
Systematic Development of
Data Mining-Based Data Quality Tools

Dominik Luebbers1 Udo Grimmer2 Matthias Jarke1,3

1RWTH Aachen, Informatik V (Information Systems), Ahornstr. 55, 52056 Aachen, Germany
{luebbers, jarke}@informatik.rwth-aachen.de

2DaimlerChrysler AG, Research & Technology, PO BOX 2360, 89013 Ulm, Germany
udo.grimmer@daimlerchrysler.com

3Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany

Abstract
Data quality problems have been a persistent
concern especially for large historically grown
databases. If maintained over long periods,
interpretation and usage of their schemas of-
ten shifts. Therefore, traditional data scrub-
bing techniques based on existing schema and
integrity constraint documentation are hardly
applicable. So-called data auditing environ-
ments circumvent this problem by using ma-
chine learning techniques in order to induce
semantically meaningful structures from the
actual data, and then classifying outliers that
do not fit the induced schema as potential er-
rors.
However, as the quality of the analyzed
database is a-priori unknown, the design of
data auditing environments requires special
methods for the calibration of error measure-
ments based on the induced schema. In this
paper, we present a data audit test generator
that systematically generates and pollutes ar-
tificial benchmark databases for this purpose.
The test generator has been implemented as
part of a data auditing environment based
on the well-known machine learning algorithm
C4.5.
Validation in the partial quality audit of
a large service-related database at Daimler-
Chrysler shows the usefulness of the approach
as a complement to standard data scrubbing.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

1 Introduction

The widespread use of source-integrating, analysis-
oriented data warehouses emphasizes the value of qual-
ity information in today’s business success. Neverthe-
less a study by the Meta group revealed that 41% of
data warehouse projects failed [20]. As one of the main
reasons they identified insufficient data quality leading
to wrong decisions (“garbage in, garbage out”).

It is normally infeasible to guarantee sufficient data
quality by manual inspection, especially when data are
collected over long periods of time and through mul-
tiple generations of database technology. Therefore
(semi-)automatic data cleaning methods have to be
employed.

Chaudhuri distinguishes domain specific data scrub-
bing tools (that e.g. correct data according to a fixed
dictionary of assignments of zip codes to cities or try
to link different records that belong to the same real
world object [9], [23], [11]) from data auditing tools
based on data mining techniques [5]. While the first
are expensive to develop and maintain the idea of the
latter is to adapt data mining algorithms to induce a
structure in a large database. By structure we mean
any form of regularity that can be found, e.g. a set
of rules or decision trees creating a statistically valid
decomposition into subclasses. Deviations from this
structure can then be hypothesized to be incorrect.

The quality of a data auditing tool heavily depends
on the suitability of the employed data mining algo-
rithms for the application domain. It can only be
measured when it is testable whether an outlier is a
data error or not. Doing this manually requires too
much effort for large databases. Therefore, in this pa-
per we present a systematic, domain-driven develop-
ment method for a data auditing tool. The core of
this method is a highly parameterizable artificial test
data generator. We exemplify our approach with a
test data generator and an auditing tool for a large
service-related database at DaimlerChrysler building

on the well-known decision tree inducer C4.5.
This paper is organized as follows:
After a short review of data quality research and the

idea of data auditing in sec. 2, sec. 3 gives an overview
of our approach and of the example domain. The main
contribution of the paper is in sec. 4 which describes a
highly flexible test data generator that can be parame-
terized to simulate data characteristics of the intended
application domain. Sec. 5 then demonstrates how the
information gained in this phase is systematically ex-
ploited to derive a domain-adjusted data auditing tool
and suitable measures for error confidence. Finally,
sec. 6 reports experiences both with the test data gen-
erator and the application of the improved data audit-
ing tool in the automotive domain, sec. 7 gives a brief
overview of some related work, and sec. 8 summarizes
our conclusions.

2 Data Quality and Data Auditing

As data quality has been recognized as a key success
factor for data centric applications, several proposals
for data quality management systems (DQMS) have
been made. These approaches rely on a definition of
the term data quality and on the declaration of mea-
sures for different aspects of it. Therefore we first dis-
cuss these questions.

2.1 What is Data Quality?

Data quality is a goal-oriented and therefore not for-
mally definable term [17]. The literature speaks of
’fitness for use’ [15] or meeting end-user expectations
[18]. Data quality is often expressed in a hierarchy of
different categories which are then further refined into
quality dimensions such as:

• accuracy or correctness: Does the data reflect the
entities’ real world-state?

• completeness: Does the database contain all rele-
vant entities?

• consistency : Are there any contradictory facts in
the database?

• actuality : Is the data too old for the intended
analyses?

• relevance: Is the data relevant for the user’s in-
formation needs?

Additional research has dealt with the question of
how data quality can be ensured from a more techni-
cal point of view. Hinrichs defines a 5-level architec-
ture that connects commercial tools for data migra-
tion with domain-adaptable components [12]. Jarke et
al. [16] point out the importance of rich metadata for
a successful data quality management system. Wang
et al. [25] and English’s extensions for a holistic data

quality driven approach [7] concentrate on the dy-
namic aspects of data quality management. Hinrichs
defines a 10-phase process model for data warehouse
quality assurance based on the ISO 9001:2000 stan-
dard [12].

2.2 Data Auditing

We define data auditing as the application of data
mining-algorithms for measuring and (possibly inter-
active) improving of data quality. Thereby it closely
resembles the term ’Data Quality Mining’ introduced
by Hipp et al. [14].

Data auditing can be divided into two subtasks, in-
duction of a structural description (structure induc-
tion), and data checking that marks deviations as pos-
sible data errors and generates probable corrections
(deviation detection).

Both tasks can run asynchronously. This is useful
for an application in the data cleansing phase dur-
ing warehouse loading [2]: While the time-consuming
structure induction can be prepared off-line, new data
can be checked for deviations and loaded quickly.

Structure induction implicitly assumes that data
quality is sufficiently high to induce a valid entity
structure. By that, data auditing addresses the data
quality dimension of consistency.

Furthermore we assume that deviations from regu-
larities are errors. Therefore, data auditing is able to
approximate a measure for the data quality dimension
accuracy. Substituting an erroneously missing value
by the suggestion of a data auditing application deals
with the completeness dimension as well.

It must be noted that in some cases the above as-
sumptions do not hold: Outliers can be correct and
of great importance for analysis. Therefore, the cor-
rection of outliers should always be supervised by a
quality engineer (see section 3.1).

3 Systematic Domain-Driven Develop-
ment

According to Fayyad, the selection of a suitable data
mining algorithm is one of the most difficult tasks
in knowledge discovery [8]. This proposition is the-
oretically supported by the so-called conservation law
which states that “positive performance in some learn-
ing situations must be balanced by negative perfor-
mance in others” [24]. An experienced data mining
expert with sufficient business domain knowledge is
needed to guide the selection and later run the analy-
sis.

To develop an effective data auditing tool it is there-
fore necessary to find and parameterize data mining-
algorithms that are suitable for the specific application
domain.

As said before, the usefulness of a data auditing tool
is mainly determined by its error detection capability.

test data
generation

domain
analysis

interact.
correction

structure induction,
deviation detection

domain
expert

quality
engineer

data mining algorithm
selection + adjustment

artificial
test data

test generation
parameters

benchmark
results

errors and
suggestions

application
database

algorithm
parameters

data mining /
data auditing expert

1

3

4

52

Figure 1: Systematic Domain-Driven Development – Overview

How many of the data entries marked are real errors
and how many errors could not be found by the tool
(for details about performance measures see section
4.3)? Because of the size of real databases, a man-
ual inspection of the tool’s results is far too expensive.
The automatic calculation requires the availability of
the data source in a clean state that is normally un-
available. Therefore, we ground the selection and ad-
justment of data mining algorithms in artificially gen-
erated test data that mimic structural regularities of
the application database.

3.1 Overview of the Approach

The main phases of our approach are shown in figure
1. While the processes (denoted by solid ellipses) are
part of the data auditing tool, the dotted ellipses stand
for activities by the annotated user roles.

First, characteristic structural properties of the real
database must be identified by a domain expert. This
leads to parameters that are used to generate artifi-
cial test data. Based on this, different data mining-
algorithms for structure induction and deviation de-
tection can be tested and, if necessary, adjusted. This
process can be iterated until satisfactory benchmark
results are obtained. Finally, the customized data au-
diting tool is used by a data quality engineer to identify
errors and make suggestions for correct values in the
real database. It should be noted that the data quality
engineer and the domain expert could be represented
by one person.

3.2 Example Domain

Much of this research was done in the context of devel-
oping of a data auditing tool for the QUIS (QUality
Information System) database at DaimlerChrysler’s

Global Services and Parts division. QUIS contains
both technical and commercial data from the warranty
and goodwill periods of all Mercedes-Benz passenger
cars and trucks. It is used for different tasks such
as product quality monitoring, early error detection
and analysis, and reporting. Earlier approaches for
applying data mining methods for data quality assess-
ments of the QUIS database have been presented in
[10]. QUIS currently holds some 70 GB of data. Reg-
ular loads from a variety of heterogeneous source sys-
tems need to include data auditing and error correction
facilities to ensure QUIS data to be of sufficient qual-
ity. Coding errors, misspellings, typing errors, or data
load process failures are among the issues that require
permanent data auditing and error correction.

Domain experts had defined some characteristic do-
main dependencies over the QUIS schema which con-
sists of several relations grouped around the central ve-
hicle relation. These dependencies have been used for
the validation of our approach. The majority of QUIS
attributes are of nominal type, furthermore there are
a number of attributes of numerical or date type.

4 Test environment

The test environment justifies selection and adjust-
ment of data mining algorithms. It generates artificial
data that simulate structural characteristics of the ap-
plication database, pollutes this data in a controlled
and logged procedure, runs the data auditing tool and
evaluates its performance by comparing the deviations
of the dirty from the clean database with the detected
errors. The overall structure of this test environment
is shown in figure 2.

Figure 2: Overall structure of the test environment

4.1 Generation of Artificial Test Data

Motivated by the expert-identified dependencies in the
QUIS database we decided to develop a rule-pattern-
based test data generator that is expressive enough to
simulate QUIS characteristics and sufficiently flexible
to be used in other domains as well.

After defining a schema for the target relation with
domain ranges for each attribute, the test data gen-
erator creates instances of rule patterns randomly ac-
cording to some user-defined parameters and generates
data that matches these rules.

4.1.1 Generation of Rules

We define the structure of rule patterns inductively
as consisting of test data generator formulae (TDG-
formulae) built of atomic TDG-formulae.

Definition 1 (atomic TDG-formulae) Let A and
B be numerical or nominal attributes and let a1 be
a numerical or nominal domain value. Furthermore
let N and M be numerical attributes and let n be a
numerical domain value. Then

• A = a1, A 6= a1, N < n, N > n,
A isnull, A isnotnull, (propositional)

• A = B, A 6= B, N < M and N > M (relational)

are called atomic TDG-formulae.

Further we define TDG-formulae as finite conjunc-
tions or disjunctions of atomic formulae:

Definition 2 (TDG-formulae)

• Each atomic TDG-formulae is a TDG-formulae.

• Let n ∈ IN and α1, . . . , αn be TDG-formulae.
Then α1 ∨ . . . ∨ αn and α1 ∧ . . . ∧ αn are TDG-
formulae.

Finally, a TDG-rule is an implication between two
TDG-formulae:

Definition 3 (TDG-rule) Let α and β be TDG-
formulae. Then α → β is a TDG-rule.

4.1.2 Generation of a Natural Rule Set

Unfortunately, rules constructed according to these
definitions do not necessarily comply with a human-
generated set of meaningful rules. Consider the fol-
lowing TDG-rules:

A = V al1 → A = V al2
A = V al1 ∧A = V al2 → B = V al1

A = V al1 → A 6= V al2

While the first two rules are contradictory, the last one
is tautological.

The creation of such rules should be avoided if the
number of generated rules is intended to reflect the
structural strength of the data. Therefore we extend
the definitions of TDG-formulae and -rules by seman-
tic restrictions.

Definition 4 (Natural TDG-formula) Let α be a
TDG-formula. α is a natural TDG-formula iff one of
the following holds:

• α is an atomic TDG-formula and α is (con-
strained by the domains of the target schema) sat-
isfiable.

• α = α1 ∧ α2 ∧ . . . ∧ αn and the following holds:

– ∀i : αi is a natural TDG-formula,
– α is satisfiable and
– ∀i : αi 6⇐

∧
j∈{1,...,n}

i6=j

αj

• α = α1 ∨ α2 ∨ . . . ∨ αn and the following holds:

– ∀i : αi is a natural TDG-formula and
– ∀i : αi 6⇐

∨
j∈{1,...,n}

i6=j

αj

This ensures that a subformula of a disjunction or
conjunction is not already implied by the other sub-
formulae. For a conjunction we furthermore demand

satisfiability. This implies inductively satisfiability of
the disjunctions as well. Similarly for TDG rules:

Definition 5 (Natural TDG-rule)
A TDG-rule α → β is called a natural TDG-rule iff

• α and β are natural TDG-formulae,

• α ∧ β is satisfiable and

• α 6⇒ β

Nevertheless it is possible to construct a set of rules
that are mutually contradictory:

A = V al1 → B = V al1
A = V al1 → B = V al2

Additionally it is easy to formulate a rule that is re-
dundant in the presence of a second one:

A = V al1 ∧B = V al2 → C = V al1
A = V al1 → C = V al1

To avoid the construction of these rule sets one
could formulate the restriction, that to a given rule
set R the rule R = α → β should be added only if R
is not logically implied by R (R 6|= R) and R∪ {α} is
satisfiable.

As we will see in the next section it is expensive
to check this condition. Therefore the definition of a
natural rule set only employs a pairwise check of rules
for contradiction and tautology.

Definition 6 (Natural rule set)
Let R = {α1 → β1, α2 → β2, . . . , αn → βn} be a set of
natural TDG-rules αi → βi.
R is called a natural rule set iff for two different rules
αi → βi and αj → βj with αj ⇒ αi the following
holds:

• αj ∧ βi ∧ βj is satisfiable and

• (αj ∧ βi) 6⇒ βj.

If the premise of a rule implies the premise of an-
other rule, the consequences must not be contradic-
tory. Because of αj ⇒ αi the satisfiability of αj∧βi∧βj

implies already the satisfiability of αi ∧ αj ∧ βi ∧ βj .
Furthermore a rule αj → βj introduces a new depen-
dency only if αj ∧ αi ∧ βi (which is by assumption
equivalent to αj ∧ βi) does not imply the consequence
βj .

These constraints leave a wide space for possible
rule sets. Therefore, the rule generation process can
be further parameterized to govern the complexity of
a rule (e.g. nesting depth or number of atomic subfor-
mulae).

α α̃
A = a A 6= a ∨A isnull
A 6= a A = a ∨A isnull
A < a A > a ∨A = a ∨A isnull
A > a A < a ∨A = a ∨A isnull

A isnull A isnotnull
A isnotnull A isnull

A = B A 6= B ∨A isnull ∨B isnull
A 6= B A = B ∨A isnull ∨B isnull
A < B A > B ∨A = B ∨

A isnull ∨B isnull
A > B A < B ∨A = B ∨

A isnull ∨B isnull
α1 ∧ . . . ∧ αn α̃1 ∨ . . . ∨ α̃n

α1 ∨ . . . ∨ αn α̃1 ∧ . . . ∧ α̃n

Table 1: TDG-negation of a TDG-formula α

4.1.3 A Pragmatic Satisfiability Test for
TDG-formulae

In ordinary propositional logic the validity of the sen-
tence α ⇒ β is equivalent to the unsatisfiability of
α ∧ ¬β. As we did not include negation in the defini-
tion of a TDG-formula, and due to the proper handling
of null values, we can instead associate a TDG-formula
α̃ to a TDG-formula α, so that α is true iff α̃ is false.
Table 1 shows this TDG-negation which reduces the
validity of α → β to the unsatisfiability of α ∧ β̃.

Due to space constraints only the main ideas of the
satisfiability test are described here. First, the TDG-
formula α is transformed into disjunctive normal form.
α is satisfiable iff one of these disjuncts is satisfiable.
We thereby reduce the problem to a satisfiability test
for a conjunction of atomic TDG-formulae.

The main idea of the procedure is to initialize the
current domain ranges of every attribute defined in the
schema for the target table with their domain ranges
and then successively restrict them by integrating the
constraints of each atomic TDG-formula in the con-
junction. This is straightforward for propositional for-
mulae. The integration of relational constraints ex-
pressed by a relational formula are reflected by the
instantiation of links between attributes while consid-
ering the transitive nature of the operators <, > and
=. According to these links domain restrictions are
propagated to all dependent attributes.

It can be proven that the unsatisfiability test of
TDG-formulae is correct but there are rare (and in
practice irrelevant) cases in which the algorithm be-
lieves a formula to be satisfiable although there is no
value assignment to attributes under which it evalu-
ates to true.

4.1.4 Data Generation According to Rules

Given a schema for the target table and a rule set, a
number of records has to be created that follow this
rule set. This is done by selecting values for each at-

tribute according to independent probability distribu-
tions and successively adjusting these guesses by rules
that are violated. Our system offers uniform, normal
and exponential distributions that can be parameter-
ized by the user.

First experiments showed that an independent sam-
pling of the initial values does not lead to a satisfactory
model of the QUIS database. Hence, we developed a
method for the intuitive specification of multivariate
start distributions based on the graphical representa-
tion of stochastic dependencies among attributes in
Bayesian networks.

4.2 Controlled Data Corruption

Components in the test environment, each parameter-
ized with an activation probability, simulate the strate-
gies for identification and analysis of different forms of
data pollution as defined by Dasu [6] and Hernandez
[11] :

• Wrong value polluter : Assigns a new value to an
attribute according to a probability distribution
defined in the same way as in section 4.1.4.

• Null-value polluter : Replaces the value of an at-
tribute by a null value.

• Limiter : Cuts off a numerical value according to
a maximal or minimal bound.

• Switcher : Switches the values of two attributes.

• Duplicator : Duplicates (or deletes) a record.

4.3 Performance Parameters

Error detection by a data auditing tool can be sum-
marized by a 2x2 matrix:

tool’s opinion
incorrect correct

incorrect data true positive false negative
correct data false positive true negative

The vertical dimension reflects the number of errors
generated by controlled data corruption. The horizon-
tal dimension reflects the number of errors found by
the data auditing tool. Ideally, the figures of these
dimensions fall together.

To quantify data audit quality we use the two mea-
sures specificity and sensitivity. The specificity quan-
tifies how many of the error free records have been
marked as such, the sensitivity expresses the ratio of
the truly found errors by the number of records that
have been corrupted.

The information retrieval literature often uses the
measures precision and recall. While precision is a
synonym for specificity, we favor sensitivity over recall
as it is independent from the prevalence (the total ratio
of errors in the table).

A perfect data auditing tool has values of 1 for sen-
sitivity and specificity, in practical environments only
lower values can be reached. The importance of a high
value for a measure depends on the intended use of the
tool: If it is used as a data screening tool that marks
deviations to be controlled manually later a high sen-
sitivity is important. If it is necessary to integrate new
data very quickly in a data warehouse and filter only
records that are incorrect with a high probability, a
high value for specificity is recommended.

Besides its capability to mark suspicious records,
our data auditing tool can be used to propose a cor-
rection. The influence of following this correction on
the quality of the data set can be summarized in the
following 2x2 matrix:

after correction
correct incorrect

correct a bbefore correction
incorrect c d

We employ a very simple formula to measure the
improvement (or degradation) achieved by replacing
an identified error by the proposed value: It consists
of the difference between the number of errors before
and after the correction normalized by the number of
errors before correction: (c+d)−(b+d)

c+d

5 Data Auditing Tool

The quality of a data auditing tool heavily depends on
the suitability of the employed data mining algorithm
for the application domain. The test environment now
serves to evaluate the suitability of different data min-
ing algorithms for a given domain. Here, we restrict
ourselves to data auditing tools based on the following
strategy:

For each attribute in the relation to be audited, a
classifier is induced that describes the dependency of
this class attribute from the other attributes (called
base attributes in this context). A record can be
checked for deviations by comparing its observed class
value with the predicted value for each classifier.

It is easy to customize this general procedure by
domain knowledge: If it is known that an attribute
does not influence the value of a class attribute, it
can be removed from the set of base attributes for the
classifier.

A dependency model for a nominal class attribute
is usually called a classifier while it is called a regres-
sion model if the class attribute is numerical. We thus
call our method the multiple classification / regression
approach.

Inside this framework, it is possible to choose differ-
ent algorithms to induce dependency models between
the base and class attributes.

For the QUIS domain we evaluated different alter-
natives (instance based classifiers, naive Bayes classi-
fiers, classification rule inducers, and decision trees).

This led to the decision to base our structure inducer
and deviation detector on the well-known decision tree
package C4.5 [22].

To allow for the induction of decision trees for
numerical class attributes, these attributes are dis-
cretized into equal frequency bins before the induction
process.

In the following, we briefly describe the main al-
gorithms for decision tree induction and classification
according to C4.5. Then, a formula for the quantifica-
tion of the tool’s belief in the faultiness of a record is
developed. In a third subsection we discuss some ad-
justments of the data mining procedures required for
data auditing.

5.1 Decision Tree Induction and Classification
according to C4.5

5.1.1 The Basic Algorithm

Decision tree induction according to ID3 [21] can be
seen as precursor of the C4.5 algorithm.

Let T = {t1, . . . , tn} be a set of n training instances
each with values for the base attributes A1, . . . , Am

and the class attribute C. For simplicity, we assume
at first that the domains of all of these attributes are
nominal. W.l.o.g. they can be denoted by dom(Ai) =
{1, . . . , ni}. By Tpred we denote the set of all instances
of T for that pred evaluates to true.

The main idea is to successively partition T into
subsets with a more homogenous class distribution.
This is done by a simple recursive top-down-algorithm.

We start with a root that is labelled with T . We
then select an attribute Ai that best separates T into
the partitions TAi=i, . . . , TAi=ni . For each of these par-
titions, new nodes that become children of the root
node are created and labelled. The separation process
is called recursively until all instances of a partition
have the same class or there are no more attributes
left to further separate the set.

To narrow the search space of possible decision tree
classifiers, ID3 uses a greedy approach to select the
split attribute Ai. This selection is based on the ex-
pected loss of entropy, called information gain, which
can be defined for set of instances S and a base at-
tribute Ai as follows:

info-gain(S, A) := entr(S)−
ni∑

j=1

|SAi=j |
|S| · entr(SAi=j)

The entropy of an instance set S is defined as:

entr(S) := −
nC∑

j=1

|SC=j |
|S| · log2(

|SC=j |
|S|)

The classification of an unseen instance by a deci-
sion tree is straight-forward: Starting at the root node
a path to a leaf is selected according to the values

of the base attributes. The majority class of the in-
stances, that the reached leaf is labelled with, becomes
the predicted class value.

5.1.2 Improvements by C4.5

The ID3 information gain measure systematically fa-
vors attributes with many values over those with fewer
values [22]. C4.5 divides the information gain by split
information, which leads to a measure called informa-
tion gain ratio. The split information of an instance
set S and an attribute Ai is defined as follows:

split-info(S,Ai) := −
ni∑

j=1

|SAi=j |
|S| · log2(

|SAi=j |
|S|)

Numerical base attributes are handled in C4.5 by
introducing binary auxiliary variables that represent
split points taken from the set of all occurring values
for the numerical attributes in the schema.

In contrast to many other machine learning algo-
rithms C4.5 is able to handle training instances with
missing values, by replacing the observed attribute
value of an instance by its expected value calculated
from the instances without null value. This approach
requires the possibility to ’distribute’ a training in-
stance over several branches of an inner node in the
decision tree.

In its pure form, a decision tree classifier is exposed
to the danger of overfitting. Hence, C4.5 postpro-
cesses the generated decision tree in a pruning step.
The widely used subtree replacement replaces a sub-
tree by a single leaf if this reduces the classification
error (i.e. the ratio of misclassified instances). Cal-
culating this measure on the basis of the training in-
stances is usually too optimistic. The prediction of a
class value in a leaf of the decision tree is based on
the set of training instances it is labelled with. These
instances can be seen as a sample from a population
and the equality resp. inequality of a class value with
the predicted class can be interpreted as the outcome
of a Bernoulli experiment.

The following definition of a pessimistic classifica-
tion error shows how the size of the sample is taken
into account:

• If k is a leaf and c is the majority class of S:

pessError(k) := rightBound(1− |SC=c|
|S| , |S|)

• If k is an inner node and k1, . . . , kl are its sons
with the instance set labels S1, . . . , Sl:

pessError(k) :=
l∑

j=1

|Sj |
|S| · pessError(kj)

Here, rightBound(p, n) denotes the right bound of
the confidence interval for the true probability of oc-
currence given the observed probability p and a sample
size of n. The confidence level of this interval can be
parameterized.

5.2 Error Confidence in Data Audits

In data audits, each induced decision tree is used to
compare the observed value of an instance with the
value predicted by the classifier. If these values do not
match the record is marked as a possible data error.

The prediction of a decision tree is based on one or
more (in the presence of null values) leaves. Based on
the class distributions of the instance sets these leaves
are labelled with, one can easily extend the prediction
of a decision tree to the calculation of a class distribu-
tion. This allows to quantify the degree by which an
observed value differs from the expectations and hence
the strength of the data auditing tool’s belief that an
error has been found.

For the following explanations let P be the class
distribution, c the observed class, and ĉ the predicted
class (which means that P (ĉ) ≥ P (c′) for all c′ 6= ĉ.

At first glance it seems natural to take 1 − P (c)
as a measure for the deviation. But this would as-
sign equal scores to the probability distributions P1 =
(0.2, 0.2, 0.2, 0.1, 0.3) and P2 = (0.2, 0.8, 0.0, 0.0, 0.0)
assuming the first class value has been observed, al-
though an error is more apparent in the second case.

A second idea is to simply take the probability of
the predicted class P (ĉ), if c 6= ĉ, as an error mea-
sure. Again, this can be criticized with the distribu-
tions P1 = (0.0, 0.1, 0.9) and P2 = (0.1, 0.0, 0.9) that
should not lead to equal error scores when the first
class value is observed.

The last example motivates the idea of utilizing the
difference P (ĉ)− P (c).

As in the case of pessimistic classification error, the
number of training instance the calculation of P is
based on should be taken into account in addition to
the relative frequencies expressed in the probability
distribution P . This leads to the following definition
of the error confidence of a record wrt. one classifier :

Definition 7 (Error confidence wrt. one classifier)
Let P be the predicted class distribution, n the number
of instances this prediction is based on, and c and ĉ
as used above.
Then, the error confidence wrt. one classifier can be
calculated as:

errorConf(P, c) := max(0, leftBound(P (ĉ), n)
−rightBound(P (c), n))

where leftBound(p, n) and rightBound(p, n) denote
the left resp. right bounds of the confidence interval
for the true occurrence probability given the observed
probability p and the sample size n.

The error confidence values for each classifier have
to be combined to give a measure for the overall error
confidence for a record. To score a deviation, Hipp
adds the precision values of all violated association
rules [14]. This addition is, strictly speaking, only
valid if all rules predict values for the same attributes.
Otherwise, the values that are prescribed by one rule
might inhibit the applicability of another rule.

Hence, we simply choose the maximum of all error
confidences wrt. classifiers as an overall error confi-
dence for the record.

Definition 8 (Error confidence for a record)
Let errorConf1, . . . , errorConfk be the calculated error
confidences wrt. different classifiers.
The overall error confidence for a record is defined as:

errorConf := max
i
{errorConfi}

It should be emphasized that the error confidence
measure can be used with each classifier that both out-
puts a predicted class distribution and the number of
training instances this prediction is based on. This in-
dependence from C4.5 makes it usable in data auditing
tools for domains that require different data mining al-
gorithms.

5.3 Calculation of a Proposed Correction

In addition to its use for detecting data errors, the
predicted values generated by the classifiers induced
can be employed directly as suggested corrections. To
calculate the quality of correction measure defined in
section 4.3, we replace a suspicious value according to
the prediction of the classifier with the highest error
confidence.

In interactive error correction, the predicted distri-
butions of all classifiers that indicate a data error can
be useful in finding the true reason for a possible er-
ror. This is because a difference between an observed
and predicted value sometimes lays in erroneous base
attribute values.

5.4 Adjustments for the Data Auditing Con-
text

First experiments with data from the test data gener-
ator revealed that the unadjusted use of the decision
tree inducer was problematic for the following reasons:

• If the class attribute is only roughly dependent
on the base attributes, a highly complex decision
tree is generated and pruned afterwards to a single
node tree. When the number of base attributes
and the size of their domains increases, the sepa-
rate construction of a perfect decision tree is infea-
sible. Therefore, the induction and pruning phase
have to be combined.

• Even very high values for the confidence level used
in the calculation of the pessimistic classification
error sometimes do not lead to a subtree replace-
ment although the partitioning into several sub-
sets does not increase the error detection capabil-
ity. Hence, a different pruning measure has to be
developed.

Low error confidence values are mostly not useful in
reality. If we let the user restrict his interest by giving
a minimal confidence for detected errors, the system
can easily calculate the minimal number minInst of in-
stances of one class that have to occur in a leaf of the
decision tree. This number can be used in a preprun-
ing strategy to prevent a training instance set from
being further partitioned when there is not at least
one subset with minInst instances of one class.

The quality of a classifier is determined by its clas-
sification error on unseen test data. This criterion is
approximated in C4.5 by the pessimistic classification
error on training data. In data auditing, the prediction
of a class value is only the first step that is followed
by the calculation of an error confidence. Therefore,
it is reasonable to base the pruning criterion on this
measure by defining an expected error confidence.

Definition 9 (Expected error confidence) Let k
be a leaf in a decision tree, S the associated set of
training instances, and P the class distribution at k.
Then, the expected error confidence is defined as:

expErrorConf(k) :=
nC∑
c=1

|SC=c|
|S| · errorConf(P, c)

If k is an inner node with sons k1, . . . , kl that are
labelled with S1, . . . , Sl, the expected error confidence
of k can be calculated as:

expErrorConf(k) :=
l∑

j=1

|Sj |
|S| · expErrorConf(kj)

To avoid the construction of a space-consuming un-
pruned decision tree, the expected error confidence is
used in an integrated pruning strategy that replaces a
subtree by a single leaf whenever this transformation
leads to a higher value for expErrorConf.

It is straightforward to represent an induced deci-
sion tree as a set of rules from the root to its leaves.
If the dependency of a class attribute on its base at-
tributes is very punctiform, it is often useful to reduce
this set to the rules that do not have an expected error
confidence of zero and thereby cannot contribute to an
error detection.

The rule sets generated by all classifiers in the multi-
ple classification / regression approach build the struc-
ture model of the data. In database terminology it can
be seen as a set of integrity constraints that must hold
with a given probability.

To summarize, we again list the above discussed ad-
justments of the C4.5 algorithm for its use as a struc-
ture inducer in the context of the QUIS database:

• We avoid the construction of insignificant subtrees
during decision tree induction based on a calcu-
lated minimal number of instances of one class
(minInst) that has to be contained in one parti-
tion.

• We replace the C4.5 pruning criterion, that con-
sists mainly of a pessimistic guess for the mis-
classification rate, by the so-called expected error
confidence that takes into account the actual use
of the classifier in the data auditing context. Fur-
thermore we employ this pruning criterion already
during the tree construction phase. This integra-
tion extends the pre-pruning strategy mentioned
above.

• We transform the decision tree into an equivalent
rule set and delete all rules that are not useful for
error detection.

6 Evaluation

To show the applicability of our data auditing tool in
the QUIS domain, we present some evaluation results.

Besides its use as a benchmarker during develop-
ment, the test environment allows for a thorough ex-
ploration of the application boundaries for the data
auditing tool. Because of its large parameter space
one can analyze the influence of certain structural as-
pects in a database on the tool’s effectiveness. This
allows for the definition of conditions under which the
application of the developed data auditing tool can
be utilized profitably. In this sense our approach re-
sembles Aha’s proposals for the generalization of case
studies for classifiers [1].

First, we show some evaluation results collected by
the test environment for different generator and pol-
luter parameter settings. Then we report on some ex-
periences gained with applying the tool to a sample of
the QUIS database.

6.1 Evaluation on Different Test Data Set-
tings

For the following we fix a minimal error confidence
of 80%. This leads to high values for specificity of
about 99% in all parameter settings described. We
therefore concentrate on the influence of these settings
to sensitivity. Furthermore, it was observed that the
quality of correction is highly correlated to sensitivity.

We start with a basic parameter configuration that
prescribes 6 nominal attributes with different domain
sizes, 1 date type and 1 numeric attribute. Further-
more, we specify one multivariate nominal and 5 uni-
variate start distributions of different kinds. We use
the test data generator to create 10000 records based

Figure 3: Influence of number of records on sensitivity

Figure 4: Influence of number of rules on sensitivity

on 100 randomly generated rules and apply a variety
of pollution procedures with different activation prob-
abilities.

First, we vary the number of records in the table.
The influence of this parameter on sensitivity is shown
in figure 3. It shows a rising tendency of the sensitiv-
ity with a growing number of records up to a value of
nearly 0.3, which means that almost 30% of the true
errors could be identified. The more sample records
are exposed to the structure induction procedure the
more definitely regularities can be formulated. This
is numerically reflected by the influence of the sam-
ple size to the calculation of the error confidence (see
section 5.2).

A sensitivity of 30% may looks disappointing on the
first glance, but one should keep in mind that data au-
diting tools can principally only detect errors that are
deviations from regularities, which is not the case for
all error types. Our data pollution procedure corrupts
data values regardless of the fact whether they are part
of a generated rule or not. Therefore it is obvious that

Figure 5: Influence of pollution factor on sensitivity

only a fraction of these errors can be found by our
data auditing tool. This makes clear that data au-
diting tools should always be accompanied by domain
specific data scrubbing tools to form a holistic data
quality management.

The jump in the trend of the curve at 6000 records
can be explained as an effect of the minimal error con-
fidence: A training set of less than 6000 records does
not induce rules that fall beyond the minimal error
confidence limit. As these rule are deleted, they can-
not be used for error detection.

Figure 4 shows the influence of the number of rules
(which can be seen as a measure for the structure
strength due to the restriction to natural rule sets)
on sensitivity. As expected, the diagram reveals that
the more constraints are imposed on the data the eas-
ier it is to identify errors based on deviation detection.
Nevertheless, it shows that even for highly regular data
sets a sensitivity value of 0.3 is not exceeded. This can
be explained by the fact that the rules constructed
from the hierarchical structure of a decision tree are
not able to fully express all dependencies that can be
formulated by a set of TDG-rules.

As a last example we vary the activation probabili-
ties of the employed pollution procedures (see section
4.2) by multiplying them with a common pollution fac-
tor. Its influence on the tool’s sensitivity is shown in
figure 5. It is obvious that the more corrupted the
table is, the less valid rules that lead to correct er-
ror identifications can be induced. Again, the drop
in the trend at pollution factor 3 can be explained as
a consequence of the minimal error confidence limit.
If the data is too erroneous to find partitions with
sufficiently homogenous class distributions, no useable
rules for deviation detection can be formulated.

6.2 Auditing of a QUIS Sample

To evaluate the applicability of the data auditing tool
on real-world data, we chose a table of the QUIS

database that describes the composition of all industry
engines manufactured by Mercedes-Benz. It contains
8 attributes and about 200000 records. The attributes
code the model category of each individual engine and
its production date.

Running the error detection process lasted about
21 minutes on an Athlon 900Mhz system and revealed
about 6000 suspicious records. These records were
ranked according to their associated error confidence
and cross-checked by domain experts selectively.

For example, the following dependency between the
two attributes BRV and GBM was induced:

BRV = 404 → GBM = 901

It was based on 16118 instances. One instance, how-
ever, contradicts the rule: It has got a value of 911 for
the GBM attribute. The data auditing tool assigns an
error confidence of 99,95% to this instance and ranks
it first in the sorted list of suspicious records.

Similarly, the rule

KBM = 01 ∧ GBM = 901 → BRV = 501

that relies on 9530 records, results in a lower confi-
dence measure of 92% for a deviating instance.

An exact quantification of real-world sensitivity and
specificity by domain experts turned out to be too ex-
pensive even for this relatively small excerpt. Never-
theless, experts agreed that the identification of the de-
viations with the highest error confidences is a highly
valuable information for data quality engineers.

7 Related Work

The application of data mining algorithms for data
cleaning has been investigated by a number of re-
searchers.

Hipp et al. [14] use scalable algorithms for associ-
ation rule induction and define a scoring that rates
deviations from these rules based on the confidence
of the violated rules. Unfortunately, association rules
cannot directly model dependencies between numeri-
cal attributes.

Hinrichs et al. describe a framework that allows for
the use of different algorithms from the data mining
library MLC++ and can be easily integrated and cus-
tomized by defined meta data structures [13]. As their
data mining algorithms are not adjusted for data au-
diting, performance is only sufficient for very small
data volumes.

Brodley and Friedl employ data mining during data
preprocessing in the KDD process [4]. By filtering pos-
sibly erroneous training data before inducing a classi-
fier, they are able to significantly decrease the misclas-
sification rate. However, their goal is to improve the
resulting classifier, not to detect errors in the training
data. Given that the training data set is sufficiently
large it is therefore reasonable to remove all suspicious

instances while their denomination as an error is not
justified.

Marcus and Maletic apply different data mining al-
gorithms for automatic error detection in a personnel
database of the Navy Research and Development Cen-
ter [19]. Unfortunately, the proposed use of so-called
ordinal association rules is only suitable for databases
with many attributes of decimal or date type.

Much literature deals with definitions and detection
algorithms for data outliers that can be seen as excep-
tions (e.g. [3]). However, these approaches usually re-
quire the definition of a distance function between two
data items, which is not an easy task for databases
with mainly nominal attributes.

8 Conclusions

The lessons from this work can be summarized as fol-
lows: Successful data auditing requires sophisticated
error detection facilities in combination with high-
quality proposals for replacing erroneous data values.
As the full database is to be screened, only data min-
ing algorithms that scale well with the size of train-
ing sets can be employed. For both performance and
quality, the search space of such inducers should be
pre-restricted by a domain analysis which also helps
to construct the test environment. Finally, a data au-
diting tool should work both when training sets and
test data are separate and when there is only a sin-
gle database which serves both for training and data
audit.

These demands are covered by our approach for the
systematic development of a data auditing tool that
can be iteratively adjusted by the use of generated
artificial test data. This rule-based test data generator
is highly parameterizable and allows the simulation of
very different kinds of structures that can be found in
real-world data.

We demonstrated the approach for the domain of a
large service-related database at DaimlerChrysler and
adjusted the well-known C4.5 algorithm for being used
in this context.

Experiments with artificial test data revealed a very
high specificity and a sensitivity of up to 30% of the
data auditing tool. Keeping in mind that data au-
diting tools can find only the fraction of data errors
that are deviations from regularities this is a promising
value. Nevertheless these results make clear, that fur-
ther mechanisms like domain specific data scrubbing
tools have to be employed to guarantee a sufficient
data quality. In this context data auditing tools that
are developed following our proposed domain driven
approach can serve as a valuable part of a holistic data
quality management system.

References

[1] David W. Aha. Generalizing from Case Studies:
A Case Study. In Proceedings of the Ninth Inter-
national Conference on Machine Learning (MLC-
92), 1992.

[2] Andreas Bauer and Holger Günzel, editors. Data-
Warehouse-Systeme. dpunkt-Verlag, Heidelberg,
2001.

[3] Markus M. Breunig, Hans-Peter Kriegel, Ray-
mond T. Ng, and Jörg Sander. LOF: Identify-
ing density based Local Outliers. In Proceedings
of the 2000 ACM SIGMOD international confer-
ence on Management of data, pages 93–104. ACM
Press, 2000.

[4] Carla E. Brodley and Mark A. Friedl. Identifying
Mislabeled Training Data. Journal of Artificial
Intelligence Research, 11:131–167, 1999.

[5] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. SIGMOD
Record, 26(1):65–74, 1997.

[6] Tamraparni Dasu and Theodore Johnson. Hunt-
ing of the Snark - Finding Data Glitches using
Data Mining Methods. In Proc. of the 1999 Conf.
on Information Quality, MIT, 1999.

[7] Larry P. English. Improving Data Warehouse and
Business Information Quality. Wiley & Sons,
New York, 1999.

[8] Usama M. Fayyad. Data Mining and Knowledge
Discovery: Making Sense Out of Data. IEEE Ex-
pert, 11(5):20–25, 1996.

[9] H. Galhardas, D. Florescu, D. Shasha, and E. Si-
mon. AJAX: An extensible data cleaning tool.
ACM SIGMOD Record, 29(2):590, 2000.

[10] Udo Grimmer and Holger Hinrichs. A Method-
ological Approach To Data Quality Management
Supported by Data Mining. In Proceedings of
the 6th International Conference on Information
Quality (IQ 2001), pages 217–232, 2001.

[11] M. A. Hernandez and S. J. Stolfo. The Merge /
Purge Problem for Large Databases. In Proc. of
the 1995 ACM SIGMOD Conf., 1995.

[12] H. Hinrichs. Datenqualitätsmanagement in Data
Warehouse–Umgebungen. In A. Heuer, F. Ley-
mann, and D. Priebe, editors, Datenbanksys-
teme in Büro, Technik und Wissenschaft, 9. GI–
Fachtagung BTW 2001, Oldenburg, pages 187–
206, Berlin, März 2001. Springer.

[13] H. Hinrichs and T. Wilkens. Metadata-Based
Data Auditing. In N. F. F. Ebecken and C. A.
Brebbia, editors, Data Mining II (Proc. of the 2nd

Intl. Conf. on Data Mining, Cambridge, United
Kingdom), pages 141–150, Southampton, 2000.
WIT Press.

[14] Jochen Hipp, Ulrich Güntzer, and Udo Grim-
mer. Data Quality Mining – Making a Virtue
of Necessity. In Proc. of the 6th ACM SIGMOD
Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD 2001), pages 52–
57, Santa Barbara, California, 2001.

[15] K.-T. Huang, Y. W. Lee, and R. Y. Wang. Quality
Information and Knowledge Management. Pren-
tice Hall, New Jersey, 1998.

[16] M. Jarke, M. A. Jeusfeld, C. Quix, and P. Vas-
siliadis. Architecture and Quality in Data Ware-
houses. In Proc. of the 10th Intl. Conf. CAiSE*98,
Pisa, Italy, Berlin, 1998. Springer.

[17] M.A. Jeusfeld, C. Quix, and M. Jarke. Design
and Analysis of Quality Information for Data
Warehouses. In Proc. of the 17th International
Conference on the Entity Relationship Approach
(ER’98), Singapore, 1998.

[18] B.K. Kahn and D.M. Strong. Product and Service
Performance Model for Information Quality: An
Update. In Proceedings of the 1998 Conference
on Information Quality, 1998.

[19] Jonathan I. Maletic and Andrian Marcus. Data
cleansing: Beyond integrity analysis. In Proceed-
ings of The Conference on Information Quality
(IQ2000), pages 200–209, MIT, Boston, October
2000.

[20] Meta Group. Data Warehouse Scorecard. Meta
Group, 1999.

[21] J.R. Quinlan. Induction of Decision Trees. Ma-
chine Learning, 1(1):81–106, 1986.

[22] J.R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, 1993.

[23] Erhard Rahm and Philip A. Bernstein. A sur-
vey of approaches to automatic schema matching.
VLDB Journal, 10:334–350, 2001.

[24] C. Schaffer. A Conservation Law for General-
ization Performance. In Proceedings of the 11th
International Conference on Machine Learning,
pages 259–265, Palo Alto, 1994. Morgan Kauf-
mann.

[25] Wang, R. A Product Perspective on Total Data
Quality Management. Communications of the
ACM, 41(2), 1998.

