
QUIS: In-Situ Heterogeneous Data Source Querying

Javad Chamanara� Birgitta König-Ries� H. V. Jagadish*

�Heinz-Nixdorf-Chair for Distributed Information Systems *Computer Science and Engineering
Friedrich Schiller University of Jena University of Michigan

Jena, TH, Germany Ann Arbor, MI, USA
{first.last}@uni-jena.de {jag}@umich.edu

ABSTRACT
Existing data integration frameworks are poorly suited for
the special requirements of scientists. To answer a spe-
ci�c research question, often, excerpts of data from di�erent
sources need to be integrated. The relevant parts and the set
of underlying sources may di�er from query to query. The
analyses also oftentimes involve frequently changing data
and exploratory querying. Additionally, The data sources
not only store data in di�erent formats, but also provide
inconsistent data access functionality. The classic Extract-
Transform-Load (ETL) approach seems too complex and
time-consuming and does not �t well with interest and ex-
pertise of the scientists.
With QUIS (QUery In-Situ), we provide a solution for this

problem. QUIS is an open source heterogeneous in-situ data
querying system. It utilizes a federated query virtualization
approach that is built upon plugged-in adapters. QUIS takes
a user query and transforms appropriate portions of it into
the corresponding computation model on individual data
sources and executes it. It complements the segments of the
query that the target data sources can not execute. Hence, it
guarantees full syntax and semantic support for its language
on all data sources. QUIS's in-situ querying facility almost
eliminates the time to prepare the data while maintaining a
competitive performance and steady scalability.
The present demonstration illustrates interesting features

of the system: virtual schemas, heterogeneous joins, and vi-
sual query results. We provide a realistic data processing
scenario to examine the system's features. Users can inter-
act with QUIS using its desktop workbench, command line
interface, or from any R client including RStudio Server.

1. INTRODUCTION
Data heterogeneity is increasing in all aspects, faster than

ever [1]. Data is stored in di�erent representations, with var-
ious levels of schema, and changes at di�erent paces. Addi-
tionally, software systems to manage and process such data
are incompatible, incomplete, and diverse.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

Data scientists often have to integrate data from heteroge-
neous sources [6] to conduct an end-to-end process to obtain
insights. They usually do not need the whole set of avail-
able data, but their required portion of data changes over
the course of their research. This exploratory nature pre-
vents the scientists from deciding on the data schema, tool
set, and pipeline at early stages of their research.
The two classical approaches to data integration, i.e., ma-

terialized and virtual integration [5], do not solve scienti�c
data management and processing problems. Both aim to
provide somewhat complete integration of information. The
underlying assumption is that it is worthwhile to invest sig-
ni�cant e�ort in preparing a long-term information system
that is able to answer a wide range of queries. Further
speci�cs that make materialized integration di�cult is the
volatile nature of the research data and the often large data
volume or rigid access rights that prevent transferring the
data. Virtual integration is unsuitable because of the typical
lack of optimization for non-relational sources.
In contrast, in our scenario, scientists often have a narrow

set of queries they want to ask and tend to do just enough
integration according to their research questions only.
The fundamental di�culty is that the data is heteroge-

neous not only in syntax and structure, but also in the way it
is accessed and queried. While certain data may be accessed
by declarative queries, others are processed by MapReduce
programs utilizing a procedural computation model [4]. Fur-
thermore, many sensor-generated datasets are in CSV �les
that lack basic data management features. We recognize
this as data access heterogeneity.
Data access heterogeneity covers varieties in computa-

tional models (e.g., procedural, declarative), querying ca-
pabilities, syntax and semantics of the capabilities provided
by di�erent vendors or systems, data types, and presenta-
tion formats of the query results.
One critical aspect of data access heterogeneity is the het-

erogeneous capabilities of data sources. Some data sources,
e.g., relational, graph, and arrays, have their own set of
management systems. Others fall under the so called weak
data sources [7], CSV and spreadsheets for example, and do
not have a well-established management system. Also, not
all management systems support the capabilities requested
by users' queries, e.g., the MapReduce programming model
does not support joins and sorting [8].
We need tools to reduce the total cost of ownership of

the full data life-cycle, from raw data to insight. And we
need to democratize them; by developing open source, inter-
operable, and easy to use systems.

1877



We have developed QUIS (QUery In-Situ) to overcome the
data access heterogeneity problem. QUIS is an agile query
system equipped with a uni�ed query language and a feder-
ated execution engine that provides advanced features such
as virtual schemas, heterogeneous joins, polymorphic result
set presentation, and in-situ data querying. QUIS trans-
forms a given input query written in its language to a (set
of) computation models that are executed on the designated
data sources. QUIS guarantees that input queries are always
fully satis�ed. Therefore, if the target data sources do not
ful�ll all the query requirements, QUIS detects the lacking
features and complements them transparently.
Our experiments have proven that i) QUIS dramatically

reduces the time-to-�rst-query, ii) its rule-based query op-
timizer remarkably boosts performance, and iii) the overall
performance scales linearly as the datasets' size grow.
In the rest of this paper, we give an overview of the sys-

tem's main architectural components in Section 2 and then
describe the proposed demonstration in Section 3.

2. SYSTEM ARCHITECTURE
QUIS consists of three main components; a query lan-

guage (Section 2.1), a set of adapters (Section 2.2), and
a query execution engine (Section 2.3). Users write their
queries and applications using the query language and sub-
mit them to the execution engine. The engine selects the
best adapter to transform and execute each of the queries.
It may optimize the queries before shipping them to the
adapters (Section 2.4). Also, it may rewrite the input queries
to complement any lacking features of the chosen adapters.
Query execution is an orchestration between these two end-
points; the (abstract) query language and the (concrete) ca-
pabilities of underlying sources accessible via adapters.

2.1 Query Language
Our query language is an extension to the SQL core. Its

two main elements are declarations and statements. State-
ments are the units of execution. Declarations are non-
executable de�nitions or con�guration items used by state-
ments. There are three types of declarations; connections,
bindings, and perspectives.
A connection encapsulates the information needed to con-

nect to the data source. For example, a server endpoint and
credentials are required to connect to an RDBMS. QUIS
supports querying speci�c versions of data, e.g., to support
reproducibility [2]. A binding is used to associate queries to
a speci�c version of the target data. It also restricts data
reachable via the bound connection.
Perspectives allow users to explicitly specify the schema

of the query results in term of attributes. Attributes are
expressed as transformations of the physical data items of
the sources. Perspectives di�er from RDBMS views as they
formulate projection and transformation only, but not se-
lection. Perspectives are not materialized. In contrast, they
support inheritance and overriding.
QUIS retrieves and manipulates data via statements, which

are based on tuple relational calculus and o�er query oper-
ators [3]. QUIS supports polymorphic presentation, in that
query results can be delivered in many ways, e.g., tabular,
visual, or serialized. It also has a virtual type system that
manages type matching, inference, and consolidation.

Listing 1: QUIS query to extract, transform, aggregate, and
draw a mean daily temperature chart from a CSV dataset.

1 CONNECTION cnn1 ADAPTER=CSV SOURCE_URI=
"data/" PARAMETERS=delimiter:comma ,
fileExtension:csv , firstRowIsHeader:
true , externalHeader:true

2 BIND b1 CONNECTION=cnn1 SCOPE=fso2014h
VERSION=Latest

3 SELECT FROM b1.0
USING avg(temperatureC) AS meanTemp ,
dt.dayOfYear(dateUTC) as dayIndex
INTO PLOT fsoPlot hAx:dayIndex vAx:
meanTemp plotType:line hLabel:"Day of
Year" vLabel:"Mean Temperature (C)"
plotLabel:"Daily Mean Temperature at
SFO in 2014"
ORDER BY dayIndex

An example of a QUIS script is presented in Listing 1. It
declares a connection to a CSV �le (line 1) and binds it to
the latest version of the data (line 2). The query (line 3)
retrieves data and computes the average of temperature im-
plicitly grouped by the day of year. The result set is ordered
and visualized as a line chart as shown in Figure 1.

2.2 Adapters
An adapter is a data-source-speci�c plug-in that plays two

roles. First, it translates a given input query to a computa-
tion model native to the underlying data source(s). Second,
it executes the computation model on the designated data
source(s) to build a result set. The computation model is
either a set of queries in the data sources' languages or a
sequence of operations. For example, an RDBMS adapter
translates the input query to a vendor-speci�c SQL, while
the CSV adapter generates a set of functions to read, parse,
materialize, and �lter the records.
QUIS allows adapters with partial language support. But

at minimum, operators to retrieve tuples from and insert
tuples to the underlying data sources must be provided.
Adapters may wrap dialects of similar data sources, e.g.,
PostgreSQL and MySQL.
Currently, CSV, MS Excel, RDBMSs, and in-memory

adapters are available. One to operate on big data using
Hadoop is under development. Developing a full-�edged
adapter takes up to two months for an experienced Java
programmer.

2.3 Query Execution Engine
QUIS's query execution engine orchestrates all the ac-

tivities needed to compute and assemble the result set of
a submitted query. Upon submission of a query, the en-
gine parses, validates, builds its syntax tree. It selects an
adapter to transform and execute the query, more adapters
are chosen if query accesses heterogeneous data sources. The
query engine then triggers its optimizer to apply all the rel-
evant optimization rules. Afterwards, the optimized query
is shipped to the chosen adapters for transformation. The
query engine compiles the transformations on-the-�y to a
set of executable jobs, which are then dispatched for execu-
tion. Finally, the query's result set is presented to the client
in the requested form, e.g., tabular, visual, or serialized.

1878



Although the adapters can expose partial support for the
language, the query engine promises full execution. To keep
this promise it needs to perform two important tasks; se-
lecting the best available adapter and complementing the
features that the selected adapter does not provide.
Assuming R is the set of features required by an input

query q and C is the set of features exposed by adapter
a, then a supports Q = {R ∩ C} only. The reminder of
the features P = {R \ C} are handled by a complementing
algorithm. The algorithm builds two queries to ful�ll q.
Query qa to execute Q on a and query qf to execute P
on a special fallback adapter f . At runtime, the engine
executes qa and passes its result to qf . The result set of qf
is equivalent to the result of q.
QUIS computes the overall execution cost of all the avail-

able adapters and selects the one with minimum cost. The
overall cost is the summation of the cost of executing Q on
the target adapter and P on the fallback. Each adapter an-
nounces the cost of executing each feature it supports. Cur-
rently each adapter developer assigns the costs statically.

2.4 Query Optimization
QUIS has an integrated rule-based optimizer that bene-

�ts from well-known and custom designed optimization tech-
niques. The well-known techniques are adopted to hetero-
geneous and in-situ environments. For example, its selective
materialization rule determines which data items of the tar-
get data source are actually used by the query and ensures
that only those ones are loaded.
Its push ahead selection rule changes the query plan to

test the selection's predicate �rst and materialize the record
only if the test passes. The query engine applies this rule
even on non-relational data sources.
We have implemented two special optimization rules that

although experimental, have shown to be e�ective. Run-
ning Aggregate Computation calculates an aggregate func-
tion agg(V ) on a set of values: V = {v1..vn+1} using the
running method aggn+1 = f(aggn, vn+1). For example,
averagen+1 = (sumn + valuen+1)/(n + 1). It only needs
to keep a small state object in memory, hence O(1) space.
Weighted Short-Circuit Evaluation assigns a cost factor

to functions and operators and builds a weighted evaluation
tree for logical expressions. It then evaluates cheaper paths
earlier and stops as soon as the expression result is deter-
mined. In a predicate p ⇒ (f1∧f2) 3 cost(f1) = 5cost(f2),
f2 is evaluated �rst. Conventional evaluation would evalu-
ate f1 �rst.
In essence, the system architecture provides a streamlined

query virtualization that encourages raw and ad-hoc data
processing, reduces the need to utilize multiple languages
and tools to deal with data, and promotes query portability.

3. DEMONSTRATION
QUIS is an open source software capable of querying lo-

cal, distributed, and diverse data that are managed by sys-
tems with access heterogeneity. It best �ts in scenarios such
as ad-hoc and agile querying, early insight, data, tool and
work�ow integration. For the present demonstration we fo-
cus on these features: (1) perspectives, (2) heterogeneous
joins, and (3) query result visualization. Virtual schemas
isolate the processing part from the data formatting, con-
version, and type system parts. Heterogeneous joins are sim-
ple ways to retrieve data from various sources and combine

them transparently without needing the data to be loaded to
an intermediate system. Query result visualization provides
the user with early insight into data. We have prepared the
required tools and data for the audience to participate in
the demonstration and afterwards.

3.1 Demonstration Scenario
In order to demonstrate the features of the system, we

write the required queries to perform the following task:
Retrieve airport names, location, and average temperature
per airport over the full timespan of the weather records.
Then visually check if there is a relationship between the
airports' elevation and the average temperature. Select the
airport with highest average.
The task requires various QUIS capabilities, e.g., �ltering,

joining, aggregation, visualization, and in-situ querying.

3.2 Data
We have a heterogeneous dataset that consists of three dif-

ferent data sources. (1) Meteorological data: a remote Post-
greSQL database table of 5 years of hourly weather records
collected from the stations at around 200 di�erent airport
meteorological stations. The table contains approximately
10M records. Each record contains temperature (◦C), hu-
midity (%), wind speed (m/s), timestamp, and station id.
(2) Airport information: a CSV �le containing the list of air-
ports. Each record contains id, code, and name of an airport.
(3) Airport location: an MS Excel �le that its �rst sheet
contains the geographical location of the airports. Records
consist of station id, latitude(◦), longitude(◦), and elevation
(m). The exact schemas, connection information, and �le
locations will be provided at the demo session.

3.3 Tools
We have developed three clients to interact with QUIS1.
WRC : (Workbench Rich Client) is QUIS's built-in GUI

based client. Its main screen is shown in Figure 1.
InWRC queries are organized in �les, and �les in projects.

Projects are loaded to and managed in the project explorer
(pane A). The query editor (pane B) is a multi-tab area
that allows multiple query authoring and parallel execution.
Each query editor has its own result viewer (pane C), where
each query result is shown individually. An execution sum-
mary is also presented. Query results can be visualized as
single or multi-series bar, line, scatter, or pie charts. An
exemplary line chart that illustrates the output of Listing 1
is shown as an overlay on top-right corner of Figure 1.
CLI : (Command Line Interface) is a terminal based client

for QUIS that accepts queries in �les and persists the results
in �les as well. It can be integrated into the host operating
systems' shell scripting as well as other tools and work�ow
management systems. It is possible to trigger CLI with a
customized JVM con�guration, e.g., to allocate heap mem-
ory in advance for operating on large datasets.
RQUIS : is an R package that o�ers the full function-

ality of QUIS to R users. Users can write queries inline
with R or in separated .xqt �les. The query results and
their schema can be obtained as R data frames by calling
quis.getV ariable() and quis.getV ariableSchema(), respec-
tively. Figure 2 shows an R script that utilizes RQUIS and
ggplot2 packages to retrieve and visualize data, respectively.

1http://fusion.cs.uni-jena.de/projects/quis/

1879

http://fusion.cs.uni-jena.de/projects/quis/


A

B

C

Figure 1: The three main panes of the Workbench Rich Client. A: Project Explorer. B: Query Editor. C: Result Viewer.
The overlay chart depicts the visual representation of a query result.

Figure 2: R-QUIS package loaded and used from RStudio.

It has been executed on an RStudio server on a docker con-
tainer on the cloud.
In summary, RQUIS provides uni�ed data querying syn-

tax for R users, eliminates the need to load the data, and
performs all the query operators directly on the raw data.

Acknowledgments
This work was supported by DFG (German Research Foun-
dation) in the BExIS++ project.

4. REFERENCES
[1] D. Abadi et al. The beckman report on database

research. Commun. ACM, 2016.

[2] C. L. Borgman. Research data: Who will share what,
with whom, when, and why? China-North America
Library Conference, 2010.

[3] E. F. Codd. A relational model of data for large shared
data banks. Comm. of the ACM, 13(6):377�387, 1970.

[4] J. Dean and S. Ghemawat. MapReduce: simpli�ed data
processing on large clusters. ACM, 2008.

[5] A. Doan, A. Halevy, and Z. Ives. Principles of data
integration. Elsevier, 2012.

[6] B. Ludäscher et al. Managing scienti�c data: From
data integration to scienti�c work�ows. Geological
Society of America Special Papers, 2006.

[7] A. Tomasic, L. Raschid, and P. Valduriez. Scaling
access to heterogeneous data sources with DISCO.
IEEE Trans. on Knowledge and Data Engg., 1998.

[8] J. Yin, Y. Liao, M. Baldi, L. Gao, and A. Nucci.
E�cient Analytics on Ordered Datasets Using
MapReduce. 2013.

1880


	Introduction
	System Architecture
	Query Language
	Adapters
	Query Execution Engine
	Query Optimization

	Demonstration
	Demonstration Scenario
	Data
	Tools

	References

