
Matrix Profile IV: Using Weakly Labeled Time Series to
Predict Outcomes

Chin-Chia Michael Yeh

UC Riverside

myeh003@ucr.edu

Nickolas Kavantzas

Oracle Corporation

nickolas.kavantzas@oracle.com

Eamonn Keogh

UC Riverside

eamonn@cs.ucr.edu

ABSTRACT
In academic settings over the last decade, there has been significant
progress in time series classification. However, much of this work
makes assumptions that are simply unrealistic for deployed
industrial applications. Examples of these unrealistic assumptions
include the following: assuming that data subsequences have a
single fixed-length, are precisely extracted from the data, and are
correctly labeled according to their membership in a set of equal-
size classes. In real-world industrial settings, these patterns can be
of different lengths, the class annotations may only belong to a
general region of the data, may contain errors, and finally, the class
distribution is typically highly skewed. Can we learn from such
weakly labeled data? In this work, we introduce SDTS, a scalable
algorithm that can learn in such challenging settings. We
demonstrate the utility of our ideas by learning from diverse
datasets with millions of datapoints. As we shall demonstrate, our
domain-agnostic parameter-free algorithm can be competitive with
domain-specific algorithms used in neuroscience and entomology,
even when those algorithms have been tuned by domain experts to
incorporate domain knowledge.

1. INTRODUCTION
Much of the considerable progress in time series classification in
recent years has ignored many of the pragmatic issues facing
practitioners. To make progress, the community has typically
manually contrived data to fit into the “flat file” format used in the
machine learning community (i.e. ARFF format) [32]. The ready
availability of such resources, including the UCR Time Series
Archive [1] and the more general UCI Archive [13], has been a
boon to researchers; however, it has isolated the academic
community from the intricacies of time series classification as it
presents itself in many industrial settings. To help the reader
appreciate how the task-at-hand typically manifests itself in many
industrial and medical settings, consider the two-dimensional time
series shown in Figure 1. We will define this “learning from weakly
labeled data” problem more formally in Section 3.

Figure 1: A two-dimensional time series. (top) A real-valued
fNIRS time series from a patient. (bottom) A Boolean time series
representing the detection of movement by the patient.

One dimension is a real-valued, functional Near-Infrared
Spectroscopy (fNIRS) time series, and the other is a Boolean time
series, which can be viewed as an “annotation” to the former. In a
more general context, a ‘1’ in this time series may represent a rare
desirable or undesirable state. Here, it represents an undesirable
patient movement that introduces artifacts into the recordings [26].

The weakly labeled time series learning task-at-hand reduces to the
following:

Suppose that we are given such training data ahead of time, but
in the future, the Boolean time series will become unavailable
(perhaps for some technical or privacy issue). Can we
reconstruct the Boolean time series given just the real-valued
signal?

In some domains, this task can be trivial. For example, suppose the
real-valued time series is Patient Temperature (PT), and
the Boolean time series is HasFever (HF). Then a simple
threshold rule, If PT > 100.4° F then HF ←TRUE, would work, and
we could robustly learn this rule even from a small dataset.

However, note that no such threshold-based rule would work for
the example in Figure 1, where the height of the real-valued time
series is unrelated to the Boolean value. Nevertheless, this toy
problem does seem solvable based on alterative features. For
example, the local variance of the time series seems to be higher at
the relevant locations. However, in many datasets the variance,
and/or other statistical features are also a poor indicator of the
Boolean variable. In this work, we proposed to use shape features.
As the zoom-in of the relevant sections demonstrates, shown in
Figure 2, the local shape features may offer clues to the Boolean
class labels.

4,000 8,0001

fNIRSData

Acceleration Detected 1
0

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

1802

Figure 2: A zoom-in of where Figure 1 indicated the positive
class for the Boolean time series (red). The approximately
repeated shapes in the fNIRS time series (highlighted in yellow)
are suggestive of a mechanism to solve the task-at-hand.

Similar problems where both time series are Boolean (or
categorical) have been addressed in the literature [5]; however, the
real-valued/Boolean task-at-hand here is significantly more
difficult for the following reasons [25]:

 Noisy Labels: The Boolean annotation may be noisy. That is to
say, it may have some false positives and/or false negatives. In
our running example, an electrical spike in the recording device
may give use an Acceleration-Detected = TRUE even
if there was no actual movement by the patient.

 Label Slop: As hinted at in Figure 2, the Boolean labels may
only be approximately aligned with the real-value patterns. This
problem is common in manufacturing. It may be that the
Boolean time series is some measure of quality
(acceptable/unacceptable) that can only be measured after some
time lag, for example by a once-a-shift stoichiometry test [9].
Therefore, a failed test can only be loosely associated with the
entire last eight-hour period.

 Class Skew: In our running example, the Acceleration-
Detected variable was TRUE about a quarter of the time.
However, more generally, the minority Boolean class may be
vanishingly rare. Again, this is typically true by definition. In
medicine and industry, we often want to learn to detect events
that we hope are vanishingly rare, such as epileptic fits or
catastrophic overpressurization [12]. Thus, we expect that for a
huge fraction of the time, a classifier will report “class
unknown.”

 Scale: We would like to (indeed, because of class skew and the
rarity of targeted events, need to), be able to learn from very
large datasets, with at least tens of millions of data points.

 Multi-Scale Polymorphic Patterns: Most research assumes
that time series patterns are of fixed length [1]. However, there
is no reason to expect this to be true in real world applications.
For example, suppose the Boolean label TRUE denotes an
unacceptable yield quality in a chemical process. This might
have been caused by a flow-rate that is increasing too
quickly, is oscillating as it increases, or is increasing in discrete
steps due to a sticky valve etc. [22]. Not only do these single
class root-cause patterns look different (they are polymorphic),
they can be of very different lengths.

As the reader, will now appreciate, the data in the UCR and UCI
archives are a poor proxy for learning from weakly labeled data on
all the points above. While existing research on time classification
tells us much about appropriate distance measures [1], the
importance of data normalization etc., to the best of our knowledge,
there is currently no system that tackle the challenges above.

1 One of the current authors created or edited about one third of the datasets

in the archive, and thus has some insights into this question. There are a
handful of datasets that are polymorphic. For example, for Gun-Point,
both classes are performed by two actors of very different heights and
holstering styles. However, we believe that at least 90% of the datasets
are not polymorphic.

We note that beyond high classification accuracy, our solution to
this problem also has a very desirable side-effect. The classification
dictionaries we learn can (at least in principle) sometimes tell us
something unexpected about the data/domain. For example, that the
Asian citrus psyllid insect has two modes of eating (Section 5.2)
and humans react more strongly to images of faces than to images
of houses (Section 5.3). We suspect this secondary use of our
algorithm may actually be more important in many domains.

The rest of this paper is organized as follows. In Section 2 we
discuss related work. Section 3 introduces the necessary definitions
and notations. We introduce our algorithm, SDTS (Scalable
Dictionary learning for Time Series) in Section 4 and provide a
rigorous empirical evaluation in Section 5. Finally, in Section 6, we
discuss limitations of our work, and offer directions for future
work.

2. BACKGROUND AND RELATED WORK
The general literature on time series classification is vast; we refer
the reader to [29] and the references therein. In the last decade, the
majority of such research efforts consider only data from the UCR
archive [1]. While this diverse set of datasets has been a useful
resource to compare distance measures [29] and classification
algorithms [1], it tends to mask the practical issues of real-world
deployments. The format of the UCR Archive is the antitheses of
our assumptions, which are enumerated in the last section. In all
eighty-five datasets, the ground-truth labels are all correct, there is
no label slop, the classes are highly balanced, and the sizes are
relatively small (i.e., the training sets have an average of just 454
exemplars). It is unclear if the datasets are polymorphic1, but each
dataset only has patterns of a single fixed length.

The most limiting assumption of the literature is that the universe
consists of K well defined classes, and everything belongs to one
such class. However, as our assumptions presage, we assume the
universe consists of K-1 well defined classes, but there is an other
class that is ill-defined and unstructured, and moreover, the vast
majority of objects are belong to the class other. As a result of
these mismatched assumptions, to the best of our knowledge, there
is no technique in the literature [1][29] we can apply to this
problem.

There are a handful of research efforts that have noted the label slop
problem in a slightly different context. The first work that
specifically addresses the problem is [23]. They have cast the
problem to the multi-instance learning framework by treating
consecutive data points with uniform labels as bags. Instances are
generated by first applying a sliding window within each bag, then
conventional time series features are extracted within each sliding
window. They use a multi-instance support vector machine to learn
the correspondence between instances and labels. Recently, Guan
et al. [7] has proposed a multi-instance learning graphical model
based on Auto-Regressive Hidden Markov Model (ARHMM),
which addresses the same problem. They improve upon [23] by
explicitly modeling the temporal dynamics of time series using
ARHMM.

1803

There is a large body of work on prognostics and precursor search
[10], some of which have goals that are similar to ours (see also
Section 5.5). However, virtually all such work is highly domain
specific. For example, [10] only considers a particular type of
aviation evasive maneuvers, and [3] only investigates a single type
of earthquake. Likewise, there is a vast body of work devoted just
to the case when the time series comes from rotating machinery.
The ability to inform/constrain an algorithm with first-principle
models from aerodynamics, geology, or dynamics is clearly useful.
However, it is contrary to our desire to have a parameter-free,
domain-agnostic exploratory tool, that can work “out-of-the-box.”

The core subroutine of our algorithm is subsequence similarity
search [20], which we need to perform perhaps millions of times,
in a (main memory) dataset that may also be millions of data points
in length. This single fact may explain why we are the first to
develop our rather straightforward algorithm. Until recently, the
state-of-the-art for the similarity search task was the classic sliding-
window similarity search, which must extract every subsequence,
z-normalize it, then compute the distance [20]. While this can be
accelerated in several ways (omitting the square root step of
Euclidean distance, early abandoning etc. [20]), it is still 𝑂(𝑛𝑚),
with 𝑛 the query length and 𝑚 the dataset length. Note that it
generally cannot be accelerated by caching the z-normalize
subsequences, as this increases the memory footprint by a factor of
𝑛, and 𝑛 may be in the thousands.

The MASS algorithm recently introduced by Mueen and colleagues
has reduced the time needed for subsequence similarity search to
𝑂(𝑛𝑙𝑜𝑔𝑛) [14]. Moreover, here the big O notation masks an at-
least one order of magnitude additional difference. Unlike classic
similarity search, the MASS algorithm has an extremely low
constant factor. Moreover, it exploits FFT computation, which is
the typically the most optimized algorithm in any software platform
and is often accelerated by co-processors or other hardware
optimizations. The practical implication of this is difficult to
overstate. For example, in Section 5.3 we learn a model in 41
minutes, but this would have taken us at least many hours, perhaps
days, if the state-of-the-art that that existed prior to MASS was used
instead.

3. DEFINITIONS AND NOTATION
We begin by defining the data type of interest, time series:

Definition 1: A time series 𝑇 ∈ ℝ is a sequence of real-valued
numbers 𝑡 ∈ ℝ ∶ 𝑇 = [𝑡ଵ, 𝑡ଶ, . . . , 𝑡] where 𝑛 is the length of 𝑇.

We are not interested in the global properties of a time series, but
in the local regions known as subsequences:

Definition 2: A subsequence 𝑇, ∈ ℝ of a 𝑇 is a continuous
subset of the values from 𝑇 of length 𝑚 starting from position 𝑖.
Formally, 𝑇, = [𝑡 , 𝑡ାଵ, … , 𝑡ା୫ିଵ].

The particular local property we seek to capture is repeating shapes,
or time series motifs. In the general case, the most efficient way to
locate time series motif is to compute the recently introduced
matrix profile [33][34].

Definition 3: A matrix profile 𝑃 ∈ ℝିାଵ of a time series 𝑇 is a
meta time series that stores the z-normalized Euclidean distance
between each subsequence and its nearest neighbor (within the all
subsequence set of 𝑇), where 𝑛 is the length of 𝑇 and 𝑚 is the
given subsequence length.

The time complexity to compute 𝑃 is 𝑂(𝑛ଶ) [34]. This maybe
seems unscalable, but the following facts mitigate this. First, note
that the time complexity is independent of m, the length of the
subsequences. It is the dependence on m (the classic curse of
dimensionality) that is the main limiting factor for other time series
data mining algorithms [29].

Secondly, the matrix profile can be computed with an anytime
algorithm, and in most domains, in just 𝑂(𝑛𝑐) steps the algorithm
converges to what would be the final solution (where 𝑐 is a small
constant) [33]. Finally, the matrix profile can be computed with
GPUs, cloud computing, and other high-performance computing
environments that make scaling to at least tens of millions of data
points trivial.

Figure 3 shows the matrix profile of 𝑇ଵ. While the motif pair (red)
is visually similar to the background random walk (black), the
matrix profile still clearly reveals the locations of the motif pair.

Figure 3: Matrix profile of 𝑻𝟏 . The two lowest points on 𝑷
correspond to the locations of embedded motif pair.

We are interested in the case which the real-valued time series 𝑇 is
accompanied by a Boolean time series.

Definition 4: Given a time series 𝑇, a Boolean time series 𝐵 ∈
{0,1} which annotated 𝑇 is a sequence of binary values 𝑏 ∈ {0,1} ∶
𝐵 = [𝑏ଵ, 𝑏ଶ, . . . , 𝑏] where 𝑛 is the length of 𝐵 and the length of 𝑇.

Note that in some domains, the Boolean time series may be
produced natively, for example by a quality control technician
annotating the yield quality as accept/reject [9], or by an
attending physician annotating a patient’s record as
tamponade/normal [18]. However, in other domains it may be
the case that the analysist could convert a real-valued time series
into a Boolean time series with a simple thresholding rule. In fact,
as shown in Figure 4, this was how we produced the annotation for
our running example.

Figure 4: bottom-to-top) We took the acceleration from a fNIRS
sensor and used it to produce a new time series containing the
smoothed absolute value of acceleration. By thresholding this
new vector, we produced the Boolean vector B that annotates
the raw fNIRS (see Figure 1).

0 50 100 150 200 250 300 350 400 450 500 550

T 1

Matrix Profile, P

1804

In many industrial domains the conversion may be even easier. For
example, for a distillation column that is supposed to be able to
produce at least 50 liters of material per second [12][22], we could
convert the real-valued flow rate to a Boolean measure of quality
by the trivial formula: Blow-yield = flow-rate < 49.

Note that for consistency with the literature, we refer to the TRUE
labels as positive, and the FALSE labels as negative, without any
reference to the desirability of the state. For example, chemical-
leak or EEG-seizure may be positive. Here positive just means
the (typically rare) state we are attempting to predict.

Definition 5: The weakly labeled time series problem is the task of
generating the binary time series 𝐵′ of a given real-valued time
series 𝑇′ using knowledge (e.g., rules) acquired from the previously
seen binary time series 𝐵 and real-valued time series 𝑇.

Due to the class imbalance (and binary) nature of the problem, we
use 𝐹ఉ-score instead of accuracy as the measure of success [19].
We can set 𝛽 based on the relative importance of precision versus
recall in the domain of interest. For example, 𝛽 can be set to 2 in
cases where false alarms can be tolerated, while a failed alarm is
more critical.

Finally, we define the simple data structure that will allow us solve
the problem-at-hand. We propose to solve the weakly labeled time
series problem by automatically learning a dictionary.

Definition 6: A 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 is a set of shapes 𝑺 (possibly of
different lengths), each with an associated threshold 𝐻. When used
to monitor a new streaming time series 𝑇’, 𝐵′ is set to TRUE iff the
current subsequence is within ℎ of 𝑆 (ℎ is 𝑖th member of 𝐻 and
𝑆 is 𝑖th member of 𝑺), else it remains FALSE.

In the next section, we will show how we can automatically learn
such dictionaries from the data.

4. THE SDTS ALGORITHM
With all the definitions and notation specified, we are finally
prepared to explain our algorithm. Since the weakly labeled time
series problem is a learning/predicting type of task, we first
introduce the dictionary learning algorithm in Section 4.1, and
subsequently show how to predict with the learnt dictionary in
Section 4.2.

4.1 Learning the Dictionary
Having defined the dictionary in the previous section, and
motivated the use of the 𝐹ఉ-score to evaluate it, how can we find
the best dictionary for a given dataset? Even if we confine the
patterns in the dictionary to come from the data itself, and limit the
maximum dictionary size, say to just five entries, the number of
possible dictionaries exceeds a trillion for a modestly sized dataset.
As outlined in Algorithm 1, we propose to use an optimized greedy
search to construct the dictionary.

In line 1, each segment that is marked positive in time series 𝑇 is
extracted and concatenated to form another time series 𝑇’. This
shorter time series 𝑇’ will allow us to limit the search space for
shape features to place in our dictionary. Since the objective of the
algorithm is to find a set of shape features used to predict positive
segments, all possible shape feature candidates (according to 𝐵) are
contained in 𝑇’. Our reason for concatenating all of the positive
time series snippets into a single time series is more than a
bookkeeping device; it allows us to extract the maximum speed-up

from the STOMP algorithm [34]. Figure 5 shows how the shorter
time series 𝑇’ is produced.

Figure 5: Positive segments are extracted and concatenated to
form a shorter time series 𝑻’ for matrix profile computation.
We link positive segments together in our algorithm; the space
between each segment is added for visual clarity. Recall that
‘positive’ just means Boolean TRUE, not necessary desirable.

In line 2, the matrix profile 𝑃 of 𝑇’ is computed (recall Definition
3). Because 𝑇’ is generated by concatenating different segments of
𝑇, the discontinuity in time creates subsequences that do not exist
in 𝑇 (similarly to the pseudo word ‘clean’ formed in the
concatenation of Oracleanomaly). To avoid considering such
nonexistent subsequences as a shape candidate, subsequences that
cross discontinuity are ignored when computing 𝑃 , and their
corresponding values in 𝑃 are set to infinity. In line 3, a set of shape
candidates 𝑪 are selected based on their matrix profile values. For
each positive segment in 𝑇’, the subseqence with lowest matrix
profile value is extracted and added to 𝑪 , because subsequences
with lower matrix profile values are repeated with greater fidelity
than others (by definition). Note: if there are a total of 𝑏 positive
segments, the size of 𝑪 is also 𝑏. Figure 6 shows how the member
of 𝑪 is selected using 𝑃.

Figure 6: Candidate set 𝑪 is selected from the shorter time
series 𝑻’ based on the matrix profile 𝑷. The subsequences with
smaller values in 𝑷 are selected and are added to 𝑪.

From lines 4 through 6, each shape feature 𝐶 in 𝑪 is individually
evaluated by finding the threshold that optimizes the 𝐹ఉ-score when
used to perform a prediction on 𝑇. Both the discovered threshold
and corresponding 𝐹ఉ -score are stored in 𝐻 and 𝐹 respectively.
The threshold is found efficiently by using the golden section
search algorithm [30]. Although the thresholds found here are
refined later in line 8 through 23, when the combination of shape
features are considered, an initial set of thresholds is required as the
initial condition for the coordinate ascent golden section
search [30].

annotation, B

time
series, T

extract and
concatenateshorter time

series, T’

shorter time
series, T’

matrix
profile, P

candidate, C

, , ,

1805

In lines 8 through 23, the final shape features are selected using
greedy search. Each shape candidate 𝐶 in 𝑪 is tested by performing
a prediction on 𝑻 when used in conjunction with previously
selected candidates in 𝑺 . It is important that we evaluate the
candidate in the context of previously added patterns; otherwise,
the dictionary may fill up with redundant patterns that are only
slight variants of each other.

When testing a given candidate 𝐶 , first we refine the threshold
setting for each shape feature by using the golden section search
algorithm in a coordinate ascent fashion; as using multiple shape
feature may require less strict thresholds. In the inner loop (line s10
through 17), each candidate 𝐶 is tested independently with the
previously selected shape feature, and the best one is stored in 𝑺𝒃𝒔𝒇.
From lines 18 through 22, if 𝑺𝒃𝒔𝒇 improves the 𝐹ఉ-score, 𝑺𝒃𝒔𝒇 is
added to 𝑺. Otherwise, the greedy search is terminated. To ensure
that the candidates are tested on a sufficient amount of validation
data, the number of shape features is limited to half of the number
of candidates. Finally, the selected shape feature 𝑺 and associated
threshold 𝐻 are returned in line 24.

Algorithm 1: Dictionary Learning Algorithm.

Procedure train(𝑇, 𝐵, 𝑚)
Input: time series 𝑇, annotation 𝐵, and subsequence length 𝑚
Output: dictionary (set of shape features 𝑺 and thresholds 𝐻).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

𝑇’ ← extractPositiveSegment(𝑇, 𝐵)
𝑃 ← computeMP(𝑇’, 𝑚) // see Definition 3
𝑪 ← extractShapeCandi(𝑇’, 𝑃, 𝑚)
for each 𝐶 in 𝑪
 𝐻, 𝐹 ← findThresholdEvalF(𝐶, 𝑇, 𝐵)
end for
𝑓 ← −∞, 𝑺 ← ∅, 𝐻 ← ∅
for 𝑖 from 0 to |𝑪|/2
 𝑓௦ ← −∞, , 𝑺𝒃𝒔𝒇 ← ∅, 𝐻௦ ← ∅
 for each (𝐶, ℎ) in (𝑪, 𝐻)
 𝑺𝒏𝒆𝒘 ← 𝑺 ∪ 𝐶
 𝐻௪ ← 𝐻 ∪ ℎ
 𝐻௪, 𝑓௪ ← refineThresholdEvalF(𝑺𝒏𝒆𝒘, 𝐻௪, 𝑇, 𝐵)
 if 𝑓௪ > 𝑓௦
 𝑓௦ ← 𝑓௪, 𝑺𝒃𝒔𝒇 ← 𝑺𝒏𝒆𝒘, 𝐻௦ ← 𝐻௪
 end if
 end for
 if 𝑓௦ > 𝑓
 𝑓 ← 𝑓௦, 𝑺 ← 𝑺𝒃𝒔𝒇, 𝐻 ← 𝐻௦
 else
 break

 end if

end for
return 𝑺, 𝐻

To extend SDTS to allow dictionary elements of various lengths,
we simply compute multiple matrix profiles using different settings
of 𝑚 in line 2 and combine extracted candidate from each
individual matrix profile in line 3. Note that while Euclidean
distances of different lengths time series are not commensurate, the
𝐹ఉ -scores derived from different lengths time series pattern are
commensurate.

Users can simply provide a set of 𝑚 to SDTS, and SDTS will
automatically select shape features with the appropriate lengths.
SDTS is not particularly sensitive to the setting of 𝑚 , as we
demonstrate in Figure 7. Given this, users can simply provide a
coarse grid around the natural scale of the time series event. For
example, if the user vaguely suspects that one hour is about the
natural scale of the (sampled once a minute) data, the user can pass
in a set of values for m such as [55, 60, 65] to bracket their intuition.

The results of this search will almost certainly be as good as a
search over increments of one second or finer.

Figure 7: The performance of SDTS is relevantly insensitive to
the settings of 𝒎. For an embedded pattern of length 275 (see
section 5.1), the F1-score is about 0.6 for the large range of 𝒎
greater than 50 and less than 300.

Beyond speed-up, there is an additional reason why the coarser
search may be more desirable. We hope that our discovered rules
will be examined (and perhaps edited) by the domain experts. Such
experts are likely to feel more comfortable dealing with rules such
as “If you see this one hour-long valley in the temp reading…”, than
the spuriously precise “If you see this fifty-nine minute, thirty-seven
second-long valley…” [11].

4.2 Using the Learned Dictionary
Having learned the dictionary, applying it is straightforward;
however, in Algorithm 2, we outline the details of its application
for completeness.

In line 1, the predicted annotation 𝐵’ is initialized as a zero vector
of the same size as the input time series 𝑇′. From line 2 to line 9,
we test each shape feature in the dictionary on 𝑇′. First, we compute
the z-normalized Euclidean distance between a shape feature and
each subsequences of the same length by using the MASS
algorithm [14]. Next, from line 4 to line 8, we check each value in
the distance vector 𝐷, and flag the subsequence as positive if its
value is below the associated threshold ℎ . Lastly, the predicted
annotation 𝐵’ is returned in line 10. The time complexity of the
prediction algorithm is 𝑂(|𝑺| 𝑛′ 𝑙𝑜𝑔 𝑛′) as we perform MASS
algorithm |𝑺| times, and each MASS call takes 𝑂(𝑛′ 𝑙𝑜𝑔 𝑛′) ,
where 𝑛′ is the length of 𝑇’.

Algorithm 2: Prediction Algorithm.

Procedure predict(𝑇′, 𝑺, 𝐻)
Input: time series 𝑇′ and dictionary (set of shape features 𝑺 and
thresholds 𝐻).
Output: 𝐵’ predicted annotation
1
2
3
4
5
6
7
8
9
10

𝐵′ ← vector of zeros
for each (𝑆, ℎ) in (𝑺, 𝐻)
 𝐷 ← MASS(𝑆, 𝑇′) // see [14]
 for 𝑖 from 0 to length(𝐷)-1
 if 𝐷[𝑖] < ℎ
 𝐵’[𝑖] ← 1
 end if
 end for
end for
return 𝐵’

The extension of the prediction algorithm to streaming time series
monitoring is trivial. In line 3, instead of computing the z-
normalized Euclidean distance between a shape feature to all
subsequence in 𝑇’, we simply compute the z-normalized Euclidean
distance between the shape feature and the newly observed
subsequence, and check the newly computed distance with the

m

True length of embedded
shape feature

0

0.2

0.4

0.6

0.8

1

F 1
-s

co
re

0 100 200 300 400 500 600

1806

associated threshold. Naïvely, this operation takes 𝑂(𝑚) each time
the algorithm ingests a new point (where 𝑚 is the length of shape
feature). However, since the goal is to determine whether the
resulting distance is below the threshold, techniques such as early
abandoning and lower bounding [20] can be applied to speed up the
computation. To concretely ground the computational demands,
even if the dictionary contained one hundred shape features, each
of length 1,000, it would be trivial to process a stream arriving at
500Hz, using off- the-shelf hardware.

5. EXPERIMENTAL EVALUATION
We begin by stating our experimental philosophy. We have
designed all experiments in a manner such that they are easily
reproducible. To this end, we have built a Web page [24] that
contains all datasets and code used in this work, together with
spreadsheets which contain the raw numbers.

Throughout the experiment section, we report the 𝐹ଵ-score as the
single number measurement of success. We also report the wall
clock time required, running on a desktop computer with Intel Core
i7‑6700K 4 GHz Quad‑Core Processor. It is difficult to overstate
the utility of the MASS algorithm in accelerating our learning
algorithm. Where appropriate below, we will report the time taken
if we eschew MASS, and resort to the second fastest known
algorithm for Euclidean search [20]. Such times are necessarily
estimated.

We begin our experiments with a synthetic dataset. Such tests are
less compelling than the four diverse real-world case studies that
follow it. However, the synthetic dataset allows us to “stress test”
our algorithm, by varying the factors that make the task-at-hand
challenging.

5.1 Stress Testing on a Synthetic Dataset
The TRACE dataset [21] is a synthetic dataset designed to model
industrial processes that are “..characterized by long periods of
steady-state operation, intercalated by occasional shorter periods
of a more dynamic nature in correspondence of either normal
events, such as minor disturbances, planned interruptions or
transitions to different operation states, or abnormal events, such
as major disturbances, actuator failures, instrumentation failures,
etc.”. These are all data characteristics that have been echoed back
to Oracle by its IOT customers in the manufacturing and the oil-
and-gas industries [17]. Testing on such synthetic data offers us the
possibility of studying how the properties of the data and the
domain affect our ability to learn.

We begin by performing a single experiment on a particular
instantiation of the problem space; then, having calibrated our
expectations, we vary each factor of the problem space one-by-one,
while holding everything else constant to see how much that factor
matters. The factors in question are:

 Occurrence of positive events: Varying this factor is similar
to varying skewness between classes (and number of training
example) in traditional binary classification.

 Fraction of false positive labels: Some segments without
repeated shape features are marked as positive. Varying this
factor allows us to examine the algorithm’s robustness against
noisy labels.

 Fraction of false negative labels: Some sections of the raw
time series with conserved shape features are marked as
negative. Similarly to the last factor, varying this factor allows
us to examine the algorithm’s robustness against noisy labels.

 Amount of label slop: This factor is unique to weakly labeled
time series classification, and is measured by the fraction of
each positive segment being irrelevant time series (i.e., time
series other than embedded shape feature). Varying this factor
allows us to examine the algorithm’s ability to work against
imprecise labels in time.

The default setup is as follows: 100 occurrences of positive events,
0 false positives, 0 false negative, and 0.7 label slop.

We have summarized the 𝐹ଵ -score, precision, and recall versus
various settings in each factor in Figure 8, Figure 9, Figure 10, and
Figure 11. Note that in each plot, only a single factor is varied while
all the other factors are kept fixed. The synthetic data was generated
by embedding TRACE patterns to random walk. Each set of
experiments was repeated 16 times (with random walks generated
by different seed), and the reported performances averaged 16
trials. Since the random walk for each set of experiments was
generated independently, the performance of the default setups in
each figure is slightly different, but within each plot, the numbers
are commensurate as we vary the factors.

As shown in Figure 8, increasing the number of positive events
benefits SDTS, since the number of shape feature candidates is
directly proportional to the occurrence of positive events, and
SDTS benefits from larger set of candidates to search over.

Figure 8: The performance of SDTS versus various settings of
positive events occurrence. SDTS’s performance suffers
slightly when the number of positive events decreases.

Moreover, increasing the number of positive events can mitigate
the issues associated with class imbalance. Since the length of
training data is fixed, increasing the ratio of positive events reduces
the preponderance of negative events; thus nudging the positive to
negative ratio is closer to 1.

In contrast, SDTS’s 𝐹ଵ-score, precision, and recall all suffer from
the increase of false positives (i.e. mislabeled data) in the training
data as demonstrated in Figure 9.

Figure 9: The performance of SDTS versus various settings of
false positive fraction. Unsurprisingly, the performance
decreases as the false positive fraction increases, but the
degradation is slow and graceful.

0

0.2

0.4

0.6

0.8

1

100 80 60 40 20

F1-score
Precision
Recall

0

0.2

0.4

0.6

0.8

1

0 0.1 0.3 0.5 0.7 0.9

F1-score
P recision
Recall

1807

It is unsurprising that the performance of the system degrades with
increasing false positive labels. However, the performance of
SDTS offers graceful degradation and does not fall dramatically,
even when the fraction of false positive is as high as 0.5.

As shown in Figure 12, SDTS’s 𝐹ଵ-score and recall suffer from the
increase of false negatives. Yet, the precision is maintained at a
relatively high value compared to the other two performance
metrics.

Figure 10: The performance of SDTS versus various settings of
false negative fraction. Interestingly, the precision increases
when the false negative fraction increases.

One possible explanation is that the false negatives force the
dictionary learning algorithm to learn a tighter threshold, because
the algorithm is trying to separate a captured (true) shape feature
from an embedded shape feature (which is very similar to the
captured shape feature) in negative segment. Similar to Figure 9,
the 𝐹ଵ -score of SDTS does not drastically decrease until the
fraction of false negative is 0.7.

The experiment shown in Figure 11 suggests that SDTS’s
performance is only slightly impaired by large amounts of label
slop. One possible reason is that SDTS is shift invariant. In other
words, as long as the embedded shape feature is within the positive
segment, SDTS would find the shape feature even if the ratio
between noise and signal (the shape feature) is as large as 0.9.

Figure 11: The performance of SDTS versus various settings of
label slop amount. SDTS is not sensitive to increasing amounts
of label slop.

5.2 Case Study I: Insect EPG
Insects that feed by ingesting plant fluids cause devastating damage
to agriculture worldwide, primarily by transmitting pathogens of
plants. As a concrete example, the Asian citrus psyllid (Diaphorina
citri) shown in Figure 12.top a is vector of the pathogen causing
citrus greening disease, and has already caused billions of dollars
of damage to Florida’s citrus industry in the last decade and is
poised to do this same in California.

Figure 12: top-to-bottom) The Asian citrus psyllid can be
connected to an EPG (Electrical Penetration Graph)
apparatus, and have its behavior recorded. As the three minute,
and three hour snippets show, this behavior is suggestive of
structure, but nosily and complex.

As shown in Figure 12, the feeding processes required for
successful pathogen transmission by psyllids can be recorded by
monitoring voltage changes across an insect-food source feeding
circuit. However, as [31] notes “The output from such monitoring
has traditionally been examined manually, a slow and onerous
process.” While we do not wish to makes any claims of
entomological significance, it is natural to ask if our ideas can be
applied to such datasets.

We obtained a dataset recently made publicly available by the
United States Department of Agriculture. While this dataset has
been labelled by domain experts, as we show in Figure 13, it
contains significant label slop, and is thus an ideal dataset to test
SDTS robustness to that issue.

Figure 13: An original annotation of a transition from stylet
passage to non-probing behavior [31]. Although we do not
have access to the original data, it is virtually certain that this
is an example of label slop (see Section 1).

We learn the model from one EPG recoding section of an insect
feeding on Corrizo (a rootstock for citrus) and verify the learned
model on another EPG recoding of feeding on the same citrus
variation. While both experiments consider the same species, the
Asian citrus psyllid, and the individual insects where different, thus
we are testing the generalization ability of our algorithm.

To demonstrate our algorithm’s ability to capture shape features
from multiple classes, we treat both phloem ingestion and xylem
ingestion as the positive class. SDTS is able to achieve a 𝐹ଵ-score
of 0.78, a precision of 1.00, and a recall of 0.64. Figure 14 shows

0

0.2

0.4

0.6

0.8

1

0 0.1 0.3 0.5 0.7 0.9

F1-score
Precision
Recall

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F1-score
Precision
Recall

717,000 719,000 721,000

Claimed location of transition

(almost certainly)
True location of transition

1808

the prediction result with the ground truth label. We can see that
SDTS is capable of learning a model that gives no false positives
despite some false negative.

Figure 14: The annotation predicted by SDTS versus the
ground truth annotation. The prediction of SDTS is not perfect,
but it has no false positives.

Beyond the high accuracy achieved, we wonder if the dictionary
learned is itself useful and/intuitive. We showed the model to Dr.
Gregory Walker (Figure 15), who has not involved in collecting the
data, but who has decades of experience in manually exploring EPG
data. He noted “(the first two waveforms) represent ingestion from
two different apoplastic compartments such as xylem versus other
extracellular space.” [28], which confirms that the two patterns are
indeed polymorphic variants of a single behavior.

Figure 15: The first two patterns in the learned EPG model
show that a single class can be highly polymorphic.

5.3 Case Study II: Neuroscience
The connection between visual perception of objects and neural
activity in the visual cortical areas is a fundamental problem in
neuroscience [15]. Recent work has shown that that electrical
potential from the temporal lobe in humans contains sufficient
information for spontaneous and near-instantaneous identification
of a subject’s perceptual state [15]. However, such efforts require
an extraordinary amount of domain knowledge, data preprocessing,
and algorithm tuning. Here, we will attempt to duplicate some
fraction of the recent achievements, with our completely domain
agnostic algorithm. To be clear, we are not claiming any medical
significance or utility in this section. We are merely showing that,
in a real-word, noisy, complex and massive electrocorticographic
(ECoG) dataset (see Figure 16) created out of our control, we can
robustly learn models that capture true structure in the data and
allow (much) better-than-random guessing predictions on unseen
data.

Figure 16: A small snippet of the electrocorticographic data
used in our face discrimination experiment. The positive class
is when the patient can see a face, and the negative class is
when the patient is seeing either a house or nothing.

The ECoG data we consider was collected from an epileptic patient.
Electrodes were placed directly on the patient’s occipital lobe (the
visual processing center for the mammalian brain). Fifty images of
faces and fifty images of houses were shown to the patient in a
random order, with 0.4-second pauses in-between. While fifty
1,000 Hz traces where recorded from various parts of the brain, for
simplicity we consider only a single trace. Our task is to examine
the traces to find patterns that indicate that the patient is seeing a
face.

As noted on [15] “face-selective (time series patterns) may have
wide structural variation, with ‘peaks’ and ‘troughs’ that are very
different in shape, latency, and duration,” making this a
challenging task. It particular, we see this uncertainty in latency and
duration as label slop.

We performed our experiment on subject 2. We partitioned the
original time series into three sections (each section corresponding
to different experiment runs) and performed three-fold cross
validation similarly to [15]. To confirm that SDTS performs better
than the default rate (random guessing in proportion to the prior
probability of events), we repeated the experiment on the same data
using a permutation test [16]. We generated the permuted labels by
randomly shuffling the temporal location of the positive segments.
In other words, a positive segment may or may not correspond to
face in the false label. The experimental results suggest that
SDTS is significantly better than random guessing (𝐹ଵ-score of 0.47
vs. 0.21). This is a huge difference, and it is unsurprising that a two-
sample t-test confirms the difference at a 5% level.

The time it takes SDTS to learn a model from the ECoG dataset
was 41 minutes. If we replace MASS with the standard Euclidean
distance subsequence-search technique, a sliding window that
exacts the subsequences, z-normalizes them, and then compares the
distance, this time grows to a few days. Interestingly, (as also noted
in [20]), we found the time needed to z-normalize the subsequences
dominates the time required for this operation.

5.4 Case Study III: Traffic Loop Sensor
To demonstrate that SDTS does not produce an unnecessarily
complex dictionary for simple problems, we have applied SDTS on
the much-studied Dodgers loop sensor dataset [4][8]. This dataset
records the number of vehicles on the 101 North freeway off-ramp
near Dodgers Stadium in Los Angeles for 25 weeks. The research
community has performed a wide variety of time series data
miming experiments on the dataset. The particular experiment we
performed was weekend detection. In other words, in the
accompany annotation of the training data, all the weekends were
marked as positive while the weekdays were marked as negative.
While this is a contrived problem, it is not trivial. As Figure 17
suggests, the data is noisy. Moreover, there are dropouts (random
occasions when the sensor was offline), and several weekday
holidays that might act as pseudo weekends. The data exhibits
“bursts” when the Dodgers played a home game, which could be
any day of the week. Finally, as the data spans a half year, and we
learn from only the first twelve weeks, there is the possibly of
concept drift as the seasons change.

Nevertheless, as Figure 17 shows, in general, a typical weekday
traffic pattern does look different than typical weekend traffic,
suggesting a simple model should suffice for accurately
distinguishing the weekend from a weekday.

0 100k 200k 300k 400k 500k 600k 700k

prediction
ground truth

Xylem Ingestion

Xylem Ingestion

0 1 2 3Seconds

1809

Figure 17: The major differences between weekend (red/bold)
and weekday (blue/fine) patterns are the morning and evening
rush hour ‘bumps’.

To perform such an experiment, we trained the SDTS model on the
first half of data. Then, we used the learned model on the second
half. The result model is surprisingly simple. The model only
contains one shape feature, corresponding to traffic density in the
morning (more precisely, midnight to noon) of a Saturday. The
captured feature is relevant as it can be used to differentiate a
(relatively) quiet weekend morning from a busy weekday morning.
Figure 18 shows the captured shape feature and how different it is
from the traffic data from a weekday.

Figure 18: The capture shape feature is corresponding to
weekend morning traffic.

Despite the learned model being sample, it can accurately detect
weekend from the traffic data. Figure 19 shows how similar the
predicted annotation is to the ground truth.

Figure 19: The ground-truth vs. prediction of the SDTS model.
Of 13 weekends, the learned model perfectly annotates 9 of
them. The other 4 weekends are slightly mislabeled in terms of
their temporal locations (Falsely skipping the Saturday or
mistakenly labeling Friday as a weekend day).

This is a good place to revisit one of our assumptions. Recall that
we are searching for subsequences in the z-normalized space
(Definition 3). Here, it might be imagined that we should not
normalize the data, as the absolute values offer clues, with higher
traffic volumes on weekdays. If this is really desired, it is trivial to
achieve, as the MASS algorithm, and the Matrix Profile that is built
upon it, can trivially be converted to an amplitude/offset sensitive
algorithm by simply commenting-out some lines of code [14].
However, we claim that this is unlikely to ever be appropriate.
Recall that in our motivating example shown in Figure 1, the shape
was informative, but the change in offset (in this domain,
“wandering baseline”) was not. We argue that this is generally true,
even in this apparent counterexample. For example, the absolute

volume of cars could change due to nearby road maintenance, or
even because of changes in the price of fuel; however, the overall
shapes will remain near constant. In [20], the authors make a more
detailed argument that virtually every task, in almost every dataset
requires the normalization of subsequences.

5.5 Predicting the Future: A Tentative Case Study
As the experiments in the previous sections suggest, the ability of
SDTS to predict the current state of the world can be useful in many
domains. However, in many situations it is clearly more desirable
and actionable to predict the future state of the world. Such shape
features are called sometimes called “precursors” or “precursors
signatures” (although the literature is inconsistent in its
nomenclature [3][10]).

As Figure 20 suggests, it is trivial to generalize SDTS to allow the
discovery of precursors.

Figure 20: top) A visual reminder of the original setup for the
weakly labeled classification problem (recall Figure 1). bottom)
Generalizing the problem to a precursor setting simply
requires compensating for the lag between the binary time
series 𝑩 and real-valued time series 𝑻.

All we need do to generalize from our typical consideration of “co-
cursors” to precursors, is create a lag between the binary time series
𝐵 and real-valued time series 𝑇 (conversely, it may sometimes be
more natural to speak of the lead time between 𝑇 and 𝐵). As a
practical matter, we can achieve this by simply removing the first
𝐿 data points of 𝐵, where L is the length of the desired lag.

We may have some ideas of a reasonable value for 𝐿 based on the
domain. For example, for a small distillation column a lag of five
minutes might be ambitious, but for a large distillation column, the
inertia of the system may allow a lag of a few hours [9]. As it
happens, this discussion of a domain dependent constraints may be
moot. We will always want as much lead time as possible, and our
proposed algorithm is fast enough to test expanding values of 𝐿
until the scoring function is unable to find predictive patterns.

To test this idea, we have adapted a real dataset. This contrived
experiment is not as interesting as the propriety real-world
customer problem that inspired this work, but has the advantage
that we can share all the data with the community.

As shown in Figure 21.right, the Sony AIBO is a small quadruped
robot that comes equipped with a tri-axial accelerometer and a
(very) low-resolution camera. This accelerometer measures data at
a rate of 125 Hz. In Figure 21.left, we show two snippets of
telemetry from the accelerometer’s z-axis (the direction pointing
skyward) as the robot walks on two different surfaces. As the reader
will appreciate, the differences in gait due to the surface makes are

00:00 04:00 08:00 12:00 16:00 20:00 24:00

weekday

weekend

00:00 04:00 08:00 12:00 16:00

traffic data during the same
time of day on a weekday

captured shape feature

prediction

ground truth

4000 80001

fNIRS Data

Acceleration Detected 1
0

4000 80001

fNIRS Data

Acceleration Detected 1
0

l ag

1810

non-obvious, even after careful visual inspection, and seem
swamped by natural viability and noise.

Figure 21: left) Two three-second snippets extracted from a
Sony AIBO robot dog (right). The snippets show about three
gait cycles.

The onboard camera and limited processing power do not lend
themselves to complex image processing, but we can simply ‘snap’
a targeted color to the positive class. Finally, if we task our dog to
walk backwards across the lab, we will produce a dataset that
exactly models the setup in Figure 20.bottom, with series 𝑇 being
the accelerometer value, and 𝐵 being cement=TRUE extracted
from the video feed. The exact amount of lag depends on the angle
of the robot’s head. Again, while we acknowledge that this toy
experiment is highly contrived, it is non-trivial, and is an excellent
proxy for real-word problems in prognostics for manufacturing and
transport.

Our dataset was created by interleaving the z-axis accelerometer
time series of Sony AIBO surface recognition dataset [27]. The
original dataset consists of accelerometer time series,
corresponding to the robot walking on different surfaces (i.e.,
carpet, field, and cement) [27]. The goal of our experiment is to
show that SDTS is capable of discovering precursors for an event
of interest. Among the three classes provided by the Sony AIBO
dataset [27], we picked “walking on cement” as the targeted event
of interest.

We begin by splitting each of the time series into disjoint training
and test splits. Then, we apply the following three steps
independently to the training and test data.

1. carpet and field are concatenated together to make the
problem more challenging.

2. cement is sliced into segments of various lengths.

3. The segments of cement are embedded into the carpet-
field time series at multiple randomly selected locations.

Figure 22.top illustrate how the time series from various classes are
put together. Note that the duration of the positive events, and the
amount of interstitial time between them, are random and highly
variable.

In order to generate the accompanying annotation for precursor
discovery training data, we flag a small chunk (about 2 seconds in
time) of the annotation time series as positive at the beginning of
each cement regions. To make the situation conform to our
assumptions, the positive segments for each cement regions has a
lag relative to the actual starting point of cement, because our
robot experiences a slight change in gait (due to walking on a
different material), before visually confirming the change of
surface. Figure 22.bottom shows an example of such annotation.

Figure 22: top) A representation of the surface walked upon by
the robot. bottom) The annotation used to train SDTS for
precursors of walking on “cement” has a slight lag, due to the
delay between the robot experiencing the real-value stimulus,
and seeing the positive label.

With the annotation for training data prepared in this fashion, we
can simply apply the SDTS algorithm without any modification, to
discover the precursor(s) for “walking on cement.” Figure 23
shows the predicted annotation against the ground truth. The
corresponding 𝐹ଵ -score is 0.63. There are a handful of false
negatives, but all regions predicted as positive are indeed just prior
to the robot seeing cement.

Figure 23: top) The surface walked on by the robot the ground
truth for our predictions. bottom) The predictions made by our
precursor model, found using SDTS.

In essence, this experiment shows that in principle, we can use
SDTS to gain a little “lead-time” to predict upcoming events.

6. DISCUSSION AND CONCLUSIONS
Of the four case studies we considered, we believe that only Traffic
Loop Sensor would be solvable by “eye”, by the average person.
The Insect EPG dataset appears to be at least partially solvable by
humans, but only fully solvable by expert entomologists with
decades of experience examining such data [28]. For both the Robot
Gait and Neuroscience datasets, our algorithm offers truly
superhuman performance. Even if we “cheat” by examining
various sources of extra information, the differences discovered by
our algorithm are too subtle for us to appreciate, much less
duplicate or improve upon with human-coded rules.

In conclusion, we have introduced SDTS, a parameter-free domain
agnostic algorithm for learning from weakly supervised datasets.
We have made all code and data freely available to the community,
to confirm, extend, and exploit our work [24].

Future work includes consideration of the multidimensional time
series case, and allowing humans to interactively edit the learned
models. We are also interested in the “cold-start” problem [6].
Could a model learned on one domain be used on similar domain,
at least until enough data has been observed to allow relearning the
model? In the industrial domain, this problem can arise if the
production run for one object finishes, and a new production run
for a similar device begins.

annotation

surface material: carpet or field, cement

prediction

surface material: carpet or field, cement

1811

7. ACKNOWLEDGMENTS
Our thanks go out to all the donors of datasets and domain experts
who offered advice. This research was funded by gifts from Oracle
and NSF awards 1510741 and 1544969.

8. REFERENCES
[1] Bagnall, A., Lines, J., Hills, J., Bostrom, A. Time-Series

Classification with COTE: The Collective of Transformation-
Based Ensembles. IEEE Trans. Knowl. Data Eng. 27(9):
2522-2535. 2015.

[2] Chen et al., The UCR time series classification archive.
http://www.cs.ucr.edu/~eamonn/time_series_data/.

[3] Cheong, S. A. Extracting Earthquake Precursor Signatures
Through Time Series Clustering, contributed talk, Western
Pacific Geophysics Meeting, 23 June 2010, Taipei, Taiwan.

[4] Freeway Performance Measurement System (PeMS).
http://pems.eecs.berkeley.edu/.

[5] Fung, P. and Church, K. K-vec: A New Approach for Aligning
Parallel Texts. In Proceedings of COLING 94. pp. 1096–1102.
Kyoto, Japan.1994.

[6] Gao, M., Tian, R., Wen, J., Xiong, Q., Ling, B., Yang, L. Item
Anomaly Detection Based on Dynamic Partition for Time
Series in Recommender Systems. PLoS ONE 10(8). 2015.

[7] Guan, X., Raich, R. and Wong, W. K. Efficient Multi-Instance
Learning for Activity Recognition from Time Series Data
Using an Auto-Regressive Hidden Markov Model. In
Proceedings of the 33rd International Conference on Machine
Learning. pp. 2330-2339. 2016.

[8] Ihler, A., Hutchins, J. and Smyth, P. Adaptive event detection
with time-varying Poisson processes. Proceedings of the 12th
ACM SIGKDD Conference. 2006.

[9] Jain, P. L. Quality Control & Total Quality Management. Tata
Mcgraw Hill Publishing Co Ltd. 2001.

[10] Janakiraman, V. M., Matthews, B. L., Oza. N. C. Discovery
of Precursors to Adverse Events using Time Series Data. SDM
2016: 639-647.

[11] Johansson, U., Niklasson, L., Köning, R. Accuracy vs.
comprehensibility in data mining models. Proceedings of the
Seventh International Conference on Information Fusion.
Stockholm, Sweden. 2004. pp. 295–300.

[12] Large Property Damage Losses in the Hydrocarbon Industry:
The 100 Largest Losses 1974–2013, Marsh, 2004.

[13] Lichman, M. UCI Machine Learning Repository. Irvine, CA:
University of California, School of Information and Computer
Science. 2013.

[14] Mueen, A. et al. MASS: The Fastest Similarity Search
Algorithm for Time Series Subsequences under Euclidean
Distance. 2015.
www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

[15] Miller, K. J., Schalk, G., Hermes, D., Ojemann, J. G. and Rao,
R. P. N. Spontaneous Decoding of the Timing and Content of
Human Object Perception from Cortical Surface Recordings
Reveals Complementary Information in the Event-Related
Potential and Broadband Spectral Change. PLOS
Computational Biology, 12. 2016.

[16] Ojala M. and Garriga, G. C. Permutation tests for studying
classifier performance, J Mach Learn Res. 2010, vol. 11.

[17] Oracle Corporation. Driving Real-Time Insight: The
Convergence of Big Data and the Internet of Things. White
paper. 2016.

[18] Ozturk et al. Evaluation of non-surgical causes of cardiac
tamponade in children at a cardiac surgery center. Pediatr Int
2014; 6:13–18.

[19] Powers, D. M W. Evaluation: From Precision, Recall and F-
Measure to ROC. Informedness, Markedness & Correlation.
Journal of Machine Learning Technologies. 2 (1): 37–63.
2011.

[20] Rakthanmanon T. et. al. Searching and mining trillions of time
series subsequences under dynamic time warping. KDD 2012:
262-270.

[21] Roverso, D., Multivariate temporal classification by
windowed wavelet decomposition and recurrent neural
networks, in 3rd ANS Int’l Topical Meeting on Nuclear Plant
Instrumentation, Control and Human-Machine Interface, vol.
20, Washington, DC, USA, 2000.

[22] Sanders, E. Chemical Process Safety. Learning from Case
Histories, 3rd ed., Elsevier , Oxford 2005.

[23] Stikic, M., Larlus, D., Ebert, S. and Schiele, B. Weakly
supervised recognition of daily life activities with wearable
sensors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(12), pp.2521-2537. 2011.

[24] Supporting website:
http://www.cs.ucr.edu/~myeh003/weaklyLabeled/

[25] Sweeney, K. T., Ayaz, H., Ward, T. E., Izzetoglu, M.,
McLoone, S.F., Onaral, B. A. Methodology for Validating
Artifact Removal Techniques for Physiological Signals. IEEE
Trans Info Tech Biomed 16(5):918-926; 2012.

[26] Sweeney, K.., McLoone, S., Ward, T. The use of ensemble
empirical mode decomposition with canonical correlation
analysis as a novel artifact removal technique. IEEE
transactions on biomedical engineering 60.1 (2013): 97-105.

[27] Vail, D. and Veloso, M. Learning from accelerometer data on
a legged robot. In Proceedings of the 5th IFAC/EURON
Symposium on Intelligent Autonomous Vehicles. 2004.

[28] Walker, G., Personal Correspondence. February 7, 2017.
[29] Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann,

P., Keogh, E. J. Experimental comparison of representation
methods and distance measures for time series data. Data Min.
Knowl. Discov. 26(2): 275-309. 2013.

[30] Wikipedia contributors. Golden-section search. Wikipedia,
The Free Encyclopedia. Wikipedia, The Free Encyclopedia,
26 Jan. 2017. Web. 6 Feb. 2017.

[31] Willett, D. S., George, J., Willett, N. S., Stelinski, L. L.,
Lapointe, S. L. Machine Learning for Characterization of
Insect Vector Feeding. PLoS Comput Biol 12(11). 2016.

[32] Witten, I. H., Frank, E., Trigg, L., Hall, M., Holmes, G.,
Cunningham, S. J. Weka: Practical Machine Learning Tools
and Techniques with Java Implementations. Proceedings of
the ICONIP99 Workshop on Emerging Knowledge
Engineering and Connectionist-Based Information Systems.
pp. 192–196. 1999.

[33] Yeh, C.-C. M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y.,
Dau, H. A., Silva, D., F., Mueen, A., and Keogh, E. 2016.
Matrix Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View that Includes Motifs, Discords and Shapelets.
IEEE ICDM 2016.

[34] Zhu, Y., Zimmerman, Z., Senobari, N., S., Yeh, C.-C. M.,
Funning, G., Mueen, A., Brisk, P., and Keogh, E. 2016. Matrix
Profile II: Exploiting a Novel Algorithm and GPUs to break
the one Hundred Million Barrier for Time Series Motifs and
Joins. IEEE ICDM 2016.

1812

