
Answering Top-k Queries with Multi-Dimensional
Selections: The Ranking Cube Approach∗

Dong Xin Jiawei Han Hong Cheng Xiaolei Li
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL, 61801

{dongxin, hanj, hcheng3, xli10}@uiuc.edu

ABSTRACT
Observed in many real applications, a top-k query often con-
sists of two components to reflect a user’s preference: a se-
lection condition and a ranking function. A user may not
only propose ad hoc ranking functions, but also use different
interesting subsets of the data. In many cases, a user may
want to have a thorough study of the data by initiating a
multi-dimensional analysis of the top-k query results. Pre-
vious work on top-k query processing mainly focuses on op-
timizing data access according to the ranking function only.
The problem of efficient answering top-k queries with multi-
dimensional selections has not been well addressed yet.

This paper proposes a new computational model, called
ranking cube, for efficient answering top-k queries with multi-
dimensional selections. We define a rank-aware measure
for the cube, capturing our goal of responding to multi-
dimensional ranking analysis. Based on the ranking cube,
an efficient query algorithm is developed which progressively
retrieves data blocks until the top-k results are found. The
curse of dimensionality is a well-known challenge for the
data cube and we cope with this difficulty by introducing
a new technique of ranking fragments. Our experiments
on Microsoft’s SQL Server 2005 show that our proposed
approaches have significant improvement over the previous
methods.

1. INTRODUCTION
Ranking queries (or top-k queries) are commonplace in many
real world applications, e.g., searching Web database, k-
nearest neighbor search with approximate matches and sim-
ilarity queries in multimedia databases. A top-k query only

∗The work was supported in part by the U.S. National Sci-
ence Foundation NSF IIS-03-08215/05-13678 and NSF BDI-
05-15813. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agen-
cies.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

returns the best k results according to a user-specified pref-
erence, which generally consists of two components: a se-
lection condition and a ranking function. An example of a
top-k query is shown as follows.

Example 1. Consider an online used car database R that
maintains the following information for each car: type (e.g.,
sedan, convertible), maker (e.g., Ford, Hyundai), color (e.g.,
red, silver), transmission (e.g., auto, manual), price, milage,
etc.. Two typical top-k queries over this database are:

Q1 : select top 10 ∗ from R

where type = “sedan” and color = “red”

order by price + milage asc

Q2 : select top 5 ∗ from R

where maker = “ford” and type = “convertible”

order by (price − 20k)2 + (milage − 10k)2 asc

Q1 queries top-10 red sedans whose combined score over
price and milage is minimized. Q2 searches top-5 convert-
ibles made by Ford, and the user expected price is $20k and
expected milage is 10k miles.

The used car database may have other selection criteria for
a car such as whether it has power window, air conditioner,
sunroof, power steering, etc.. The number of attributes
available for selection could be extremely large. A user may
pick any subset of them and issue a top-k query using his/her
preferred ranking function on the measure attributes (e.g.,
price and milage). There are many other similar application
scenarios, e.g., the hotel search where the ranking functions
are often constructed on the price and the distance to the
interested area, and selection conditions can be imposed on
the district of the hotel location, the star level, whether the
hotel offers complimentary treats, internet access, etc.. Fur-
thermore, in many cases, the user has his/her own criterion
to rank the results and the ranking functions could be linear,
quadratic or any other forms.

As shown in the above examples, different users may not
only propose ad hoc ranking functions but also use different
interesting subset of data. In fact, in many cases, users may
want to have a thorough study of the data by taking a multi-
dimensional analysis of the top-k query results. In the used

 463

car example given above, if a user is not satisfied by the top-
5 results returned by Q2, he/she may roll up on the maker
dimension and check the top-5 results on all convertibles.

The above application scenarios propose a new challenging
task for database system: How to efficiently process top-k
queries with multi-dimensional selection conditions and ad
hoc ranking functions. Given the sample queries in Exam-
ple 1, current database systems will have to evaluate all the
data records and output those top-k results which satisfy
the selection conditions. Even if indices are built on each
selection dimension, the database executer still needs to is-
sue multiple random accesses on the data. This is quite ex-
pensive, especially when the database is large. Recent work
on rank-aware data organization includes Onion [8], which
builds convex hulls on data records according to their ge-
ometry relations and answers top-k queries by progressively
retrieving data with levels; and PREFER [16], which creates
ranked views and answers top-k queries by mapping query
parameters to view parameters. Both approaches assume
the ranking functions are linear, and hence have limitations
to answer other common ranking functions. Moreover, their
data organizations are not aware of the multi-dimensional
selection conditions. A closely related study is the top-k se-
lection queries proposed in [4], where the authors proposed
to map a top-k selection query to a range query. The soft se-
lection conditions in their queries are essentially the ranking
functions for the k nearest neighbor search and our problem
of answering top-k queries with hard selection conditions is
not considered.

For multi-dimensional analysis, data cube [12] has been ex-
tensively studied. Materialization of a data cube is a way to
pre-compute and store multi-dimensional aggregates so that
online analytical processing can be performed efficiently.
Traditional data cubes store the basic measures such as
SUM, COUNT, AVERAGE, etc., which are not able to an-
swer complicated top-k queries. To the best of our knowl-
edge, the problem of efficient processing top-k queries with
multi-dimensional selection conditions is not well addressed
yet.

In this paper, we propose a new computational model, called
ranking cube, for efficient answering multi-dimensional top-
k queries. We define a rank-aware measure for the cube,
capturing our goal of responding to multi-dimensional rank-
ing analysis. Using the ranking cube, we develop an ef-
ficient query algorithm. The curse of dimensionality is a
well-known challenge for data cube and we cope with this
difficulty by introducing a new technique of ranking frag-
ments. More specifically, the contribution of this paper can
be summarized as follows.

Rank-aware data cubing: We propose a new data cube
structure which takes ranking measures into consideration
and supports efficient evaluation of multi-dimensional se-
lections and ad hoc ranking functions simultaneously. The
“measure” in each cell is a list of tuple-IDs and its geometry-
based partition facilitates efficient data accessing.

Query execution model: Based on the ranking cube, we
develop an efficient query algorithm. The computational
model recognizes both the progressive data accesses and the

block-level data accesses.

Ranking fragments: To handle high-dimensional rank
queries and overcome the curse-of-dimensionality challenge,
we introduce a semi-materialization and semi-online compu-
tation model, where the space requirement for materializa-
tion grows linearly with the number dimensions.

The remainder of the paper is organized as follows. In Sec-
tion 2, we formally present the problem formulation. In Sec-
tion 3, we introduce the ranking cube structure, as well as
the query execution algorithm based on the ranking cube.
Section 4 describes the design of ranking fragments. Our
performance study is presented in Section 5. We discuss the
related work and the possible extensions in Section 6, and
conclude our study in Section 7.

2. PROBLEM FORMULATION
Consider a relation R with categorical attributes A1, A2,
. . . , AS and real valued attributes N1, N2, . . . , NR. A top-k
query specifies the selection conditions on a subset of cat-
egorical attributes and formulates a ranking function on a
subset of real valued attributes. The result of a top-k query
is an ordered set of k tuples that is ordered according to
the given ranking function. A possible SQL-like notation
for expressing top-k queries is as follows:

select top k ∗ from R

where A′
1 = a1 and . . . A′

i = ai

order by f(N ′
1, . . . , N

′
j)

Where {A′
1, A

′
2, . . . , A

′
i} ⊆ {A1, A2, . . . , AS} and {N ′

1, N ′
2

,. . . , N ′
j} ⊆ {N1, N2, . . . , NR}. The results can be ordered

by score ascending or descending order. Without losing gen-
erality, we assume the score ascending order is adopted in
this paper.

We further notate Ai (i = 1, . . . , S) as selection dimension
and Ni (1, . . . , R) as ranking dimension. In general, a real
valued attribute can also be a selection dimension if it is
discretized. A categorical attribute can also be a ranking
dimension if the distance is defined on the values in the
domain. In this paper, we assume the number of ranking
dimensions is relatively small (e.g., 2-4), while the num-
ber of selection dimensions could be rather large (e.g., more
than 10). This is a typical setting for many real applica-
tions. For example, both the used car database and the hotel
database only have a limited number of ranking dimensions
(e.g., price, milage, distance). While the number of selec-
tion dimensions is much larger. Our proposed method can
be naturally extended to cases where the number of ranking
dimensions is also large (See Section 6).

For simplicity, we demonstrate our method using the convex
ranking functions. Its extension to other functions will be
discussed later in this paper. The formal definition of the
convex function is presented in Definition 1.

Definition 1. (Convex Function [23]) A continuous
function f is convex if for any two points x1 and x2 in its
domain [a, b], and any λ where 0 < λ < 1:

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

 464

The convex functions already cover a broad class of com-
monly used functions. For example, all linear functions
are convex. Note we made no assumption on the linear
weights and they can be chosen either positive or nega-
tive. Hence the convex functions are more general to the
commonly discussed linear monotone functions where the
weights are restricted to be non-negative. Many distance
measures are also convex functions. Suppose a top-k query
looks for k tuples t = (t1, . . . , tr) which are the closest to
the target value v = (v1, . . . , vr), both the ranking functions
f(t) = r

i=1(ti − vi)
2 and f(t) = r

i=1 |ti − vi| are convex.

3. RANKING CUBE
In this section, we introduce the new computational model:
ranking cube. We show the structure of the cube, the con-
struction method and the techniques to answer top-k query
using ranking cube. We first consider the case where the
number of selection dimensions is small so that computing
a full ranking cube over all selection dimensions is possible.
The extension to larger number of selection dimensions can
be handled by ranking fragments, which will be presented in
next section.

3.1 Cube Structure
3.1.1 General Principles
Suppose a relation R has selection dimensions (A1, A2, A3,
. . . , AS) and ranking dimensions (N1, N2, . . . , NR). We build
the ranking cube on the selection dimensions, and thus the
multi-dimensional selection conditions can be naturally han-
dled by the cube structure. To efficiently answer top-k
queries with ad hoc ranking functions, the measure in each
cell should have rank-aware properties.

A näıve solution is to put all the related tuples with their
values on the ranking dimensions in each cell. This approach
has two limitations: First, it is not space efficient because
generally real values consume large spaces; and second, it
is not rank-aware because the system does not know which
tuple should be retrieved first w.r.t. an ad hoc ranking func-
tion.

To reduce the space requirement, we can only store the tuple
IDs (i.e., tid) in the cell. We propose two criteria to cope
with the second limitation: the geometry-based partition and
the block-level data access. The first one determines which
tuples to be retrieved, and the second one defines how the
tuples are retrieved. To respond to ranked query efficiently,
we put the tuples that are geometrically close into the same
block. During the query processing, the block which is the
most promising to contain top answers will be retrieved first,
and the remaining blocks will be retrieved progressively until
the top-k answers are found.

3.1.2 Geometry Partition
Based on the above motivation, we create a new dimension
B (i.e., block dimension) on the base table. The new block
dimension organizes all tuples in R into different rank-aware
blocks, according to their values on ranking dimensions. To
illustrate the concept, a small database, Table 1, is used as a
running example. Let A1 and A2 be categorical attributes,
and N1 and N2 be numerical attributes.

tid A1 A2 N1 N2

1 1 1 0.05 0.05
2 1 2 0.65 0.70
3 1 1 0.05 0.25
4 1 1 0.35 0.15
...

Table 1: An Example Database

Suppose the block size is P . There are many ways to parti-
tion the data into multiple blocks such that (1) the expected
number of tuples in each block is P , and (2) the tuples in
the same block are geometrically close to each other. One
possible way is the equi-depth partition [22] of each ranking
dimension. The number of bins b for each dimension can be
calculated by b = (T

P
)

1
R , where R is the number of ranking

dimensions and T is the number of tuples in the database.

There are other partition strategies, e.g., equi-width parti-
tion, multi-dimensional partition [20], etc.. For simplicity,
we demonstrate our method using equi-depth partitioning.
Our framework accepts other partitioning strategies and we
will discuss this in section 6. Without loss of generality, we
assume that the range of each ranking dimension is [0, 1].
We refer the partitioned blocks as base blocks, and the new
block dimension B contains the base block IDs (simplified
as bid) for each tuple. The original database can be decom-
posed into two sub-databases: the selection database which
consists of the selection dimensions and the new dimension
B, and the base block table which contains the ranking di-
mensions and the dimension B. The equi-depth partitioning
also returns the meta information of the bin boundaries on
each dimension. Such meta information will be used in query
processing. Example 2 shows an equi-depth partitioning of
the sample database.

Example 2. Suppose the data is partitioned into 16 blocks
(Fig. 1). The original database is decomposed into two sub-
databases as shown in Table 2. The bid is computed ac-
cording to sequential orders (e.g., the four blocks on the first
row are b1, b2, b3, b4; the four blocks on the second row are
b5, b6, b7, b8; etc.). The selection dimension coupled with the
dimension B will be used to compute ranking cube, and the
ranking dimension table keeps the original real values. The
meta information returned by the partitioning step is the
bin boundaries: BinN1 = [0, 0.4, 0.45, 0.8, 1] and BinN2 =
[0, 0.2, 0.45, 0.9].

t4

t2

1 3 4

1

2

3

4

t1
2

t3

Figure 1: Equi-Depth Partitioning

 465

tid A1 A2 B
1 1 1 1
2 1 2 11
3 1 1 5
4 1 1 1
...

tid B N1 N2

1 1 0.05 0.05
2 11 0.65 0.70
3 5 0.05 0.25
4 1 0.35 0.15
...

Table 2: Table Decomposition

3.1.3 Rank-Aware Data Cubing
A cuboid in the ranking cube is named by the involved se-
lection dimensions and ranking dimensions. For example,
the cuboid A1A2 N1N2 corresponds to selection dimensions
A1, A2 and ranking dimensions N1, N2.

Our first proposal is to organize the tid list with respect
to the different combinations of selection dimension and the
dimension B (e.g., a1

1a
1
2b1, where a1

1, a1
2 and b1 are values on

dimension A1, A2 and B). Since each bid represents a geom-
etry region, the materialized ranking cube is able to quickly
locate the cell which is the most promising for a given top-k
query. Let us call the base blocks given by the equi-depth
partitioning logical blocks and the disk blocks used to store
the tid list physical blocks. Before the multi-dimensional
data cubing, each logical block corresponds to one physical
block. However, with the multi-dimensional data cubing,
the tuples in each logical base block (e.g., b1) are distributed
into different cells (e.g., a1

1a
1
2b1, a2

1a
2
2b1, etc.), and thus the

number of tuples in each cell is much smaller than the phys-
ical block size. In order to leverage the advantage provided
by block-level data access on disk, we introduce the pseudo
block as follows. The base block size is scaled in each cuboid
such that the expected number of tuples in each cell occupies
a physical block. Let the cardinality of the selection dimen-
sions of a cuboid A1A2 . . . AS N1N2 . . . NR be c1, c2, . . . , cs,
the expected number of tuples in each cell is n = P

(s
j=1 cj)

,

where P is the block size. The scale factor can be computed

by sf = �(T
n

)
1
s � = �(s

j=1 cj)
1
s �. The pseudo block is cre-

ated by merging every other sf bins on each dimension. We
assign the pseudo block ID (or, pid) to the dimension B for
each tuple, and the bid value is stored together with tid in
the cell. A pseudo block partitioning is demonstrated in
Example 3.

Example 3. In Table 2, let the cardinalities of A1 and A2

be 2, and there will be 4 pseudo blocks (Fig. 2). The solid
lines are the partitions for pseudo blocks and the dashed lines
are the original partitions for base blocks. The new cuboid
is shown in Table 3.

1

t2

t1

t3

t4
21

2

Figure 2: Pseudo Block Partitioning

A1 A2 pid tid (bid) List
1 1 1 1(1), 3(5),4(1)
1 2 4 3(11)
...

Table 3: A1A2 N1N2 Cuboid After Pseudo Blocking

Given a database with S selection dimensions and R ranking
dimensions, a ranking cube consists of a triple 〈T, C, M〉,
where T is the base block table on R ranking dimensions; C
is the set 2S − 1 different ranking cuboids according to the
combination of S selection dimension; and M is the set of
meta information which includes the bin boundaries for each
ranking dimension and the scale factors for each cuboid.

3.2 Online Query Computation
Here we discuss how to answer top-k queries using ranking
cube. We first define the data access methods, then present
the query processing algorithm. Finally, we demonstrate the
algorithm by a running example.

3.2.1 Data Access Methods
We assume the ranking cube is stored on disk, and we only
access data at the block-level. The two data access meth-
ods are: get pseudo block and get base block. The first one
accesses the ranking cube. It accepts a cell identifier in a
ranking cube, (e.g., A1 = a1, A2 = a2, pid = p1), and re-
turns a list of bid and tid in the cell; and the second one
accesses the base block table. It accepts a bid and returns a
list of tid and their real values of the ranking dimensions.

Here we briefly explain why the combination of both data
access methods may benefit the query processing. First, if
the get pseudo block were the only available method, the
query processing algorithm would be able to locate some
promising tids. However, it might need to issue multiple
random accesses to retrieve the values of those tids. The get
base block method can reduce the number of random access,
especially when the cardinalities are low. Second, if the get
base block were the only available method, the algorithm
might have wasted some I/O since some base blocks may not
appear with the corresponding selection dimensions. The
get pseudo block method can guide the system to access the
right base blocks, especially when the cardinalities are high.
Hence, the combination of these two data access methods
provides a fairly robust mechanism.

3.2.2 Query Algorithm
Our query processing strategy consists of the following four
steps: pre-process, search, retrieve and evaluate.

Pre-process: The query algorithm first determines the
cuboid C and base block table T by the selection conditions
and ranking functions.

Search: This step finds the next candidate base block for
data retrieving. A tid may be retrieved twice, first from C
and second from T . We say a tuple is seen if its real values
are retrieved from T and the score w.r.t. the ranking func-
tion is evaluated. Otherwise, it is unseen. The algorithm
maintains a list of scores S for the seen tuples and let the
kth best score in the list be Sk.

 466

For each base block bid, we define f(bid) as the best score
over the whole region covered by the block. Given a rank-
ing function, the algorithm computes the bid whose f(bid)
is minimum among all the remaining base blocks (A base
block is not included for further computation after it is re-
trieved and evaluated). Let this score be Sunseen and the
corresponding block be the candidate block. If Sk ≤ Sunseen,
the top-k results are found and the algorithm halts.

The key problem in this step is to find the candidate block.
At the very beginning, the algorithm calculates the minimal
value of the ranking function f . Since we assume f is convex,
the minimal value can be found efficiently. For example, if
f is linear, the minimum value is among the extreme points
of whole region; if f is quadratic, the minimum value can
be found by taking the derivative of f . The first candidate
block corresponds to the block which contains the minimal
value point. To search for the following candidate blocks,
the result of Lemma 1 can be used.

Lemma 1. Assume the set of examined blocks is E. Let
H = {b|neighbor(b, c) = true, ∃c ∈ E}, where neighbor(b, c)
returns true if blocks b and c are neighboring blocks. If the
ranking function is convex, then the next best base block is
bid∗ = arg minbid∈H f(bid), where f(bid) = minp∈bidf(p).

Based on Lemma 1, we maintain a list H, which contains
the neighboring blocks of the previous candidate blocks. Ini-
tially, it only contains the first candidate block found by the
minimum value of f . At each round, the algorithm picks the
first block in H as the next candidate block and removes it
from H. At the same time, the algorithm retrieves all the
neighboring blocks of this candidate block and inserts them
into H. Since each block can be neighboring with multiple
blocks, we maintain a hash-table of inserted blocks so that
each block will only be inserted once. The blocks in H are
resorted by f(bid) and the first one has the best score.

Retrieve: Given the bid of the candidate block computed
in the search step, the algorithm retrieves a list of tid’s from
the cuboid C. It first maps the bid to a pid and then uses get
pseudo block method to get the whole pseudo block identified
by pid. Since the mapping between bid and pid is many-to-
one, it is possible that a pid block has already been retrieved
in answering another bid request. To avoid multiple retriev-
ing on the same pseudo block, we buffered the bid and tid
lists retrieved so far. If a bid request maps to a previously re-
trieved pid, we directly return the results without accessing
the cuboid C.

Evaluate: Given the bid computed in the search step, if the
set of tid’s returned by the retrieve step is not empty, the
algorithm uses the get base block method to retrieve the real
values of those tuples. The real values are used to compute
the exact score w.r.t. the ranking function f . The scores
are further merged into the score list S maintained by the
search step.

If the original query consists of other projection dimensions
which are not in either the selection nor the ranking di-
mensions, we can further retrieve the data tuples from the
original relation using the top-k tids.

3.2.3 A Demonstrative Example
Using the database in Table 1, we demonstrate each step by
a running example:

select top 2 ∗ from R

where A1 = 1 and A2 = 1

sort by N1 + N2

The algorithm first determines that cuboid C = A1A2 N1N2

can be used to answer the query. The related meta infor-
mation is shown in Table 4.

Meta Info. Value
Bin Boundaries of N1 [0,0.4,0.45,0.8,1]
Bin Boundaries of N2 [0,0.2,0.45,0.9,1]

scale factor of C 2

Table 4: Meta Information for answering query

1 3 4

3

4

t1
2

t3

t41

third candidate block (b2)

second candidate
block (b5)

first candidate block (b1)

2

Figure 3: Processing top-2 on example query

Suppose the range of each ranking dimension is [0, 1]. The
minimal value of the function f = N1 + N2 is 0 (by N1 = 0
and N2 = 0). The algorithm locates the first base block as
b1 (as shown in Fig. 3), and asks cuboid C to return the
tid list of this block. The cuboid C maps b1 to p1 by the
scale factor 2 (as shown in Fig. 2). Then C issues the get
pseudo block method and retrieves the following contents:
{t1(b1), t4(b1), t3(b5)}. t1 and t4 are returned as the results
of the b1 query and t3(b5) is buffered for future queries. The
algorithm then issues the get base block method to get the
real values of tuples in b1 and verifies that the exact score
of t1 is 0.1 and that of t4 is 0.5. To test the stop condition,
the algorithm computes the neighboring blocks of b1. In this
example, the neighboring blocks are b2 and b5, and thus H =
{b2, b5}. Using the meta information on bin boundaries, we
can compute the best scores of the neighboring blocks w.r.t.
to the ranking function f = N1 +N2. The base block b2 has
the best score 0.4 and the base block b5 has the best score
0.2. Both correspond to the left upper points (as shown in
Fig. 3). Hence, Sunseen = f(b5) = 0.2. At this stage, the
list of S and the list of H are shown in Table 5.

List Scores
S list f(t1) = 0.1, f(t4) = 0.5, S2 = 0.5
H list f(b2) = 0.4, f(b5) = 0.2, Sunseen = 0.2

Table 5: List Values at Stage 1

Since the current kth score is S2 = 0.5 > 0.2 = Sunseen, the
stop condition is not met. The algorithm continues to pick
b5 as the next candidate block, and inserts its neighboring

 467

blocks b6 and b9 into H. Again, the cuboid C is asked to
return the tid list with b5, which is mapped to p1. This time,
the results are buffered and {t3(b5)} is directly returned.
The algorithm further retrieves real values for b5 and verifies
that the exact score of t3 is 0.3. After updating the score
list S, we have S2 = 0.3. The list H contains blocks b2, b6

and b9, and the scores associated with them are f(b2) = 0.4,
f(b6) = 0.6, and f(b9) = 0.45, respectively. Thus, Sunseen =
0.4. At this stage, the list of S and the list of H are shown
in Table 6. Since S2 = 0.3 <= Sunseen, the stop condition
is satisfied. The algorithm returns t1 and t3 as top-2 results.

List Scores
S list f(t1) = 0.1, f(t3) = 0.3,

f(t5) = 0.5, S2 = 0.3
H list f(b2) = 0.4, f(b9) = 0.45,

f(b6) = 0.6, Sunseen = 0.4

Table 6: List Values at Stage 2

4. RANKING FRAGMENTS
When the number of selection dimensions is large, a full ma-
terialization of the ranking cube is too space expensive. In-
stead, we adopt a semi-online computation model with semi-
materialization.

Before delving deeper into the semi-online computation, we
claim the following observation about ranked query in high-
dimensional space. Although a database may contain many
selection dimensions, most queries are performed only on a
small number of dimensions at a time. In other words, a real
life ranked query is likely to ignore many selection dimen-
sions. Stemming from the above observation, we partition
the dimensions into different groups called fragments. The
database is projected onto each fragment, and ranking cubes
are fully materialized for each fragment. With the semi-
materialized fragments, one can dynamically assemble and
compute any ranking cuboid cells of the original database
online. In the rest of this section, we discuss the two compo-
nents of our computation model: semi-materialization and
semi-online computation.

4.1 Materializing Fragments
Here we show a general grouping framework and its storage
size analysis. There are other criteria which can be exploited
to group selection dimensions for efficient query processing,
and we will address these issues in Section 6. Suppose the
database has S selection dimensions and the size of the frag-
ment is F (i.e., the number of selection dimensions in the
fragment), we evenly partition the selection dimensions into
S
F

disjoint sets. Each fragment will combine with the rank-
ing dimensions to construct a ranking cube. An example of
fragment grouping is shown in Example 4.

Example 4. Suppose a relation has 4 selection dimen-
sions A1, . . . , A4 and two ranking dimensions N1, N2. We
evenly group the selection dimensions into two fragments
(A1, A2) and (A3, A4) and the ranking fragments are: (A1, A2,
N1, N2) and (A3, A4, N1, N2).

We estimate the space consumption for the ranking frag-
ments. Given a relation with S selection dimensions, R

ranking dimensions, and T tuples, let the fragment size be
F . There will be total S

F
fragments, while each fragment

has O(2F − 1) cuboids. Each cell in a cuboid stores the bid
and tid lists. Since tid’s are exclusively stored in different
cells, the size of each cuboid is 2T . The base block table
has R + 2 dimensions (i.e., including the bid and tid). The
overall size of base block tables is O((R + 2)T). The meta
information for each fragment can be neglected, comparing
with the size of the cuboids and the base block tables. The
above estimation is summarized as the following lemma.

Lemma 2. Given a database with S selection dimensions,
R ranking dimensions and T tuples, the amount of disk
space needed to store the ranking fragments with size F is
O(2 S

F
T (2F − 1) + (R + 2)T).

Based on Lemma 2, for a database with 12 selection dimen-
sions and 2 ranking dimensions, using fragment size F = 2,
the total amount of space requirement is on the order of
2T (12

2
)(22 − 1)+ (2+2)T = 40T . Suppose tid, bid and each

dimension in the database take same unit storage space,
this is around 3 times the size of the original database. One
can verify that given a fixed fragment size, the space con-
sumption by the ranking fragments grows linearly with the
number of selection dimensions.

4.2 Answering Query by Fragments
Given the semi-materialized ranking fragments, one can an-
swer a ranked query on the original data space. We say a
cuboid covers a query if all the dimensions involved in the
query appear on the materialized cuboid. In this case, the
query can be directly answered using the query algorithm
described in Section 3.2. Otherwise, the query is answered
by a set of cuboids which, as a whole, cover the query.

4.2.1 Determining Covering Cuboids
The covering cuboids set can be determined by a minmax
criterion. More specifically, let the set of selection dimen-
sions contained in a cuboid C be Dim(C). Suppose the
set of selection dimensions in the query is Q. To determine
which cuboid to be used to answer the query, we first find
all cuboids C such that there is no other cuboid C′ satisfy-
ing Dim(C) ⊆ Dim(C′) ⊆ Q (maximum step). Let the set
of cuboids returned by the above step is MD, the second
step searches for a minimum subset MS ⊆ MD such that
Q = ∪C∈MSDim(C). An example of determining cuboids
is shown as below.

Example 5. Suppose the materialized fragments are (A1,
A2, N1, N2) and (A3, A4, N1, N2). The query consists of the
selection dimensions (A1, A4) and ranking dimensions (N1,
N2). We first locate the set of candidate cuboids MD =
{A1 N1N2, A4 N1N2}, and this is also the minimum cover-
ing subset MS.

4.2.2 Computing Cuboid Cells Online
We discuss how to answer queries by a set of ranking frag-
ments. The general idea is to online compute the cuboid
covers the query. Instead of computing the whole cuboid,
we only compute the cells which is required to answer the

 468

query. The online computation is made efficient by set in-
tersection operation on the tid lists.

Suppose the query has the selection dimensions (A1, A4).
The fragments demonstrated in Example 4 are used and a
covering set of two cuboids A1 N1N2 and A4 N1N2 is se-
lected. Our goal is to online compute the required cells
of cuboid A1A4 N1N2. Based on the query algorithm pre-
sented in Section 3.2, we only need to make a small change at
retrieve step. Instead of issuing the get pseudo block method
to cuboid A1A4 N1N2, which was not materialized, we is-
sue the get pseudo block method to cuboid A1 N1N2 and
A4 N1N2. The tid lists returned by both cuboids will be
intersected as the answer. All the other steps in the query
algorithm (Section 3.2) remain the same. The merge and in-
tersect operation on the tif lists can be generalized to more
than two ranking fragments.

5. PERFORMANCE STUDY
This section reports the experimental results. We compare
the query performance of ranking cube and ranking frag-
ments with two other alternatives: the baseline solution by
Microsoft SQL-Server and the rank mapping approach pro-
posed by [4]. We first discuss the experimental settings, and
then show the results on low dimensional data (with ranking
cube) and high dimensional data (with ranking fragments).

5.1 Experimental Setting
We defines the data sets, the experimental configurations for
all three methods and the evaluation metric.

5.1.1 Data Sets
We use both synthetic and real data sets for the experi-
ments. The real data set we consider is the Forest CoverType
data set obtained from the UCI machine learning repository
web-site (www.ics.uci.edu/∼mlearn). This data set contains
581, 012 data points with 54 attributes, including 10 quan-
titative variables, 4 binary wilderness areas and 40 binary
soil type variables. We select 3 quantitative attributes (with
cardinalities 1, 989, 5, 787 and 5, 827) as ranking dimensions,
and other 12 attributes (with cardinalities 255, 207, 185, 67,
7, 2, 2, 2, 2, 2, 2, 2) as selection dimensions. To achieve a
reasonable size of the data, we further duplicate the original
data set 5 times and the data set has 3, 486, 072 tuples. We
also generate a number of synthetic data sets for our exper-
iments. The parameters and default values are summarized
in Table 7.

Parameter Default Value
S: Number of selection dimensions 3 (Cube)

12 (Fragments)
R: Number of ranking dimensions 2
T: Number of Tuples 3M
C: Cardinality 20

Table 7: Parameters for Synthetic Data Sets

5.1.2 Experimental Configurations
In the experiments, we compare our proposed approach agai-
nst the baseline solution provided by commercial database
and the rank mapping technique discussed in [4]. All the
experiments are conducted over Microsoft SQL Server 2005

on a 3GHz Pentium IV PC with 1.5GBytes of RAM. Specif-
ically, we use the following techniques for answering top-k
queries.

Baseline Approach: We load all experimental data sets
into SQL Server 2005. A non-clustered index is built on each
selection dimension. The baseline performance is measured
by simply issuing the following SQL statement to the SQL
Server:

select top k ∗ from D

where A1 = a1 and . . . Ai = ai

order by f(N1, . . . , Nj)

where Ai belong to selection dimensions and Ni belong to
ranking dimension.

Rank Mapping Approach: In [4], the authors proposed
to map a top-k selection query to a range query. Their prob-
lem definition is slightly different from ours since the top-k
queries in [4] do not have hard selection condition. However,
the idea of mapping a ranking function to a range query can
also be applied in our problem. We refer their method as
rank mapping. An example of applying rank mapping in our
problem is as follows:

Top-k Query : select top k ∗ from D

where A1 = a1 and . . . Ai = ai

order by N1 + 2N2

Range Query : select top k ∗ from D

where A1 = a1 and . . . Ai = ai and

N1 ≤ n1 and N2 ≤ n2

order by N1 + 2N2

The performance of this approach relies on two aspects: (1)
how the bound values n1 and n2 are determined; and (2)
how the index in the database is configured to efficiently
answer the multi-dimensional range query.

The original proposal for the first issue is to use a workload
adaptive mapping strategy to provide the selectivity estima-
tion. Since the workload information is not available to us
in our experiment, we make an extremely conservative com-
parison by feeding the rank mapping approach the optimal
bound values. For the sample query given above, if the final
kth tuple in the result is evaluated as 100 by the ranking
function, we assign n1 as 100 and assign n2 as 50. This is
the best estimation that any mapping strategy can provide.

For the second issue, the original proposal is to build a multi-
dimensional index on all participating attributes. We will
continue to use it when we test performance on ranking cube,
where the number of involved dimensions is comparatively
low. The dimension order in the index is first the selection
dimensions and then the ranking dimensions. For our rank-
ing fragments experiment, a single multi-dimensional index
is not practical since the number of dimension is quite high.
Instead, we build several partial multi-dimensional indices
and each of them corresponds to one ranking fragment.

Ranking Cube (Fragments): For a fair comparison, we
load the ranking cube (fragments) into SQL Server. To sim-

 469

ulate the block-level access, we build a clustered index on
selection dimensions Ai and the pseudo block ID (pid) for
each cuboid; and a clustered index on base block ID (bid) for
the base block table. We implement our query algorithms
using Visual.net c#. The ranking cube (fragments) have two
parameters: the base block size B and the fragment size F .
By default, we set B as 300 and F as 2. We will conduct
experiments to examine the query performance with respect
to these two parameters.

5.1.3 Evaluation Metric
We use execution time to evaluate the techniques presented
above. For each experiment, we report the average run-
ning time for executing a set of 20 randomly issued queries.
Without loss of generality, we use linear ranking functions
in our evaluation. One criterion to measure the query dif-
ficulties of the linear ranking functions is the query skew-
ness, which is defined as follows. For a linear ranking func-
tion α1N1 + α2N2 + . . . + αrNr, let α = minr

i=1 αi and
α = maxr

i=1 αi, the query skewness is defined as u = α/α.

The parameters and their default values for queries are shown
in Table 8.

Parameter Default Value
s: Number of selection conditions 2
r: Number of dimensions involved 2

in ranking function
k: Number of top results requested 10
u: Query Skewness 1

Table 8: Parameters for Queries

5.2 Experiments on Ranking Cube
This section presents experimental results for the top-k query
processing using ranking cube. We use synthetic data set in
this set of experiments. To study the query performance
with respect to different criteria, we vary the value of k (the
number of top results requested), u (query skewness), T
(the number of tuples in the database), C (the cardinalities
of each dimension), s (the number of selection conditions), r
(the number of dimensions involved in the ranking function)
and B (the base block size). Another important measure is
the space requirement, and we will report the result in the
next subsection. All the parameters in the data sets and
queries use the default values (if not explicitly specified).

Top-k Query: Figure 4 reports the execution time as a
function of k (i.e., the number of tuples requested) on the
default synthetic data. Our methods is much more efficient
than the previous approaches. As expected, the baseline
approach is not sensitive to the value of k since it retrieves
all the tuples. The execution time of the rank mapping
approach increases slightly. This is because we assign the
optimal bound values for range queries and those bound
values increase slightly. Our method progressively retrieves
data blocks, and thus a larger k value asks for more data
accesses. When k = 10, the ranking cube is 4 times faster
than the rank mapping approach and 10 times faster than
the baseline approach.

Query Skewness: In this experiment, we measure the per-
formance by varying query skewness. The goal of this ex-

periment is to test the robustness of the base block parti-
tioning. A skewed query may require the system to retrieve
more data since the top results may be distributed on more
base blocks. We vary the value of u and the results are
reported in Figure 5. The execution time of our method
increases slightly with u. However, it still performs much
better comparing with other alternatives.

Number of Dimensions in Ranking Function: Here
we continue to test the query performance with respect to
the ranking function. We generate a synthetic data with 3
selection dimensions and 4 ranking dimensions, and vary the
value of r (the number of dimensions involved in the ranking
function) from 2 to 4. The results are shown in Figure 6.
We observe that the execution time of our method slightly
increases when the number of dimensions decreases. This is
because our base block table is constructed on all 4 ranking
dimensions. A 2 dimensional query means the blocks need to
be projected onto the lower dimensions. Hence more block
accesses are required. The baseline approach is not sensitive
to r. The rank mapping approach performs worse because
the bound estimation, although it is optimal, is much looser
in higher dimensions.

Database Size: To analysis the query performance with
respect to the data size, we change the number of tuples in
the synthetic data from 1M to 10M (Figure 7). The baseline
performs worse on larger data set since the selection condi-
tions return more qualified tuples and the database needs to
do more random accesses. Although the rank mapping ap-
proach is fed by the optimal bound values, it performs worse
with larger data size. This may be caused by the reason that
query execution time is sensitive to the dimensions involved
in the query. If the involved dimensions exactly follow the
order on which the multi-dimensional index was built, it can
be answered extremely fast. Otherwise, there will be more
random access and the execution time is also affected by the
data size. On the other hand, the ranking cube approach
has stable performance, regardless of the data size. This in-
dicates that our proposed approach is especially attractive
for larger data set.

Cardinality: We generate a set of synthetic data by vary-
ing the cardinality of each selection dimension from 10 to
100. The results are shown in Figure 8. Basically, increas-
ing cardinality favors the baseline approach since the num-
ber of tuples filtered by the selection conditions decreases
significantly. There is no clear trend of the rank mapping
approach in this experiment, mainly because we assign the
optimal bound value for the transformed range query and
the number of tuples satisfying the range query is thus not
sensitive to the cardinalities. For our method, the scale fac-
tor (see Section 3) of the pseudo block increases with the
cardinality and the tuples are more sparse in each pseudo
block. As the result, it invokes more get base block methods
to verify the tuples and the execution time slightly increases.
When C is large enough (i.e., 100), we observe the execution
time decreases again. This is because the number of tuples
retained by the selection conditions is quite small and many
base blocks are not retrieved since they are found to be
empty during the get pseudo block step. This is consistent
with our analysis that the combination of two block access
methods is robust (see Section 3.2.1).

 470

5 10 15 20
0

0.5

1

1.5

2

2.5
 ranking cube

rank mapping
baseline

Top-k Query (k)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 4: Query Execution Time

w.r.t. k

1 2 3 4 5
0

0.5

1

1.5

2

2.5
ranking cube
rank mapping
baseline

Query Skewness (u)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 5: Query Execution Time

w.r.t. u

2 3 4
0

0.5

1

1.5

2

2.5

3 ranking cube
rank mapping
baseline

Number of Dimensions in Ranking Function (r)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 6: Query Execution Times

w.r.t. r

1 2 3 5 10
0

1

2

3

4

5

6

7

ranking cube
rank mapping
baseline

Database Size T in (M)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 7: Query Execution Time

w.r.t. T

10 20 50 100
0

0.5

1

1.5

2

2.5
ranking cube
rank mapping
baseline

Cardinality (C)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 8: Query Execution Time

w.r.t. C

2 3 4
0

0.5

1

1.5

2

2.5

3

ranking cube
rank mapping
baseline

Number of Selection Conditions (s)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 9: Query Execution Time

w.r.t. s

Number of Selection Conditions: Here we vary the
number of selection conditions to test the trade-offs between
the ranking and selection. The results are shown in Figure
9. Generally, involving more selection conditions results in
fewer qualified tuples, and consequently, the baseline ap-
proach improves its query performance. The execution time
of rank mapping decreases because the multi-dimensional
index has better utilization. In the experiment, we use a
synthetic data with 4 selection dimensions. When the di-
mensions involved in the query are the same as those in
the multi-dimensional index (i.e., s = 4 in Figure 9), the
range query can be answered very fast. The execution time
of ranking cube slightly increases with the number of selec-
tion conditions, and overall its performance is not sensitive
to the number of selection conditions, for the same reason
given in the previous experiment. We also observe that with
4 selection conditions, the number of qualified tuples is 22.
Ranking is even not necessary in this case.

Block Size: The final experiment with ranking cube is to
test the sensitivity with respect to the block size B. We
measure the block size by the expected number of tuples
contained by a block. The results are shown in Figure 10.
We observe that the execution time is within 10% between
each other cases, and the performance not sensitive to the
value of B (from 100 to 1000). In our experiments, we use
300 as the default value for B.

5.3 Experiments on Ranking Fragments
In this subsection, we present experimental results on rank-
ing fragments. We first examine the cost of storing the
fragments, and then test the query execution time. Both

synthetic and real data in our experiments have 12 selection
dimensions. We increase the default number of selection
conditions to 3.

Space Consumption: The first experiment is to examine
the amount of space needed to store the ranking fragments.
Specifically, how it scales as the dimensionality grows. We
use a synthetic data with 3-12 selection dimensions and build
ranking fragments with F = 2. Figure 11 shows the to-
tal space consumption in SQL server. The space usage in-
cludes both the data and the indices. We compare the total
space usage with baseline (BL) and rank mapping (RM)
approaches. The baseline approach builds a non-clustered
index on each selection dimension and the rank mapping
approach builds a multi-dimensional index for each ranking
fragment. Although neither of them generates new tables,
the indices used by them are much larger than the the base
table. We also observe that the clustered indices built by the
ranking fragments (RF) occupy small space (roughly 1% of
the total space). As shown in the figure, the space usage of
all three methods grow linearly with the number of dimen-
sions. The space used by ranking fragments is only 2-2.5
times of that of the other two alternatives. It is a fairly ac-
ceptable cost paid for materialization since the online query
processing becomes much more efficient. Comparing with
other data cube proposals, the space requirement by the
ranking fragments is more practical. Furthermore, since we
store ranking fragments in relational database, a large por-
tion of the space is used to store the cell identifiers. We
believe that the space requirement can be further reduced if
we store the data out of the relational database. We discuss
more compression opportunities in Section 6.

 471

100 200 500 1000
0.18

0.19

0.2

0.21

0.22

ranking cube

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Block Size

Figure 10: Query Execution Time

w.r.t. Block Size

0

400

800

1200

1600

2000

R
F

R
M B
L

R
F

R
M B
L

R
F

R
M B
L

R
F

R
M B
L

3 6 9 12

S
iz

e
(M

)

Data Size Index Size

Figure 11: Space Usage w.r.t.

Number of Selection Dimensions

1 2 3
0.15

0.2

0.25

0.3

0.35

0.4

0.45

ranking fragments

Number of Covering Fragments

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 12: Query Execution Time

w.r.t. Number of Covering Frag-

ments

1 2 3
0.25

0.3

0.35

0.4

ranking fragments

Fragment Size

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 13: Query Execution Time

w.r.t. Fragment Size

3 6 9 12
0

2

4

6

8

10

12

ranking fragments
rank mapping
baseline

Number of Selection Dimensions (S)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 14: Query Execution Time

w.r.t. S

5 10 15 20
0

2

4

6

8

10

12

14

ranking fragments
rank mapping
baseline

Top-k Query (k)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 15: Query Execution Time

on Real Data

Number of Covering Fragments: Since the ranking frag-
ments do not guarantee to cover a query by a single frag-
ment, we test the query performance with respect to the
number of covering fragments. We generate 3 top-k queries,
each involving 3 selection dimensions, and intentionally let
them be covered by one, two and three fragments. We use
the same data set as described above, and the execution
time is shown in Figure 12. The execution time increases
with the number of covering fragments. Typically, the exe-
cution time with 2 (3) covering fragments is roughly 1.4 (2)
times of that with one covering fragment. We observe that
even with 3 covering fragments, our method is still around
4 times faster than the baseline and 2 times faster than the
rank mapping approach (See Figure 4).

Fragment Size: Here we test the query performance with
respect to the fragment size. A larger fragment size will
have better coverage of the queries, however, it requires
more space usage as well. Generally, fragment size larger
than 3 is too space consuming, and we test the performance
on fragment sizes 1, 2, and 3. We continue to use the same
synthetic data set described above and the queries are gen-
erated with 3 selection conditions. The results are shown in
Figure 13. We observe that the larger fragment size provides
better query performance.

Number of Dimensions: Here we fixed the fragment size
as 2 and vary the number of selection dimensions from 3 to
12. We compare the query execution time with the baseline
and the rank mapping approaches. The results are shown
in Figure 14. We have the following observations. First, the

baseline approach is not sensitive to the number of dimen-
sions. Second, the rank mapping approach becomes worse
when dimension increases. This is because in high dimen-
sional data, the multi-dimensional index in each fragment
has low probability to cover a query. In many cases, the
query only accesses one dimension in a multi-dimensional
index and this is quite expensive. Finally, the time used by
ranking fragments increases slightly from 3 to 9 dimensions.
For queries with three selection conditions, we expect that
the execution time will keep stable with higher dimensions.
This is because query execution in the worst case (i.e., the
query is covered by three different fragments) is still quite
efficient (see Figure 12).

Real Data: Besides synthetic data, we also tested our pro-
posed methods on the real-world data set: Forest CoverType
(see Section 5.1). We evenly partition the 12 selection di-
mension into 4 groups (i.e., fragment size is 3). The queries
has 3 selection conditions and the ranking function spans on
all three ranking dimensions. The query execution time with
respect to k is shown in Figure 15. Different from the result
in last experiment, here we observe that the rank mapping
approach is more efficient than the baseline approach. This
is because in this real data set, many dimensions have cardi-
nality 2. As a result, the baseline approach needs to access
more tuples. The low cardinalities also enable the rank map-
ping approach to efficiently access the multi-dimensional in-
dices. Comparing with these two alternatives, our proposed
method consistently performs the best on both the synthetic
and read data sets.

 472

6. DISCUSSION
In this section, we discuss the related work and possible
extensions if our proposed approach.

6.1 Related Work
Top-k query processing has been studied in both the mid-
dleware scenario [13, 14, 7] and in the relational database
setting [5, 4, 9, 17, 18, 16]. These studies mainly discuss the
configurations where only ranking dimensions are involved,
the problem of top-k queries with multi-dimensional selec-
tions is not well addressed. The closest related work may
be the top-k selection query problem studied in [4], which
maps a top-k nearest neighbor (e.g., soft-selection) query to
a range query. The problem is essentially a top-k query us-
ing a distance measure as ranking function, and there is no
multi-dimensional selections imposed on queries.

We organize tuples into different blocks based on their geom-
etry layout information. Previous work on exploiting data
distributions for efficient query processing includes [8, 1, 15].
The ranking function covered in those studies are linear. We
have demonstrated our method with convex functions and
the extension to ad hoc ranking functions is fairly straight-
forward (see Section 6.2.1).

Data Cube has been playing an essential role in the imple-
mentation of fast OLAP operations [12]. Materialization
of a data cube is a way to pre-compute and store multi-
dimensional aggregates so that multi-dimensional analysis
can be performed on the fly. The pre-computed measures in
the cube are generally simple statistics (e.g., SUM, COUNT,
AVERAGE). Some recent proposals introduces more com-
plex measures for data cube such as linear regression model
[11] and classification model [10]. To the best of our knowl-
edge, this is the first piece of work that provides multi-
dimensional ranking analysis using data cube.

The tid list stored in the ranking cube is similar to the ideas
of inverted index as termed in the information retrieval and
value-list index as termed in databases. In [3], the authors
investigated the usage of low dimensional data structures for
indexing a high dimensional space. Their data structures
and algorithms were only designed to index data points,
with measure aggregation. The model of multi-dimensional
inverted index and measure aggregation is studied by [19].
The major difference of our approach and all these studies is
our bid list is rank-aware and it supports progressive retriev-
ing for efficient processing of top-k queries. Moreover, the
contents in the ranking cube could be extended to contain
rich information such as the max (min) number of tuples
in each block, the mean values of tuples in each block, etc..
Extending the ranking cube framework to efficiently support
more complicated ranked queries is an interesting future re-
search direction.

6.2 Extensions
6.2.1 Ad Hoc Ranking Functions
Here we discuss the extension to ad hoc ranking functions.
The basic idea is to decompose the whole domain of the
function variables into multiple sub-domains so that in each
sub-domain, the function has convex property. The decom-
position relies on the scientific computing techniques and is

out of the scope of this paper. After the convex sub-domains
are computed, we can fetch those starting points in each
sub-domain. The algorithm can be modified to merge the
current best tuples from each sub-domain and maintain a
global neighboring block list (See Section 3.2), which deter-
mines the next candidate block for retrieving tuples.

6.2.2 Variations of Ranking Cube
We discuss some possible variations of ranking cube. We
have used equi-depth partitioning to build the ranking cube.
The proposed methods can also be combined with other par-
titioning strategies. For example, a multi-dimensional par-
titioning [20] recursively partitions the data domain, one
dimension at a time, into bins enclosing the same number
of tuples. Each multi-dimensional bin can be considered as
a base block. We can still use the concept of pseudo block
by merging sfi number of consecutive base blocks in each
dimension i, where sfi is the scale factor (See Section 3) of
dimension i. The query algorithm remains the same. The
trade-off is that we need more space for the meta informa-
tion of the base block partitioning.

To construct ranking fragments, we used a simple grouping
method. There are many other criteria to group the selec-
tion dimensions. For example, if the workload (i.e., query
history) is available, one can compute the combination of
dimensions that are frequently used in queries and materi-
alizing ranking fragments on those dimension combinations.
Another criterion is to use the cardinalities of selection di-
mensions. If a dimension has large cardinality, further com-
bining this dimension with other dimensions may not be
useful, since the number of tuples in each cell will be too
small.

6.2.3 ID List Compression
The tid list in each block can be compressed, such that each
block contains more tids. As the result, the system will re-
trieve less number of blocks for evaluating a ranked query.
One compression method is the bitmap indexing [2, 6]. In
many applications, the cardinalities of selection dimensions
are small. For example, in the used car database, the ma-
jority of selection dimensions only have 2 possible values,
e.g., whether it has power window, sunroof, and so on. The
bitmap indexing can be used to compress the tid lists in the
ranking cube and improve the space usage. Furthermore,
the merge operation in ranking fragments can be performed
much faster using the bit-AND operation than the standard
merge-intersect operation.

Another compression method of the tid-lists come from in-
formation retrieval [24]. The main observation is that the
numbers in the tid-list are stored in ascending order. Thus,
it would be possible to store a list of tid difference instead of
the actual numbers. The insight is that the largest value in
the difference list may be bounded, and it maybe possible to
store them using less than the standard 32 bits of an integer.

6.2.4 High Ranking Dimensions
In this paper, we assume that the number of ranking dimen-
sions is not large. In some applications where more ranking
dimensions are involved, we can construct a variant of rank-
ing fragments. Similar to our proposal on handling high

 473

selection dimensions, we can partition the ranking dimen-
sions into several groups. The ranking fragments can be
assembled by picking one group from selection dimensions
and one group from ranking dimensions. If a query falls
into two ranking fragments with different ranking groups,
the query processing algorithm can be extended as follows.
First, the starting base blocks are found in each ranking
fragments and the tid lists are merged as we did in Section
4. The system then examine the neighboring blocks in each
fragment and compute the best combination of the neigh-
boring blocks as the next candidate blocks. This procedure
repeats until the stop condition is satisfied.

7. CONCLUSIONS
To efficient process top-k queries with multi-dimensional se-
lections, we proposed a novel rank-aware cube structure
which is capable to simultaneously handle ranked queries
and multi-dimensional selections. Based on the ranking
cube, we develop a progressive query processing algorithm.
We further extend the ranking cube to ranking fragments,
which is especially useful for high dimensional data. Our
experimental results show that the proposed methods sig-
nificantly improve the query performance over the previous
approaches.

Acknowledgement. We would like to thank Yijin Zhen
for his valuable comments and discussions.

8. REFERENCES
[1] Pankaj K. Agarwal, Lars Arge, Jeff Erickson, Paolo Giulio

Franciosa, and Jeffrey Scott Vitter. Efficient searching with
linear constraints. Proceedings of the 1998 ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS’98), pages 169–178, 1998.

[2] Sihem Amer-Yahia and Theodore Johnson. Optimizing
queries on compressed bitmaps. Proceedings of 2000
International Conference on Very Large Data Bases
(VLDB’00), pages 329–338, 2000.

[3] Stefan Berchtold, Christian Böhm, Daniel A. Keim,
Hans-Peter Kriegel, and Xiaowei Xu. Optimal
multidimensional query processing using tree striping.
Proceedings of 2000 International Conference on Data
Warehousing and Knowledge Discovery (DaWaK’00),
pages 244–257, 2000.

[4] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection
queries over relational databases: Mapping strategies and
performance evaluation. ACM Transactions on Database
Systems, 27:153–187, 2002.

[5] Michael J. Carey and Donald Kossmann. On saying
“Enough already!” in SQL. Proceedings of the 1997 ACM
SIGMOD International Conference on Management of
Data (SIGMOD’97), pages 219–230, 1997.

[6] Chee Yong Chan and Yannis E. Ioannidis. Bitmap index
design and evaluation. Proceedings of the 1998 ACM
SIGMOD International Conference on Management of
Data (SIGMOD’98), pages 355–366, 1998.

[7] Kevin Chen-Chuan Chang and Seung-Won Hwang.
Minimal probing: Supporting expensive predicates for
top-k queries. Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’02), pages 346–357, 2002.

[8] Y. Chang, L. Bergman, V. Castelli, M. Lo C. Li, and
J. Smith. Onion technique: Indexing for linear optimization
queries. Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’00), pages 391–402, 2000.

[9] S. Chaudhuri, R. Ramakrishnan, and G. Weikum.
Integrating DB and IR technologies: What is the sound of
one hand clapping? Proceedings of Second Biennial
Conference on Innovative Data Systems Research
(CIDR’05), pages 1–12, 2005.

[10] Bee-Chung Chen, Lei Chen, Yi Lin, and Raghu
Ramakrishnan. Prediction cubes. Proceedings of 2005
International Conference on Very Large Data Bases
(VLDB’05), pages 982–993, 2005.

[11] Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W. Wah,
and Jianyong Wang. Multi-dimensional regression analysis
of time-series data streams. Proceedings of 2002
International Conference on Very Large Data Bases
(VLDB’02), pages 323–334, 2002.

[12] S. Chaudhuri and U. Dayal. An overview of data
warehousing and data cube. SIGMOD Record, 26:65–74,
1997.

[13] R. Fagin. Fuzzy queries in multimedia database systems.
Proceedings of the 1998 ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’98),
pages 1–10, 1998.

[14] R. Fagin, A Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. Proceedings of the 2001 ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS’01), 2001.

[15] J. Goldstain, R. Ramakrishnan, U. Shaft, and J. Yu.
Processing queries by linear constraints. Proceedings of the
1997 ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’97), pages 257–267,
1997.

[16] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer:
A system for the efficient execution of multi-parametric
ranked queries. Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’01), pages 259–270, 2001.

[17] Ihab F. Ilyas, Rahul Shah, Walid G. Aref, Jeffrey Scott
Vitter, and Ahmed K. Elmagarmid. Rank-aware query
optimization. Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’04), pages 203–214, 2004.

[18] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and
Sumin Song. RankSQL: Query algebra and optimization for
relational top-k queries. Proceedings of the 2005 ACM
SIGMOD International Conference on Management of
Data (SIGMOD’05), pages 131–142, 2005.

[19] X. Li, J. Han, and H. Gonzalez. High-dimensional OLAP:
A minimal cubing approach. Proceedings of 2004
International Conference on Very Large Data Bases
(VLDB’04), pages 528–539, 2004.

[20] M. Muralikrishna and David J. DeWitt. Equi-depth
histograms for estimating selectivity factors for
multi-dimensional queries. Proceedings of the 1988 ACM
SIGMOD International Conference on Management of
Data (SIGMOD’88), pages 28–36, 1988.

[21] Patrick E. O’Neil and Dallan Quass. Improved query
performance with variant indexes. Proceedings of the 1997
ACM SIGMOD International Conference on Management
of Data (SIGMOD’97), pages 38–49, 1997.

[22] Gregory Piatetsky-Shapiro and Charles Connell. Accurate
estimation of the number of tuples satisfying a condition.
Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data (SIGMOD’84), pages
256–276, 1984.

[23] W. Rudin. Principles of mathematical analysis, 3rd ed. New
York: McGraw-Hill, 1976.

[24] A. Singhal. Modern information retrieval: A brief overview.
Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 24(4):35–43, 2001.

 474

