the-fly LSH index was inspired by
multi-probe LSH. In an effort to index and search 100 million
images, Moise et al. [12] deployed a cluster with the help of
multi-probe LSH to make a scalable system. On the theory
side, Andoni et al. [1] showed that a practical LSH family
for angular distance called cross-polytope LSH achieves op-
timal parameters and also developed a multi-probe version
of this hash family. This is the basis for the FALCONN
similarity search library [14].

Data dependent improvement
Joly and Buisson [9] extended our multi-probe LSH method
by estimating the success probabilities of buckets in a data
dependent fashion. Additionally, they allow perturbations
of magnitude more than 1 in each coordinate of the hash
table address. Their method uses a prior on the data dis-
tribution estimated from a training set of queries (sampled
at random from the data set) and their explicitly computed
nearest neighbors. Exploiting this knowledge of the data
distribution allows better probability estimation for select-
ing more probable buckets and also to decide the number
of hash tables to achieve desired accuracy. They called this
method a posteriori multi-probe LSH.

Choosing parameters
Although LSH is a promising approach, in practice it is
not easy to use partly because its search quality is sensi-
tive to several parameters that are quite data dependent.
Dong et al. [4] looked into this problem to provide guid-
ance on how these parameters should be chosen, and how to
tune parameters for a given dataset. It presents a statisti-
cal performance model of multi-probe LSH which can accu-
rately predict the average search quality and latency given
a small sample dataset. It solves the problem where we
can automatically tune the parameter with different dataset
and growing dataset. Also it uses the model to devise an
adaptive LSH search algorithm to determine the probing pa-
rameter dynamically for each query. Such adaptive probing
method addresses the problem where the variance of search
performance can be extremely high even when the average
performance is tuned for optimal.

Stanley et al. [16] continued to work on this problem,
and suggested that the distance profile is a sufficient statis-
tic to optimize LSH. The algorithm only need to know two
probability distribution functions: the distances between the
query point and 1) its nearest neighbor or 2) any random
member of the data set. Given a desired performance level
(chance of finding the true nearest neighbor) and data set
size, the algorithm returns the LSH parameters that allow
an LSH index to meet the performance goal and have the
minimum computational cost.

3. LIMITATIONS AND OPEN QUESTIONS

Choosing parameters - theoretical analysis
While considerable effort has been expended on analyzing
locality sensitive hashing schemes, much of the effort has
been focused on analyzing classic LSH. What this amounts
to is analyzing the success probability of one probe into the

2022



hash table constructed by LSH. In order to analyze multi-
probe LSH, we need to analyze the probability of success
from probing multiple hash buckets of the hash table.

As mentioned before, our work was motivated by the al-
gorithm and analysis of Panigrahy [13]. His algorithm ran-
domly perturbs the query point and queries the bucket that
the perturbed query falls into, repeating this process multi-
ple times. In order to analyze this scheme, we need to bound
the number of queries needed to find a target point (for a
given failure probability). Panigrahy gave an elegant en-
tropy argument to bound the number of such queries needed.
The key quantity of interest is the entropy of the hash value
of a randomly perturbed point p, given the query q and hash
function h. If the entropy is high, a lot of probing is needed
to find the target point and vice versa.

Our multi-probe LSH scheme directly probes hash buckets
by computing/estimating the probabilities that the target
falls into them and picking the buckets in decreasing order
of these estimates. If we computed these probabilities ex-
actly, for any fixed failure probability, the number of buckets
probed by our scheme is upper bounded by the number of
buckets probed by Panigrahy’s algorithm. Consequently, his
entropy based analysis gives an upper bound on the number
of queries needed by multi-probe LSH. But this bound could
be overly pessimistic.

An interesting open question here is to give a tight bound
on the query complexity of multi-probe LSH for various lo-
cality sensitive hash families. A closely related question is
the interaction of the number of hash tables with the success
probability of the scheme: If one has additional space avail-
able, is it better to double the number of hash tables and
probe only half as many hash buckets in each table? The
answer is not obvious a priori: additional probing in an ex-
isting table has the advantage that it is guaranteed to return
data items that were not seen before, while probing a new
hash table could generate duplicates of items already seen.
Both these questions we raise can be answered by a tighter
understanding of how the success probability of multi-probe
LSH (in a single hash table) increases as a function of the
number of buckets probed. This would be very valuable for
choosing parameters in using multi-probe LSH in practice,
but is also an interesting theoretical question that has not
been investigated.

Distance function, learning to hash
Depending on the specific distance function used for the fea-
ture vectors, different families of LSH functions may be used
for similarity search. Our original multi-probe LSH paper
focused on Euclidean distance and used the Gaussian dis-
tribution (2-stable) as the p-stable distribution. The multi-
probe concept can also be applied to other kinds of LSH
works with different distance measures. For example, An-
doni et al. [1] investigated the LSH family for the angular
distance, evaluated the multi-probe version of the algorithm,
and showed 10× faster performance than hyperplane LSH.
Gorisse et al. [6] presented a new LSH scheme adapted to
Chi-squared distance, and its extension to multi-probe LSH
which reduced the memory usage while preserving accuracy.

Classic LSH algorithms are data independent since they
use random space partitions to identify nearby objects in
high-dimensional spaces. More recently, researchers have in-
vestigated data-dependent hashing or learning to hash tech-
niques [1, 17]. The general idea is to construct dynamic hash

functions based on the specific distributions/characteristics
of the dataset. Many different methods have been developed
and good results have been reported. This line of research
is somewhat orthogonal to our multi-probe LSH work, and
interested readers are encouraged to read the survey pa-
per above and other related papers. We note here that the
multi-probe concept may still be applied in such settings, as
demonstrated in [1].

Large candidate set size
One limitation of the LSH method is its relatively large can-
didate set. This is because each probed bucket contains
many other data items that are not the k-nearest neigh-
bors. In general, the higher the accuracy we would like to
achieve, the larger the candidate set size. In [4], Dong et al.
pointed out that up to a certain point, probing a large num-
ber of buckets only increases its candidate set size without
improving its accuracy. To achieve accuracy of about 95%,
the candidate set size can be as large as 5-10% of the entire
dataset. Since the LSH approach requires linearly scanning
the entire candidate set, a large candidate set can be time
consuming.

To overcome this limitation and the limitation that LSH
works only with certain similarity measures or distance func-
tions, another approach to search for k-nearest neighbors
in the high-dimensional space is to construct a k-nearest
neighbor graph that allows generic similarity measures. An
example is the nearest-neighbor decent (NN-decent) algo-
rithm [3], an efficient approximation algorithm based on the
principle that a neighbor of a neighbor is likely to be a neigh-
bor. This approach can efficiently construct an approximate
k-nearest neighbor graph and can substantially reduce the
number of data items to be examined, comparing with the
LSH approach. However, it has the restriction that one can
only query the nearest neighbors of data items in the graph.

4. REFERENCES
[1] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn,

and L. Schmidt. Practical and optimal lsh for angular
distance. In NIPS ’2015: Proceedings of the 28th
International Conference on Neural Information
Processing Systems, pages 1225–1233, 2015.

[2] B. Bahmani, A. Goel, and R. Shinde. Efficient
distributed locality sensitive hashing. In CIKM ’2012:
Proceedings of the 21st ACM international conference
on Information and knowledge management, pages
2174–2178. ACM, 2012.

[3] W. Dong, C. Moses, and K. Li. Efficient k-nearest
neighbor graph construction for generic similarity
measures. In WWW ’2011: Proceedings of the 20th
international conference on World wide web, pages
577–586. ACM, 2011.

[4] W. Dong, Z. Wang, W. Josephson, M. Charikar, and
K. Li. Modeling LSH for performance tuning. In
CIKM ’2008: Proceedings of the 17th ACM conference
on Information and knowledge management, pages
669–678. ACM, 2008.

[5] F. Fusco, M. P. Stoecklin, and M. Vlachos. Net-fli:
on-the-fly compression, archiving and indexing of
streaming network traffic. Proceedings of the VLDB
Endowment, 3(1-2):1382–1393, 2010.

[6] D. Gorisse, M. Cord, and F. Precioso.
Locality-sensitive hashing for Chi2 distance. IEEE

2023



Transactions on pattern analysis and machine
intelligence, 34(2):402–409, 2012.

[7] P. Haghani, S. Michel, P. Cudré-Mauroux, and
K. Aberer. LSH at large-distributed KNN search in
high dimensions. In WebDB, 2008.

[8] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In STOC ’1998: Proceedings of the
30th ACM Symposium on Theory of Computing, pages
604–613. ACM, 1998.

[9] A. Joly and O. Buisson. A posteriori multi-probe
locality sensitive hashing. In Proceedings of the 16th
ACM international conference on Multimedia, pages
209–218. ACM, 2008.

[10] Y. Kalantidis, L. Kennedy, and L.-J. Li. Getting the
look: clothing recognition and segmentation for
automatic product suggestions in everyday photos. In
Proceedings of the 3rd ACM conference on
International conference on multimedia retrieval,
pages 105–112. ACM, 2013.

[11] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe LSH: Efficient indexing for
high-dimensional similarity search. In VLDB ’2007:
Proceedings of the 33rd international conference on
Very large data bases, pages 950–961, Sep. 2007.

[12] D. Moise, D. Shestakov, G. Gudmundsson, and
L. Amsaleg. Indexing and searching 100m images with
map-reduce. In Proceedings of the 3rd ACM

International conference on multimedia retrieval,
pages 17–24. ACM, 2013.

[13] R. Panigrahy. Entropy based nearest neighbor search
in high dimensions. In SODA ’2006: Proceedings of
the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pages 1186–1195. Society for
Industrial and Applied Mathematics, 2006.

[14] I. Razenshteyn and L. Schmidt. FALCONN (FAst
Lookups of Cosine and Other Nearest Neighbors)
library. https://falconn-lib.org.

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski.
Orb: An efficient alternative to sift or surf. In ICCV
’2011: Proceedings of the 2011 IEEE international
conference on Computer vision, pages 2564–2571.
IEEE, 2011.

[16] M. Slaney, Y. Lifshits, and J. He. Optimal parameters
for locality-sensitive hashing. Proceedings of the IEEE,
100(9):2604–2623, 2012.

[17] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen.
A survey on learning to hash. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(9),
2017.

[18] Y. Yu, M. Crucianu, V. Oria, and E. Damiani.
Combining multi-probe histogram and order-statistics
based lsh for scalable audio content retrieval. In
Proceedings of the 18th ACM international conference
on Multimedia, pages 381–390. ACM, 2010.

2024


