
Privacy-preserving Anonymization of Set-valued Data

Manolis Terrovitis
Dept. of Computer Science

University of Hong Kong
rrovitis@cs.hku.hk

Nikos Mamoulis
Dept. of Computer Science

University of Hong Kong
nikos@cs.hku.hk

Panos Kalnis
Dept. of Computer Science

National University of Singapore
kalnis@comp.nus.edu.sg

ABSTRACT
In this paper we study the problem of protecting privacy in
the publication of set-valued data. Consider a collection of
transactional data that contains detailed information about
items bought together by individuals. Even after remov-
ing all personal characteristics of the buyer, which can serve
as links to his identity, the publication of such data is still
subject to privacy attacks from adversaries who have par-
tial knowledge about the set. Unlike most previous works,
we do not distinguish data as sensitive and non-sensitive,
but we consider them both as potential quasi-identifiers and
potential sensitive data, depending on the point of view of
the adversary. We define a new version of the k-anonymity
guarantee, the km-anonymity, to limit the effects of the data
dimensionality and we propose efficient algorithms to trans-
form the database. Our anonymization model relies on gen-
eralization instead of suppression, which is the most com-
mon practice in related works on such data. We develop
an algorithm which finds the optimal solution, however, at
a high cost which makes it inapplicable for large, realistic
problems. Then, we propose two greedy heuristics, which
scale much better and in most of the cases find a solution
close to the optimal. The proposed algorithms are experi-
mentally evaluated using real datasets.

1. INTRODUCTION
We consider the problem of publishing set-valued data,

while preserving the privacy of individuals associated to
them. Consider a database D, which stores information
about items purchased at a supermarket by various cus-
tomers. We observe that the direct publication of D may
result in unveiling the identity of the person associated with
a particular transaction, if the adversary has some partial
knowledge about a subset of items purchased by that per-
son. For example, assume that Bob went to the supermarket
on a particular day and purchased a set of items including
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coffee, bread, brie cheese, diapers, milk, tea, scissors, light
bulb. Assume that some of the items purchased by Bob
were on top of his shopping bag (e.g., brie cheese, scissors,
light bulb) and were spotted by his neighbor Jim, while both
persons were on the same bus. Bob would not like Jim to
find out other items that he bought. However, if the super-
market decides to publish its transactions and there is only
one transaction containing brie cheese, scissors, and light
bulb, Jim can immediately infer that this transaction cor-
responds to Bob and he can find out his complete shopping
bag contents.

This motivating example stresses the need to transform
the original transactional database D to a database D′ be-
fore publication, in order to avoid the association of specific
transactions to a particular person or event. In practice, we
expect the adversary to have only partial knowledge about
the transactions (otherwise, there would be little sensitive
information to hide). On the other hand, since the knowl-
edge of the adversary is not known by the data publisher,
it makes sense to define a generic model for privacy, which
guarantees against adversaries having knowledge limited to
a level, expressed as a parameter of the model.

In this paper, we propose such a km-anonymization model,
for transactional databases. Assuming that the maximum
knowledge of an adversary is at most m items in a specific
transaction, we want to prevent him from distinguishing the
transaction from a set of k published transactions in the
database. Equivalently, for any set of m or less items, there
should be at least k transactions, which contain this set, in
the published database D′. In our example, Jim would not
be able to identify Bob’s transaction in a set of 5 transactions
of D′, if D′ is 53-anonymous.

This anonymization problem is quite different compared
to well-studied privacy preservation problems in the litera-
ture. Unlike the k-anonymity problem in relational databases
[18, 19], there is no fixed, well-defined set of quasi-identifier
attributes and sensitive data. A subset of items in a transac-
tion could play the role of the quasi-identifier for the remain-
ing (sensitive) ones and vice-versa. Another fundamental
difference is that transactions have variable length and high
dimensionality, as opposed to a fixed set of relatively few
attributes in relational tuples. Finally, we can consider that
all items that participate in transactions take values from
the same domain (i.e., complete universe of items), unlike
relational data, where different attributes of a tuple have
different domains.
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To solve the km-anonymization problem for a transac-
tional database, we follow a generalization approach. We
consider a domain hierarchy for the items that participate
in transactions. If the original database D does not meet
the km-anonymity requirement, we gradually transform D,
by replacing precise item descriptions with more general-
ized ones. For example, “skim-milk” could be generalized
to “milk” and then to “dairy product” if necessary. By
carefully browsing into the lattice of possible item gener-
alizations, we aim at finding a set of item generalizations,
which satisfies the km-anonymity requirement, while retain-
ing as much detail as possible to the published data D′.

We propose three algorithms in this direction. Our first
optimal anonymization (OA) algorithm explores in a bottom-
up fashion the lattice of all possible combinations of item
generalizations, and finds the most detailed such sets of
combinations that satisfy km-anonymity. The best com-
bination is then picked, according to an information loss
metric. Although optimal, OA has very high computational
cost and cannot be applied for realistic databases with thou-
sands of items. Motivated by this observation, we propose
two heuristics which greedily identify itemsets that violate
the anonymity requirement and choose generalization rules
that fix the corresponding problems.

The first direct anonymization (DA) heuristic operates di-
rectly on m-sized itemsets found to violate k-anonymity.
Our second, apriori anonymization (AA) is a more care-
fully designed heuristic, which explores the space of item-
sets, in an Apriori, bottom-up fashion. AA first identifies
and solves anonymity violations by (l − 1)-itemsets, before
checking l-itemsets, for l=2 to m. By operating in such a
bottom-up fashion, the combinations of itemsets that have
to be checked at a higher level can be greatly reduced, as
in the meanwhile detailed items (e.g., “skim-milk”, “choco-
milk”, “full-fat milk”) could have been generalized to more
generalized ones (e.g., “milk”), thus reducing the number of
items to be combined. Our experimental evaluation, using
real datasets, shows that AA is the most practical algorithm,
as it scales well with the number of items and transactions,
and finds a solution close to the optimal in most tested cases.

The rest of the paper is organized as follows. Section
2 describes related work and positions this paper against
it. Section 3 formally describes the problem that we study,
provides an analysis for its solution space, and defines the
information loss metric we use. In Section 4, we describe
the algorithms and the data structures used by them. Sec-
tion 5 includes an experimental evaluation, and Section 6
concludes the paper.

2. RELATED WORK
Anonymity for relational data has received considerable

attention due to the need of several organizations to publish
data (often called microdata) without revealing the identity
of individual records. Even if the identifying attributes (e.g.,
name) are removed, an attacker may be able to associate
records with specific persons using combinations of other at-
tributes (e.g., 〈zip, sex, birthdate〉), called quasi-identifiers
(QI ). A table is k-anonymized if each record is indistin-
guishable from at least k − 1 other records with respect to
the QI set [18, 19]. Records with identical QI values form an
anonymized group. Two techniques to preserve privacy are
generalization and suppression [19]. Generalization replaces
their actual QI values with more general ones (e.g., replaces

the city with the state); typically, there is a generalization
hierarchy (e.g., city→state→country). Suppression excludes
some QI attributes or entire records (known as outliers) from
the microdata.

The privacy preserving transformation of the microdata
is referred to as recoding. Two models exist: in global recod-
ing, a particular detailed value must be mapped to the same
generalized value in all records. Local recoding, on the other
hand, allows the same detailed value to be mapped to dif-
ferent generalized values in each anonymized group. The re-
coding process can also be classified into single-dimensional,
where the mapping is performed for each attribute individu-
ally, and multi-dimensional, which maps the Cartesian prod-
uct of multiple attributes. Our work is based on global re-
coding and can be roughly considered as single-dimensional
(although this is not entirely accurate), since in our problem
all items take values from the same domain.

[13] proved that optimal k-anonymity for multidimensional
QI is NP -hard, under both the generalization and suppres-
sion models. For the latter, they proposed an approxi-
mate algorithm that minimizes the number of suppressed
values; the approximation bound is O(k · logk). [2] im-
proved this bound to O(k), while [17] further reduced it
to O(log k). Several approaches limit the search space by
considering only global recoding. [4] proposed an optimal
algorithm for single-dimensional global recoding with re-
spect to the Classification Metric (CM ) and Discernibility
Metric (DM ), which we discuss in Section 3.3. Incognito
[9] takes a dynamic programming approach and finds an
optimal solution for any metric by considering all possible
generalizations, but only for global, full-domain recoding.
Full-domain means that all values in a dimension must be
mapped to the same level of hierarchy. For example, in the
country→continent→world hierarchy, if Italy is mapped to
Europe, then Thailand must be mapped to Asia, even if
the generalization of Thailand is not necessary to guarantee
anonymity. A different approach is taken in [16], where the
authors propose to use natural domain generalization hierar-
chies (as opposed to user-defined ones) to reduce information
loss. Our optimal algorithm is inspired by Incognito; how-
ever, we do not perform full-domain recoding, because, given
that we have only one domain, this would lead to unaccept-
able information loss due to unnecessary generalization. As
we discuss in the next section, our solution space is essen-
tially different due to the avoidance of full-domain recoding.
The computational cost of Incognito (and that of our opti-
mal algorithm) grows exponentially, so it cannot be used for
more than 20 dimensions. In our problem, every item can
be considered as a dimension. Typically, we have thousands
of items, therefore we develop fast greedy heuristics (based
on the same generalization model), which are scalable to the
number of items in the set domain.

Several methods employ multidimensional local recoding,
which achieves lower information loss. Mondrian [10] par-
titions the space recursively across the dimension with the
widest normalized range of values and supports a limited
version of local recoding. [1] model the problem as clustering
and propose a constant factor approximation of the optimal
solution, but the bound only holds for the Euclidean dis-
tance metric. [22] propose agglomerative and divisive recur-
sive clustering algorithms, which attempt to minimize the
NCP metric (to be described in Section 3.3). Our problem
is not suitable for multidimensional recoding (after mod-
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eling sets as binary vectors), because the dimensionality of
our data is too high; any multidimensional grouping is likely
to cause high information loss due to the dimensionality
curse. [15, 14] studied multirelational k-anonymity, which
can be translated to a problem similar to the one studied
here, but still there is the fundamental separation between
sensitive values and quasi-identifiers. Moreover there is the
underlying assumption that the dimensionality of the quasi-
identifier is limited, since the authors accept the traditional
unconditional definition of k-anonymity.

In general, k-anonymity assumes that the set of QI at-
tributes is known. Our problem is different, since any com-
bination of m items (which correspond to attributes) can
be used by the attacker as a quasi-identifier. Recently, the
concept of `-diversity [12] was introduced to address the lim-
itations of k-anonymity. The latter may disclose sensitive in-
formation when there are many identical sensitive attribute
(SA) values within an anonymizing group (e.g., all persons
suffer from the same disease). [21, 23, 5] present various
methods to solve the `-diversity problem efficiently. [6] ex-
tends [21] for transactional datasets with a large number
of items per transaction, however, as opposed to our work,
distinguishes between non-sensitive and sensitive attributes.
This distinction allows for a simpler solution that the one
required in out setting, since the QI remains unchanged for
all attackers. [11] proposes an extension of `-diversity, called
t-closeness. Observe that in `-diversity the QI values of all
tuples in a group must be the same, whereas the SA val-
ues must be different. Therefore, introducing the `-diversity
concept in our problem is a challenging, if not infeasible,
task, since any attribute can be considered as QI or SA,
leading to contradicting requirements. We plan to explore
variations of the l-diversity for our setting in the future.

Related issues were also studied in the context of data
mining. [20] consider a dataset D of transactions, each of
which contains a number of items. Let S be a set of as-
sociation rules that can be generated by the dataset, and
S′ ⊂ S be a set of association rules that should be hidden.
The original transactions are altered by adding or remov-
ing items, in such a way that S′ cannot be generated. This
method requires the knowledge of S′ and depends on the
mining algorithm, therefore it is not applicable to our prob-
lem. Another approach is presented in [3], where the data
owner generates a set of anonymized association rules, and
publishes them instead of the original dataset. Assume a
rule a1a2a3 ⇒ a4 (ai’s are items) with support 80 À k and
confidence 98.7%. By definition, we can calculate the sup-
port of itemset a1a2a3 as 80/0.987 ' 81, therefore we infer
that a1a2a3¬a4 appears in 81 − 80 = 1 transaction. If that
itemset can be used as QI, the privacy of the corresponding
individual is compromised. [3] presents a method to solve
the inference problem which is based on the apriori principle,
similar to our approach. Observe that inference is possible
because of publishing the rules instead of the transactions.
In our case we publish the anonymized transactions, there-
fore the support of a1a2a3¬a4 is by default known to the
attacker and does not constitute a privacy breach.

3. PROBLEM SETTING
Let D be a database containing |D| transactions. Each

transaction t ∈ D is a set of items.1 Formally, t is a non-

1We consider only sets and not multisets for reasons of sim-

empty subset of I = {o1, o2, . . . , o|I|}. I is the domain of
possible items that can appear in a transaction. We assume
that the database provides answers to subset queries, i.e.
queries of the form {t | (qs ⊆ t) ∧ (t ∈ D)}, where qs is a
set of items from I provided by the user. The number of
query items provided by the user in qs defines the size of the
query. We define a database as km-anonymous as follows:

Definition 1. Given a database D, no attacker that has
background knowledge of up to m items of a transaction t ∈
D can use these items to identify less than k tuples from D.

In other words, any subset query of size m or less, issued
by the attacker should return either nothing or more than
k answers. Note that queries with zero answers are also se-
cure, since they correspond to background information that
cannot be associated to any transaction.

3.1 Generalization Model
If D is not km-anonymous, we can transform it to a km-

anonymous database D′ by using generalization. General-
ization refers to the mapping of values from an initial do-
main to another domain, such that several different values
of the initial domain are mapped to a single value in the
destination domain. In the general case, we assume the
existence of a generalization hierarchy where each value of
the initial domain can be mapped to a value in the next
most general level, and these values can be mapped to even
more general ones, etc. For example, we could generalize
items “skim-milk” “choco-milk”, and “full-fat milk”, to a
single value “milk” that represents all three detailed con-
cepts. At a higher generalization level, “milk”, “yogurt”,
and “cheese”, could be generalized to “dairy product”. The
effect of generalization is that sets of items which are dif-
ferent in a detailed level (e.g., {skim-milk, bread}, {full-fat
milk, bread}) could become identical (e.g., {milk, bread}).

Formally, we use a generalization hierarchy for the com-
plete domain I of items that may appear in a transaction.
Such an exemplary hierarchy is shown in Figure 1. In this
example we assume I = {a1, a2, b1, b2}, items a1, a2 can be
generalized to A, items b1, b2 can be generalized to B, and
the two classes A, B can be further generalized to ALL.

A B

a
1

a
2

b
1

b
2

ALL

Figure 1: Sample generalization hierarchy

If a generalization is applied to a transaction, this leads
to the replacement of some original items in the transaction
by generalized values. For example, the generalization rule
{a1, a2} → A, if applied to all transactions of the database

plicity. In a multiset transaction, each item is tagged with a
number of occurrences, adding to dimensionality of the so-
lution space. We can transform multisets to sets by consid-
ering each combination of (〈item〉,〈number of appearances〉)
as a different item.
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D, shown in Figure 2a, will result to the database D′, shown
in Figure 2b. Notice that we consider strict set semantics for
the transactions; this leads to possibly reduced cardinality
for the generalized sets. For example, t4 is transformed to t′4
which has two items instead of three. We say that itemset
t′4 is a generalization of itemset t4. Formally a generalized
itemset is defined as follows:

Definition 2. A itemset gt is a generalization of itemset
t iff ∀o(o ∈ t) ⇔ ((o ∈ gt) ∨ (g(o) ∈ gt))

id contents
t1 {a1, b1, b2}
t2 {a2, b1}
t3 {a2, b1, b2}
t4 {a1, a2, b2}

id contents
t′1 {A, b1, b2}
t′2 {A, b1}
t′3 {A, b1, b2}
t′4 {A, b2}

(a) original database (D) (b) transformed database (D′)

Figure 2: Transformation using {a1, a2} → A

If we aim for 22-anonymity, database D in Figure 2a is not
secure, since there are 2-itemsets (e.g., {a1, b1}) that appear
in less than k = 2 transactions (e.g., only in t1). The appli-
cation of the generalization rule {a1, a2} → A to all transac-
tions of D results in a 22-anonymous database D′ (shown in
Figure 2b). To test the anonymity requirement, we have to
translate all possible 2-itemsets from the original domain, to
the generalized domain and count their supports in D′. For
example, finding the support of {a1, b2} in D′ is equivalent
to finding the support of {A, b2} in D′, which is 3 (≥ k). No-
tice that, when testing an original itemset containing two or
more items that are mapped to the same generalized value,
this translates to testing a lower-cardinality set. For exam-
ple, the support of {a1, a2} in D′ is the support of {A} in
D′, that is 4.

We opt for a global recoding approach [4, 9] which applies
the selected generalization rules to all transactions in the
database. An example of global recoding has already been
shown in Figure 2. An alternative local recoding generaliza-
tion [10, 1] would apply selected generalization rules to a
subset of the transactions and result in a database where
items are generalized at different levels at different transac-
tions. This allows more flexibility, however, it explodes the
possible space of solutions, making the km-anonymity prob-
lem even harder. The application of local recoding tech-
niques to solve this problem is a topic of future work.

3.2 Possible solutions
A transformation of the original database D to a D′ is

related to a set of generalizations that apply to domain I.
Formally, the set of possible transformations corresponds to
the set of possible horizontal cuts of the hierarchy tree. Each
such cut, defines a unique set of generalization rules. Figure
3 shows the possible cuts of the hierarchy depicted in Figure
1 together with the corresponding generalization rules. Each
cut corresponds to a set of non-overlapping subtrees of the
hierarchy, which altogether span the complete domain I.
The root of each subtree correspond to the generalization
rule which maps all values in its leaves to the label of the
root.

The trivial generalization I → ALL, suppresses the whole
database, since all items are replaced by a generalized value

A B

a
1

a
2

b
1

b
2

ALL

no generalization

A B

a
1

a
2

b
1

b
2

ALL

{a
1
,a

2
} A

A B

a
1

a
2

b
1

b
2

ALL

{b
1
,b

2
} B

A B

a
1

a
2

b
1

b
2

ALL

{a
1
,a

2
} A

{b
1
,b

2
} B

A B

a
1

a
2

b
1

b
2

ALL

{a
1
,a

2
,b

1
,b

2
} ALL

Figure 3: Possible domain generalizations

(e.g., “product”). This generalization always leads to a km-
anonymous database, assuming that the original database
D has at least k transactions. However, the transformation
eliminates all information from the database, making it use-
less. In Section 3.3 we formally define the information loss
of a generalization rule (and a hierarchy cut).

The set of possible cuts also form a hierarchy, based on
the generalizations implied by them. Figure 4 shows this
hierarchy lattice for the cuts of Figure 3. We say that cut
c1 is a generalization of cut c2, denoted by c1 Â c2, if the
rules of c1 generalize the rules of c2. For example, in Fig-
ure 4, cut 〈{a1, a2, b1, b2} → ALL〉 is a generalization of cut
〈{a1, a2} → A〉. A cut can also be denoted by the general-
ization it derives; e.g., cut 〈{a1, a2} → A〉 can be denoted
as 〈A, b1, b2〉.

no generalization

{a
1
,a

2
} A {b

1
,b

2
} B

{a
1
,a

2
} A

{b
1
,b

2
} B

{a
1
,a

2
,b

1
,b

2
} ALL

Figure 4: Hierarchy of domain generalizations

3.3 Information loss
All privacy-preserving transformations cause information

loss, which must be minimized in order to maintain the abil-
ity to extract meaningful information from the published
data. A variety of information loss metrics have been pro-
posed. The Classification Metric (CM) [8] is suitable when
the purpose of the anonymized data is to train a classi-
fier, whereas the Discernibility Metric (DM) [4] measures
the cardinality of the anonymized groups. More accurate is
the Generalized Loss Metric [8] and the similar Normalized
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Certainty Penalty (NCP ) [22]. In the case of categorical at-
tributes NCP is defined with respect to the hierarchy. Let
p be an item in I. Then:

NCP (p) =

{
0, |up| = 1
|up|/|I|, otherwise

where up is the node of the item generalization hierarchy
where p is generalized. |up| and |I| are the number of leaves
under up and in the entire hierarchy, respectively. Intu-
itively, the NCP tries to capture the degree of generaliza-
tion of each item, by considering the ratio of the total items
in the domain that are indistinguishable from it. For exam-
ple, in the hierarchy of Figure 1, if a1 is generalized to A in
a transaction t, the information loss NCP (a1) is 2/4. The
NCP for the whole database weights the information loss
of each generalized item using the ratio of the item appear-
ances that are affected to the total items in the database. If
the total number of occurrences of item p in the database is
Cp, then the information loss in the whole database due to
the generalization can be expressed by:

NCP (D) =

∑
p∈I Cp ·NPC(p)∑

p∈I Cp

The information loss of a particular generalization (cut)
ranges from 0 to 1 and can be easily measured. If we
scan the database D once and bookkeep the supports of
all items in I, we can use this information to measure the
information loss of any generalization, without having to ac-
cess the database again. For example the information loss
due to cut 〈{a1, a2} → A〉 in the database of Figure 2a is
2·0.5+3·0.5+0+0

11
= 2.5

11
.

3.4 Monotonicity
We now provide a property (trivial to prove), which is

very useful towards the design of algorithms that seek for
the best hierarchy cut.

Property 1. (Monotonicity of cuts) If the hierarchy
cut c results in a km-anonymous database D′ then all cuts
c′, such that c′ Â c also result in a km-anonymous database
D′.

In addition, we know that if c′ Â c, then c′ has higher
cost (information loss) than c. Based on this and Property
1, we know that as soon as we find a cut c that qualifies
the km-anonymity constraint, we do not have to seek for
a better cut in c’s ancestors (according to the cut hierar-
chy). Therefore, for a database with at least k transactions,
there is a set C of cuts, such that for each c ∈ C, (i) the
km-anonymity constraint is satisfied by the database D′ re-
sulting after applying the generalizations in c to D, and (ii)
there is no descendant of c in the hierarchy of cuts, for which
condition (i) is true.

We call C the set of minimal cuts. The ultimate objective
of an anonymization algorithm is to find the optimal cut
copt in C which incurs the minimum information loss by
transforming D to D′. In the next section, we propose a set
of algorithms that operate in this direction.

4. ANONYMIZATION TECHNIQUES
The aim of the anonymization procedure is to detect the

cut in the generalization hierarchy that prevents any pri-
vacy breach and at the same time it introduces the minimum

information loss. We first apply a systematic search algo-
rithm, which seeks for the optimal cut, operating in a similar
fashion like Incognito [9]. This algorithm suffers from the
dimensionality of the generalization space and becomes un-
acceptably slow for large item domains I and generalization
hierarchies. To deal with this problem we propose heuristics,
which instead of searching the whole generalization space,
they detect the privacy breaches and search for local solu-
tions. The result of these methods is a cut on the generaliza-
tion hierarchy, which guarantees km-anonymity, while incur-
ring low information loss. Before presenting these methods
in detail, we present a data structure, which is used by all
algorithms to accelerate the search of itemset supports.

4.1 The count-tree
An important issue in determining whether applying a

generalization to D can provide km-anonymity or not is to
be able to count efficiently the supports of all the combina-
tions of m items that appear in the database. Moreover, if
we want to avoid scanning the database each time we need to
check a generalization, we must keep track of how each pos-
sible generalization can affect the database. To achieve both
these goals we construct a data structure that keeps track
not only of all combinations of m items from I but also all
combinations of items from the generalized databases that
could be generated by applying any of the possible cuts in
the hierarchy tree. The information we trace is the support
of each combination of m items from I, be detailed or gen-
eralized. Note, that if we keep track of the support of all
combinations of size m of items from I, it is enough to es-
tablish whether there is a privacy breach or not by shorter
itemsets. This follows from the Apriori principle that states
that the support of an itemset is always less or equal than
the support of its subsets.

To count the supports of all these combinations and store
them in a compressed way in our main memory, we use
a count-tree data structure, similar to the FP-tree of [7].
An exemplary such tree for the database of Figure 2a and
m = 2 is shown in Figure 5. The tree assumes an order
of the items and their generalizations, based on their fre-
quencies (supports) in D. For instance, the (decreasing
frequency) order of (generalized) items in the database of
Figure 2a is {ALL, A, B, a2, b1, b2, a1}. To compute this
order, a database scan is required. If we want to avoid
the scan, a heuristic approach is to put the items in or-
der of the number of detailed items they generalize (e.g.,
{ALL, A, B, a1, a2, b1, b2}). However, since it makes no sense
to count the number of ALL occurrences (they are always
|D|) and ALL cannot be combined with any other item (it
subsumes all items), there is no need to include ALL in the
tree. The support of each itemset with up to m items can
be computed by following the corresponding path in the tree
and using the value of the corresponding node. For example,
the support of itemset {a1} is 2 (i.e., the value of node a2)
and the support of itemset {A, b2} is 3 (i.e., the value at the
node where path A → b2 ends).

Algorithm 1 is a pseudocode for creating this tree. The
database is scanned and each transaction is expanded by
adding all the generalized items that can be derived by gen-
eralizing the detailed items. Since we assume strict set se-
mantics, each generalized item appears only once. The ex-
pansion of the database of Figure 2a is shown in Figure 6.
Note that the expansion does not have to be done explicitly
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for the database; in practice, we expand each transaction t
read from D on-the-fly. For each expanded transaction t,
we find all subsets of t up to size m which do not contain
any two items i, j, such that i is a generalization of j, we
follow the corresponding path at the tree (or create it if not
already there) and increase the counter of the final node
in this search. For example, the expanded transaction t2
in Figure 6 generates the following itemsets: a2, b1, A, B,
{a2, b1}, {a2, B}, {b1, A}, {A, B}.

23 3 3

a1A b2b1a2B

4 4

b2 b1

3 2

B

2

b2
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2 2

b1
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Figure 5: Count-tree for the database of Figure 2

Algorithm 1 Creation of the tree for km anonymity

populateTree(D, tree, m)
1: for all t in D do . for each transaction
2: expand t with the supported generalized items
3: for all combination of c ≤ m items in the expanded

t do
4: if @i, j ∈ c such that i generalizes j then
5: insert c in tree
6: increase the support counter of the final node

Although this tree facilitates fast support counting for
any ad-hoc set of m items or less, generalized in any ad-hoc
fashion, (i) it requires a large amount of memory, and (ii) its
construction incurs high computational cost, as all m-sized
or less itemsets, generalized or not, in every transaction t
have to be found and inserted into the tree. For a database
of |D| transactions, each of size τ , the tree construction cost
is O(|D| · ( τ

m

)
). Our best algorithm, discussed in Section

4.4 greatly decreases this cost, by examining the itemsets
level-by-level and using the Apriori property to reduce the
number of item combinations that need to be inserted to the
tree and counted.

4.2 Optimal anonymization
To find the optimal cut, i.e., the generalization that sat-

isfies km-anonymity and has the least information loss, we
can examine systematically the generalizations in the cut hi-
erarchy, in a bottom-up, breadth-first fashion. Initially, the
cut cng which corresponds to no generalization (i.e., bot-
tommost cut in the hierarchy) is put to a queue Q. While Q
is not empty, we remove the first cut c from it and examine

id contents
t1 {a1, b1, b2, A, B}
t2 {a2, b1, A, B}
t3 {a2, b1, b2, A, B}
t4 {a1, a2, b2, A, B}

Figure 6: Expanded Database

whether c satisfies km-anonymity. If so, it becomes a can-
didate solution. Any immediate ancestors of c are marked
as non-optimal (since they cannot be minimal cuts) and re-
moved from Q if they appear there. The marked combina-
tions are kept in a hash table H, so they will not be added
again in the in Q at the future. The information loss of c
is computed and compared with that of the best found cut
copt so far. If c’s information loss is lower, then c replaces
copt as the optimal solution found so far.

If c does not satisfy km-anonymity, its immediate ances-
tors in the hierarchy, which do not have a descendant cut
that satisfies km-anonymity, are added to the queue of cuts
Q to be examined at the next lattice levels. The algorithm
terminates as soon as Q is empty. Algorithm 2 is a pseu-
docode of this optimal anonymization (OA) algorithm.

Note that the immediate ancestors of a cut c are cre-
ated constructively, by replacing a set of (generalized) items
which have common parent in the item hierarchy, by their
parent. For example, cut 〈A, B〉 is derived from 〈A, b1, b2〉,
by replacing {b1, b2}, by B. This way the complete hierarchy
lattice of the cuts does not need to be precomputed.

It is easy to see that when the size of I (and the corre-
sponding generalization hierarchy of items) grows the algo-
rithm becomes prohibitive expensive. In specific, assuming
that the item generalizations form a tree hierarchy of node
degree κ, then the number of possible cuts is the solution
to the recurrence T (N) = 1 + T (N/κ)κ, for N = I, which

is lower-bounded by 2N/κ, i.e., exponential to N . More-
over, each iteration requires checking the supports of all m-
itemsets with respect to the corresponding generalization, in
order to determine whether the current node satisfies km-
anonymity or not. The basic problem of the optimal algo-
rithm is that it performs its search based on the domain
of the database. In the next sections we present heuristic
approaches that greedily search for a domain generalization
that provides km-anonymity to D and, at the same time,
have low information loss.

Algorithm 2 Optimal Anonymization algorithm

OA(D, I, k, m)
1: copt := null; copt.cost := ∞ . initialize copt

2: add cng to an initially empty queue Q
3: while (Q is not empty) do
4: pop next cut c from Q
5: if c does not provide km-anonymity to D then
6: for all immediate ancestors cans of c do
7: if cans does not appear in H then
8: push cans to Q

9: else . c provides km-anonymity to D
10: for all immediate ancestors cans of c do
11: add cans to H
12: if cans in Q then
13: delete cans from Q

14: if c.cost < copt.cost then
15: copt := c

16: return copt

4.3 Direct anonymization
The basic idea our first heuristic algorithm, called direct

anonymization (DA), is to scan the count-tree once for pos-
sible privacy breaches and then use the generalized combi-
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nations to track down a solution that solves each problem.
Similar to the optimal anonymization (OA) algorithm, this
method is based on the pre-computation of the complete
count-tree for sets consisting of up to m (generalized) item-
sets. DA scans the tree to detect m-sized paths that have
support less than k. For each such path, it generates all
the possible generalizations, in a level-wise fashion, simi-
lar to the optimal anonymization (OA) algorithm, and finds
among the minimal cuts that solve the specific problem, the
one which incurs the lowest information loss.

Specifically, once the count-tree has been created, DA ini-
tializes the output generalization cout, as the bottommost
cut of the lattice (i.e., no generalization). It then performs
a preorder (i.e., depth-first) traversal of the tree. For every
node encountered (corresponding to a prefix), if the item
corresponding to that node has already been generalized in
cout, DA backtracks, as all complete m-sized paths passing
from there correspond to itemsets that will not appear in the
generalized database based on cout (and therefore their sup-
ports need not be checked). For example, if the algorithm
reaches the prefix path B-a2 the algorithm will examine its
descendants only if B and a2 have not already been further
generalized. Note that this path will be examined even if
the items b1 and b2 have not been generalized to item B.
Due to the monotonicity of the problem, we know that if
B-a2 leads to a privacy breach, then it is certain that b1-a2

and b1-a1 lead to privacy breach. Addressing the problem
for the path B-a2 allows the algorithm to avoid examining
the other two paths. During the traversal, if a leaf node is
encountered, corresponding to an m-itemset J (with gen-
eralized components or not), DA checks whether the cor-
responding count J.count is less than k. In this case, DA
seeks for a cut which (i) includes the current generalization
rules in cout and (ii) makes the support of J at least k. This
is done in a similar fashion as in OA, but restricted only
to the generalization rules which affect the items of J . For
example, if J = {a1, a2}, only generalizations {a1, a2} → A
and {a1, a2, b1, b2} → ALL will be tested. In addition, from
the possible set of cuts that solve the anonymity breach with
respect to J , the one with the minimum information loss is
selected (e.g., {a1, a2} → A). The generalization rules in-
cluded in this cut are then committed (i.e., added to cout)
and any path of the count-tree which contains items at a
more detailed level (e.g., a1 and a2) than cout is pruned
from search subsequently.

Algorithm 3 is a high-level pseudocode for DA.

Algorithm 3 Direct Anonymization

DA (D, I, k, m)
1: scan D and create count-tree
2: initialize cout

3: for each node v in preorder count-tree traversal do
4: if the item of v has been generalized in cout then
5: backtrack
6: if v is a leaf node and v.count < k then
7: J := itemset corresponding to v
8: find generalization of items in J that make J k-

anonymous
9: merge generalization rules with cout

10: backtrack to longest prefix of path J , wherein no
item has been generalized in cout

11: return cout

As an example, assume that we want to make the database
of Figure 2a 22-anonymous. First, DA constructs the count-
tree, shown in Figure 5. cout is initialized to contain no
generalization rules. Then DA performs a preorder traversal
of the tree. The first leaf node encountered with a support
less than 2 is a1 (i.e., path a2-a1). The only minimal cut
that makes {a2, a1} k-anonymous is {a1, a2} → A, therefore
the corresponding rule is added to cout. DA then backtracks
to the next entry of the root (i.e., b1) since any other path
starting from a2 would be invalid based on cout (i.e., its
corresponding itemset could not appear in the generalized
database according to cout). The next path to check would
be b1-b2, which is found non-problematic. DA then examines
b1-a1, but backtracks immediately, since a1 has already been
generalized in cout. The same happens with b2-a1 and the
algorithm terminates with output the cut 〈{a1, a2} → A〉.

The main problem of DA is that it has significant memory
requirements and computational cost, because it generates
and scans the complete count-tree for all m-sized combina-
tions, whereas it might be evident from smaller-sized com-
binations that several generalizations are necessary. This
observation leads to our next algorithm.

4.4 Apriori-based anonymization
Our second heuristic algorithm is based on the apriori

principle; if an itemset J of size i causes a privacy breach,
then each superset of J causes a privacy breach. Thus, it
is possible to perform the necessary generalizations progres-
sively. First we examine the privacy breaches that might be
feasible if the adversary knows only 1 item from each tra-
jectory, then 2 and so forth till we examine privacy threats
from an adversary that knows m items.

The benefit of this algorithm is that we can exploit the
generalizations performed in step i, to reduce the search
space at step i+1. The algorithm practically iterates the
direct algorithm for combination of sizes i = {1, . . . , m}. At
each iteration i the database is scanned and the count-tree is
populated with itemsets of length i. The population of the
tree takes into account the current set of generalization rules
cout, thus significantly limiting the combinations of items to
be inserted to the tree. In other words, in the count-tree at
level i, i-itemsets which contain items already generalized in
cout are disregarded. Algorithm 4 is a pseudocode for this
apriori-based anonymization (AA) technique.

Algorithm 4 Apriori-based Anonymization

AA (D, I, k, m)
1: initialize cout

2: for i := 1 to m do . for each itemset length
3: initialize a new count-tree
4: for all t ∈ D do . scan D
5: extend t according to cout

6: add all i-subsets of extended t to count-tree
7: run DA on count-tree for m = i and update cout

Note that in Line 5 of the algorithm, the current transac-
tion t is first expanded to include all item generalizations (as
discussed in Section 4.1), and then all items that are gener-
alized in cout are removed from the extended t. For exam-
ple, assume that after the first loop (i.e., after examining 1-
itemsets), cout = 〈{a1, a2} → A〉. In the second loop (i=2),
t4 = {a1, a2, b2} is first expanded to t4 = {a1, a2, b2, A, B}
and then reduced to t4 = {b2, A, B}, since items a1 and
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a2 have already been generalized in cout. Therefore, the
2-itemsets to be inserted to the count-tree due to this trans-
action are significantly decreased.

The size of the tree itself is accordingly decreased since
combinations that include detailed items (based on cout) do
not appear in the tree. As the algorithm progresses to larger
values of i, the effect of pruned detailed items (due to cout)
increases because (i) more rules are expected to be in cout (ii)
the total number of i-combinations increases exponentially
with i. Overall, although D is scanned by AA m times, the
computational cost of the algorithm is expected to be much
lower compared to DA (and OA). The three algorithms are
compared in the next section with respect to (i) their com-
putational cost and (ii) the quality of the km-anonymization
they achieve.

5. EXPERIMENTS
We evaluated experimentally the proposed anonymization

techniques, i.e., the OA, DA and AA algorithms, by applying
them on data stemming from real world applications. In the
following we detail the experimental setup, the performance
factors we trace and the parameters we vary.

All algorithms use the count-tree to evaluate their can-
didate generalization, thus they avoid scanning the actual
database (OA and DA scan the database once and AA scans
it m times). The tree is kept in main memory at all times.
The implementation was done in C++ and the experiments
were performed on a core-2 duo 2.8GHz CPU server, with
2Gb memory, running Linux.

5.1 Experimental Setup

5.1.1 Evaluation metrics
We evaluate our algorithms with respect to three perfor-

mance factors: a) total execution time, b) memory require-
ments and c) information loss. Since all our three algo-
rithms use the tree to detect privacy breaches and evaluate
candidate solutions, the total time is basically CPU time.2

Moreover, the memory requirements are dominated by the
count-tree so we report the memory usage in terms of tree
nodes generated. Finally, we measure the information loss
using the NCP measure we introduced in Section 3.3.

5.1.2 Evaluation parameters
We investigate how our algorithms behave in terms of sev-

eral parameters: (i) the domain size |I|, (ii) the database
size |D| in terms of number of transactions, (iii) parameters
m and k of the km-anonymity model, and (iv) the height
h of the hierarchy tree, assuming a balanced tree with |I|
leaves, where each non-leaf node has the same degree.

5.1.3 Datasets
To have a realistic setting for our experimental evaluation,

we used three real word-datasets introduced in [24]: BMS-
POS, BMS-WebView-1 and BMS-WebView-2. Dataset BMS-
POS is a transaction log from several years of sales of an
electronics retailer. Each record represents the products
bought by a customer in a single transaction. The BMS-
WebView-1 and BMS-WebView-2 datasets contain click-
stream data from two e-commerce web sites, collected over a

2Although AA scans the database m times, instead of 1 time
by OA and DA, the cost of this additional I/O is negligible
compared to the savings in computation.

period of several months. The characteristics of each dataset
are detailed in Figure 7. We found that the OA and the DA
algorithms cannot deal with datasets that have very large
domains (DA runs out of memory because it performs no
pruning to the combinations of items inserted to the count-
tree, and OA does not provide a solution within reasonable
response time, i.e., several hours). Still, to be able to evalu-
ate how our heuristics compare to the optimal algorithm in
terms of information loss we created several smaller datasets
with data originating from BMS-WebView-2 in the follow-
ing way. We took the first 2K,5K,10K and 15K records and
created four new datasets. Moreover, we had to limit the
items domain to only 40 distinct items, so that we could have
some results from the OA algorithm which scales the worse
compared to the other methods in the domain size. To in-
vestigate how OA scales when the domain grows we created
two more datasets with 10K records from BMS-WebView-2
with a domain size of 50 and 60 (for larger domains the al-
gorithm did not respond in a reasonable time). We reduced
the domain by performing a modulo on the items ids and
sequentially removing the duplicates.

Unfortunately, we did not have any real hierarchies for
the data, so we constructed some artificial ones. We created
those by choosing a degree for each node in the hierarchy
tree, that is a default number of values that are generalized
in a direct generalization. For example if we decide on a
degree n, then each generalization from one level to another
generalizes n items. If the size of the domain is not divided
by n, some smaller generalization classes can be created. We
used a degree 5 for the original datasets and a degree of 4
for the smaller datasets.

dataset |D| |I| max |t| avg |t|
BMS-POS 515,597 1,657 164 6.5
BMS-WebView-1 59,602 497 267 2.5
BMS-WebView-2 77,512 3,340 161 5.0

Figure 7: Characteristics of the datasets (|t| stands
for transaction size)

5.2 Experimental Results
Figures 8a and 8b show how the computational cost and

memory requirements of the algorithms scale with the in-
crease of the database size |D|, after fixing the remaining
parameters to |I| = 40, k = 100, m = 3, and h = 4. The
figure shows that OA and DA have identical performance,
which increases linearly to the database size. This is due to
the fact that the performance of these methods rely on the
size of the count-tree which is not very sensitive to |D|, as
the distinct number of m-itemset combinations does not in-
crease significantly. On the other hand, AA is initially much
faster compared to the other methods and converges to their
cost as |D| increases. This is expected, because as |D| in-
creases less i-length itemsets for i < m become infrequent.
As a result, AA is not able to significantly prune the space
of m-itemsets to be included in the count-tree at its last
iteration, due to generalizations performed at the previous
loops (where i < m). This is also evident from the memory
requirements of AA (i.e., the size of the count-tree at the m-
th iteration) which converge to the memory requirements of
the other two algorithms. Nevertheless, as we will see later,
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AA does not have this problem for realistic item domain
sizes (|I|). Figure 8c shows the information loss incurred
by the three methods in this experiment. Note that all of
them achieve the same (optimal) loss, which indicates the
ability of DA and AA in finding the optimal solution. This
behavior is a result of the limited domain size, which leads
to a relatively small solution space. In this space the AA
and DA manage to find the same, optimal cut.

Figure 9 shows the effect of the domain size |I| to the
performance of the three methods, after fixing |D| = 10K,
k = 100, m = 3, and h = 4. The results show that the
costs of DA and AA increase linearly with the item domain
size, however, OA has exponential computational cost with
respect to |I|, as expected by our analytical results. The
memory requirements of OA and DA increase super-linearly
with |I|, while AA achieves better scalability, due to its
ability to prune items at early iterations. This does not
compromise the information loss of the algorithm, which is
the same as that of the optimal solution by OA.

In the next experiment, we change the value of m, fix
the values of other experimental parameters (|D| = 10K,
|I| = 40, k = 100, h = 4), and compare the three algorithms
on the three performance factors. As shown in Figure 10,
the CPU-time of OA and DA does not scale well with m
(exponential), while the cost of AA increases linearly. This
is due to the exponential increase at the size of the count-tree
used by these two algorithms. Again, AA achieves better
scalability, due to the early generalization of a large number
of items. The information loss of DA and AA is very close
to that of the optimal solution.

In the last set of experiments (depicted in Figure 11), we
measure the computational cost (in msec), memory require-
ments (in number of nodes in the count-tree), and informa-
tion loss of the AA algorithm for large, realistic problems,
where OA and DA cannot run. We used the exact POS,
WV1 and WV2 datasets as described in Figure 7. First, we
show the performance of AA on all three datasets by setting
m=3, k=5, and the degree of each node in the generaliza-
tion hierarchies of all domains to 5 (this results in h = 6,
h = 5, and h = 7, for POS, WV1, and WV2, respectively).
Figure 11a shows that AA runs in acceptable time, gener-
ating a manageable count-tree, and producing a solution of
low information loss (maximum 3%). Figure 11b shows the
performance of AA on the POS dataset, after varying k and
keeping the values of m and h fixed. The plot shows that
both the computational cost and the memory requirements
are insensitive to k. Figure 11c, fixes m and k and varies
h. Note that for smaller values of h AA is faster but pro-
duces worse solutions. For h = 4, in specific, AA fails to
find a non-trivial generalization of the dataset (we noted
that this was the only experimental instance where actually
AA performed badly). For all other values the quality of
the solution is very good (information loss close to 1%). Fi-
nally, Figure 11d shows how the performance is affected by
varying m while fixing k and h. Time increases as m grows
and the solution found becomes slightly worse in terms of
information loss (but within acceptable limits). This is ex-
pected, as m increases the maximum length of itemsets to
be checked and the size of the tree, accordingly.

In summary, AA is a powerful heuristic for solving km-
anonymity problems of realistic sizes, where the application
of an optimal solution is prohibitively expensive.

6. CONCLUSIONS
In this paper, we studied the k-anonymization problem

of set-valued data. We defined the novel concept of km-
anonymity for such data and analyzed the space of possible
solutions. Based on our analysis, we developed an optimal,
but not scalable, algorithm which is not practical for large,
realistic databases. In view of this, we developed two greedy
heuristic methods, of lower computational cost, which find
near-optimal solutions. Our apriori-based anonymization al-
gorithm, in specific, is scalable and has low memory require-
ments, making it practical for real problems.

We emphasize that our techniques are also directly appli-
cable for databases, where tuples contain both a set-valued
attribute and other sensitive attributes. In this case, k-
anonymity with respect to all m-subsets of the domain of
the set-valued attribute can help avoiding associating the
sensitive value to less than k tuples. In the future, we aim
at extending our model to l-diversity considering sensitive
values associated to set-valued quasi-identifiers. We will also
investigate local recoding techniques, which will potentially
result in lower information loss by the published data.
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