
The Evolution of the Web and
Implications for an Incremental Crawler

Junghoo Cho Hector Garcia-Molina
Department of Computer Science

Stanford, CA 94305
{cho, hector}@cs.stanford.edu

Abstract

In this paper we study how to build an ef-
fective incremental crawler. The crawler se-
lectively and incrementally updates its index
and/or local collection of web pages, instead of
periodically refreshing the collection in batch
mode. The incremental crawler can improve
the “freshness” of the collection significantly
and bring in new pages in a more timely man-
ner. We first present results from an experi-
ment conducted on more than half million web
pages over 4 months, to estimate how web
pages evolve over time. Based on these ex-
perimental results, we compare various design
choices for an incremental crawler and discuss
their trade-offs. We propose an architecture for
the incremental crawler, which combines the
best design choices.

1 Introduction
A crawler is a program that automatically collects Web
pages to create a local index and/or a local collection of
web pages. Roughly, a crawler starts off with an ini-
tial set of URLs, calledseed URLs. It first retrieves the
pages identified by the seed URLs, extracts any URLs in
the pages, and adds the new URLs to a queue of URLs
to be scanned. Then the crawler gets URLs from the
queue (in some order), and repeats the process.

In general, the crawler can update its index and/or
local collection in two different ways. Traditionally, the
crawler visits the web until the collection has a desir-
able number of pages, and stops visiting pages. Then
when it is necessary to refresh the collection, the crawler
builds a brand new collection using the same process de-
scribed above, and then replaces the old collection with
this brand new one. We refer to this type of crawler as

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy oth-
erwise, or to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

a periodic crawler. Alternatively, the crawler may keep
visiting pages after the collection reaches its target size,
to incrementallyupdate/refresh the local collection. By
this incremental update, the crawler refreshes existing
pages and replaces “less-important” pages with new and
“more-important” pages. When the crawler operates in
this mode, we call it anincremental crawler.

In principle, the incremental crawler can be more ef-
fective than the periodic one. For instance, if the crawler
can estimate how often pages change, the incremental
crawler may revisit only the pages that have changed
(with high probability), instead of refreshing the entire
collection altogether. This optimization may result in
substantial savings in network bandwidth and signifi-
cant improvement in the “freshness” of the collection.
Also, the incremental crawler may index/collect a new
page in a more timely manner than the periodic crawler
does. That is, the periodic crawler can index a new page
only after the next crawling cycle starts, but the incre-
mental crawler may immediately index the new page,
right after it is found. Given the importance of web
search engines (and thus web crawlers), even minor im-
provement in these areas may enhance the users’ expe-
rience quite significantly.

Clearly, the effectiveness of crawling techniques
heavily depends on how web pages change over time.
If most web pages change at similar frequencies, the
periodic and the incremental crawlers may be equally
effective, because both crawlers in fact revisit all pages
at thesamefrequencies. Also, if the web is quite static
and only a small number of pages appear/disappear ev-
ery month, the issue of how fast new pages are brought
in may be of negligible importance to most users.

In this paper we will study how we can construct
an effective incremental crawler. To that end, we first
study how the web evolves over time, through an exper-
iment conducted on more than half million web pages
for more than 4 months. Based on these results, we
then compare various design choices for a crawler, dis-
cussing how these choices affect the crawler’s effective-
ness. Through this discussion, we will also compare
relative advantages/disadvantages of a periodic and an
incremental crawler. Finally, we propose an architecture
for an incremental crawler, which combines the best de-
sign choices.

In summary, our contribution is as follows:

• We study how web pages evolve over time, by an

200



experiment conducted on 720,000 web pages for
multiple months (Sections 2 and 3). We use our
operational WebBase crawler for this experiment.
(An earlier version of this crawler was used for the
Google search engine [10].)

• We identify various design choices for an incre-
mental crawler, and using our experimental data,
we quantify the impact of various choices (Sec-
tion 4). Our results let us make more informed
decisions on the structure of a crawler.

• Based on our observations, we propose an archi-
tecture for an incremental crawler, which main-
tains only “important” pages and adjusts revisit
frequency for pages depending on how often they
change (Section 5).

2 Experimental setup
Our initial experiment tries to answer the following
questions about the evolving web:

• How often does a web page change?
• What is the lifespan of a page?
• How long does it take for 50% of the web to

change?
• Can we describe changes of web pages by a math-

ematical model?

Note that an incremental crawler itself also has to an-
swer some of these questions. For instance, the crawler
has to estimate how often a page changes, in order to
decide how often to revisit the page. The techniques
used for our experiment will shed a light on how an in-
cremental crawler should operate and which statistics-
gathering mechanisms it should adopt.

To answer our questions, we crawled around 720,000
pages from 270 sites every day, from February 17th
through June 24th, 1999. This was done with the Stan-
ford WebBase crawler, a system designed to create and
maintain large web repositories (currently 300GB of
HTML is stored). In this section we briefly discuss how
the particular sites and pages were selected.

2.1 Monitoring technique

For our experiment, we adopted anactive crawlingap-
proach with apage window. With active crawling, a
crawler visits pages of interest periodically to see if they
have changed. This is in contrast to a passive scheme,
where say a proxy server tracks the fraction of new
pages it sees, driven by the demand of its local users.
A passive scheme is less obtrusive, since no additional
load is placed on web servers beyond what would nat-
urally be placed. However, we use active crawling be-
cause it lets us collect much better statistics, i.e., we can
determine what pages to check and how frequently.

The pages to actively crawl are determined as fol-
lows. We start with a list of root pages for sites of
interest. We periodically revisit these pages, and visit
some predetermined number of pages that are reachable,
breadth first, from that root. This gives us awindow of

pagesat each site, whose contents may vary from visit
to visit. Pages may leave the window if they are deleted
or moved deeper within the site. Pages may also enter
the window, as they are created or moved closer to the
root. Thus, this scheme is superior to one that simply
tracks a fixed set of pages, since such a scheme would
not capture new pages.

We considered a variation of the page window
scheme, where pages that disappeared from the window
would still be tracked, if they still exist elsewhere in the
site. This scheme could yield slightly better statistics on
the lifetime of pages. However, we did not adopt this
variation because it forces us to crawl a growing num-
ber of pages at each site. As we discuss in more detail
below, we very much wanted to bound the load placed
on web servers throughout our experiment.

2.2 Site selection

To select the actual sites for our experiment, we used
the snapshot of 42 million web pages in our WebBase
repository. Based on this snapshot, we identified top
400 “popular” sites as the candidate sites To measure
the popularity of sites, we essentially counted how many
pages in our repository have a link to each site, and
we used the count as the popularity measure of a site.1

Then, we contacted the webmasters of all candidate
sites to get their permission for our experiment. Af-
ter this step, 270 sites remained, including sites such
as Yahoo (http://yahoo.com ), Microsoft (http:
//microsoft.com ), and Stanford (http://www.
stanford.edu ). Obviously, focusing on the “popu-
lar” sites biases our results to a certain degree, but we
believe this bias is toward what most people are inter-
ested in.

In our site list, 132 sites belong tocomand 78 sites to
edu . The sites ending with “.net” (11 sites) and “.org”
(19 sites) are classified asnetorg and the sites ending
with “.gov” (28 sites) and “.mil” (2 sites) asgov .

2.3 Number of pages at each site

After selecting the web sites to monitor, we still need to
decide the window of pages to crawl from each site. In
our experiment, we crawled 3,000 pages at each site.
That is, starting from the root pages of the selected
sites we followed links in a breadth-first search, up to
3,000 pages per site. This “3,000 page window” was
decided for practical reasons. In order to minimize the
load on a site, we ran the crawler only at night (9PM
through 6AM PST), waiting at least 10 seconds between
requests to a single site. Within these constraints, we
could crawl at most 3,000 pages from a site every day.

3 Results
From the experiment described in the previous section,
we collected statistics on how often pages change (by
change we meananychange to the textual content of a

1More precisely, we used PageRank as the popularity measure,
which is similar to the link count. To learn more about PageRank,
please refer to [10, 4, 7].

201



1 day

v

(a)
v v vv vv v v v v v v v

vvv vvv
(b)

v : page is modified
: page is accessed
: change is detected.

Figure 1: The cases when the estimated change interval
is lower than the real value

page) and how long they stay on the web, and we report
the result in this section.

3.1 How often does a page change?

Based on the data that we collected, we can analyze
how long it takes for a web page to change. For ex-
ample, if a page existed within our window for 50 days,
and if the page changed 5 times in that period, we can
estimate theaverage change intervalof the page to be
50 days/5 = 10 days. Note that the granularity of the es-
timated change interval is one day, because we can de-
tect at most one change per day, even if the page changes
more often (Figure 1(a)). Also, if a page changes sev-
eral times a day and then remains unchanged, say, for
a week (Figure 1(b)), the estimated interval might be
much longer than the true value. In this case, however,
we can interpret our estimation as the interval between
thebatches of changes, which might be more meaning-
ful than the average interval of change.

In Figure 2 we summarize the result of this analysis.
In the figure, the horizontal axis represents the average
change interval of pages, and the vertical axis shows
the fraction of pages changed at the given average in-
terval. Figure 2(a) shows the statistics collected over
all domains, and Figure 2(b) shows the statistics broken
down to each domain. For instance, from the second bar
of Figure 2(a) we can see that 15% of the pages have
a change interval longer than a day and shorter than a
week.

From the first bar of Figure 2(a), we can observe
that a surprisingly large number of pages change at
very high frequencies: More than 20% of pages had
changed whenever we visited them! As we can see
from Figure 2(b), these frequently updated pages are
mainly from thecom domain. More than 40% of pages
in thecom domain changed every day, while less than
10% of the pages in other domains changed at that fre-
quency (Figure 2(b) first bars). In particular, the pages
in edu and gov domain are very static. More than
50% of pages in those domains did not change at all
for 4 months (Figure 2(b) fifth bars). Clearly, pages at
commercial sites, maintained by professionals, are up-
dated frequently to provide timely information and at-
tract more users.

Note that it is not easy to estimate theaveragechange
interval over all web page, because we conducted the
experiment for a limited period. While we know how
often a page changes if its change interval is longer than
one day and shorter than 4 months, we do not know ex-
actly how often a page changes, when its change interval
is out of this range (the pages corresponding to the first

≤ 1day
≤ 1week ≤ 1month ≤4months

>4months

0.05

0.1

0.15

0.2

0.25

0.3

>1month>1week>1day

(a) Over all domains

≤1day
≤1week ≤1month ≤4months

>4months

0.1

0.2

0.3

0.4

0.5

gov

edu

netorg

com

(b) For each domain

>1day >1week >1month

Figure 2: Fraction of pages with given average interval
of change

or the fifth bar of Figure 2(a)). As acrude approxima-
tion, if we assume that the pages in the first bar change
every day and the pages in the fifth bar change every
year the overall average change interval of a web page
is about 4 months.

In summary, web pages change rapidly overall, and
the actual rates vary dramatically from site to site. Thus,
a good crawler that is able to effectively track all these
changes will be able to provide much better data than
one that is not sensitive to changing data.

3.2 What is the lifespan of a page?

In this subsection we study how long we can access a
particular page, once it appears on the web. To address
this question, we investigated how long we could de-
tect each page during our experiment. That is, for every
page that we crawled, we checked how many days the
page was accessible within our window (regardless of
whether the page content had changed), and used that
number as thevisible lifespanof the page. Note that the
visible lifespan of a page is not the same as itsactual
lifespan, because we measure how long the page was
visiblewithin our window. However, we believe the vis-
ible lifespan is a close approximation to the lifespan of
a pageconceived by usersof the web. That is, when a
user looks for an information from a particular site, she
often starts from its root page and follows links. Since
the user cannot infinitely follow links, she concludes the
page of interest does not exist or has disappeared, if the
page is not reachable within a few links from the root
page. Therefore, many users often look at only awin-
dowof pages from a site, not the entire site.

Because our experiment was conducted in a limited
time period, measuring the visible lifespan of a page is
not as straightforward as we just described. Figure 3
illustrates the problem in detail. For the pages that
appearedanddisappeared during our experiment (Fig-

202



(c)

s

page detected (d)

s

page detected

(a)

s

page detected (b)

s

page detected

Figure 3: Issues in estimating the lifespan of a page

ure 3(b)), we can measure how long the page stayed
in our window precisely. However, for the pages that
existed from the beginning (Figure 3(a) and (d)) or at
the end of our experiment (Figure 3(c) and (d)), we
do not know exactly how long the page was in our
window, because we do not know when the page ap-
peared/disappeared. To take this error into account,
we estimated the visible lifespan in two different ways.
First, we used the lengths in Figure 3 as the lifespan
of a page (Method 1), and second, we assumed that the
lifespan is2s for pages corresponding to (a), (c) and
(d) (Method 2). Clearly, the lifespan of (a), (c) and (d)
pages can be anywhere betweens and infinity, but we
believe2s is a reasonable guess, which gives anapprox-
imaterange for the lifespan of pages.

Figure 4(a) shows the result estimated by the two
methods. In the figure, the horizontal axis shows the vis-
ible lifespan and the vertical axis shows the fraction of
pages with given lifespan. For instance, from the second
bar of Figure 4(a), we can see that Method 1 estimates
that around 19% of the pages have a lifespan of longer
than one week and shorter than 1 month, and Method 2
estimates that the fraction of the corresponding pages is
around 16%. Note that Methods 1 and 2 give us similar
numbers for the pages with a short lifespan (the first and
the second bar), but their estimates are very different for
longer lifespan pages (the third and fourth bar). This
result is because the pages with a longer lifespan have
higher probability of spanning over the beginning or the
end of our experiment and their estimates can be differ-
ent by a factor of 2 for Method 1 and 2. In Figure 4(b),
we show the lifespan of pages for different domains. To
avoid cluttering the graph, we only show the histogram
obtained by Method 1.

Interestingly, we can see that a significant number of
pages are accessible for a relatively long period. More
than 70% of the pages over all domains remained in our
window for more than one month (Figure 4(a), the third
and the fourth bars), and more than 50% of the pages in
theedu andgov domain stayed for more than 4 months
(Figure 4(b), fourth bar). As expected, the pages in the
com domain were the shortest lived, and the pages in
theedu andgov domain lived the longest.

3.3 How long does it take for 50% of the web to
change?

In the previous subsections, we mainly focused on how
anindividualweb page evolves over time. For instance,
we studied how often a page changes, and how long it
stays within our window. Now we slightly change our
perspective and study how theweb as a wholeevolves

1week
1month 4months

4months

0.1

0.2

0.3

0.4

0.5

Method 2

Method 1

>≤
≤ ≤
>1week >1month

(a) Over all domains

≤1week
≤1month ≤4months

>4months

0.1

0.2

0.3

0.4

0.5

gov

edu

netorg

com

(b) For each domain

>1week >1month

Figure 4: Percentage of pages with given visible lifes-
pan

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

(a) Over all domains
20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

gov
edu
net
com

(b) For each domain

Figure 5: Fraction of pages that did not change or dis-
appear until given date.

over time. That is, we investigate how long it takes for
p % of the pages within our window to change.

To get this information, we traced how many pages
in our window remained unchanged after a certain pe-
riod, and the result is shown in Figure 5. In the figure,
the horizontal axis shows the number of days from the
beginning of the experiment and the vertical axis shows
the fraction of pages that were unchanged by the given
day.

From Figure 5(a), we can see that it takes about
50 days for 50% of the web to change or to be re-
placed by new pages. From Figure 5(b), we can confirm
that different domains evolve at highly different rates.
For instance, it took only 11 days for 50% of thecom
domain to change, while the same amount of change
took almost 4 months for thegov domain (Figure 5(b)).
Similarly to the previous results, thecom domain is the
most dynamic, followed by thenetorg domain. The
edu and thegov domains are the most static. Again,
our results highlight the need for a crawler that can track
these massive but skewed changes effectively.

3.4 Can we describe changes of a page by a mathe-
matical model?

Now we study whether we can describe changes of web
pages by a mathematical model. In particular, we study

203



0 20 40 60 80 100
0.00001

0.0001

0.001

0.01

0.1

Figure 6: Change intervals of pages (with 20 day aver-
age change interval)

whether changes of web pages follow aPoisson pro-
cess. Building a change model of the web is very impor-
tant, in order to compare how effective different crawl-
ing policies are. For instance, if we want to compare
how “fresh” crawlers maintain their local collections,
we need to compare how many pages in the collection
are maintained up-to-date, and this number is hard to get
without a proper change model for the web.

A Poisson process is often used to model a sequence
of randomevents that happenindependentlywith fixed
rate over time. For instance, occurrences of fatal auto
accidents, arrivals of customers at a service center, tele-
phone calls originating in a region, etc., are usually
modeled by a Poisson process. We believe a Poisson
process is a good model for changes of web pages, be-
cause many web pages have the properties that we just
mentioned. For instance, pages in the CNN web site
change at theaveragerate of once a day, but the change
of a particular page is quite random, because update of
the page depends on how the news related to that page
develops over time.

Under a Poisson process, we can compute the time
between two events. To compute this interval, let us
assume that the first event happened at time 0, and let
T be the time when the next event occurs. Then the
probability density function ofT is exponential [12].

Lemma 1 If T is the time to the occurrence of the next
event in aPoisson processwith rate �, the probability
density function forT is fT (t) = �e−�t for t >0. 2

We can use Lemma 1 to verify whether web changes
follow a Poisson process. That is, if changes to a page
follow a Poisson process of rate�, its change inter-
vals should follow the distribution�e−�t. To compare
this prediction to our experimental data, we assume that
each pagep i on the web has anaveragerate of change
�i, where�i may differ from page to page. Then we se-
lect only the pages whoseaverage change intervalsare,
say, 10 days and plot the distribution of their change in-
tervals. If the pages indeed follow a Poisson process,
this graph should be distributed exponentially. In Fig-
ure 6, we show one of the graphs plotted this way. We
obtained the graph for the pages with 20 day change
interval. The horizontal axis represents the interval be-
tween successive changes, and the vertical axis shows
the fraction of changes with that interval. The vertical

axis in the graph is logarithmic to emphasize that the
distribution is exponential. The line in the graph is the
prediction by a Poisson process. While there exist small
variations, we can clearly see that a Poisson process pre-
dicts the observed data very well. We also plotted the
same graph for the pages with other change intervals
and got similar results when we had sufficient data.

Although our results indicate that a Poisson process
describes the web page changes very well, they are lim-
ited due to the constraint of our experiment. We crawled
web pages on a daily basis, so our result does not ver-
ify the Poisson model for the pages that change very
often. Also, the pages that change very slowly were
not verified either, because we conducted our experi-
ment for four months and did not detect any changes
to those pages. However, we believe that most crawlers
may not have high interest in learning exactly how often
those pages change. For example, the crawling inter-
val of most crawlers is much longer than a day, so they
do not particularly care whether a page changes exactly
once every day or more than once every day.

Also, a set of web pages may be updated at a regular
interval, and their changes may not necessarily follow a
Poisson process. However, a crawler cannot easily iden-
tify these pages when it maintains hundreds of millions
of web pages, so the entire set of pages that the crawler
manages may be considered to change by a random pro-
cess on average. Thus, we believe it is safe to use the
Poisson model to compare crawler strategies in the next
section.

4 Crawler design issues
The results of previous section showed us how web
pages change over time. Based on these results, we
now discuss various design choices for a crawler and
their possible trade-offs. One of our central goals is
to maintain the local collection up-to-date. To capture
how “fresh” a collection is, we will use the metricfresh-
nessin [3]. Informally, freshness represents the fraction
of “up-to-date” pages in the local collection. For in-
stance, when all pages in the collection are up-to-date
(i.e., the same as thecurrent stateof their real-world
counterparts), the freshness of the collection is 1, while
the freshness of the collection is 0.5 when a half of the
collection is up-to-date. (In [3] we also discuss a sec-
ond metric, the “age” of crawled pages. This metric can
also be used to compare crawling strategies, but the con-
clusions are not significantly different from the ones we
reach here using the simpler metric of freshness.)

4.1 Is the collection updated in batch-mode?

A crawler needs to revisit web pages in order to main-
tain the local collection up-to-date. Depending on how
the crawler updates its collection, the crawler can be
classified as one of the following:

Batch-mode crawler: A batch-mode crawlerrunspe-
riodically (say, once a month), updatingall pages in
the collection in each crawl. We illustrate how such a

204



0 1 0 12 2

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

Time (mohth)

(a) A batch-mode crawler
Time (mohth)

(b) A steady crawler

FreshnessFreshness

Figure 7: Freshness evolution of a batch-mode/steady
crawler

crawler operates in Figure 7(a). In the figure, the hor-
izontal axis represents time and the grey region shows
when the crawler operates. The vertical axis in the
graph represents the freshness of the collection, and the
curve in the graph shows how freshness changes over
time. The dotted line shows freshnessaveraged over
time. The curves in this section are obtained analytically
using a Poisson model. (We do not show the deriva-
tion here due to space constraints.) We use a high page
change rate to obtain curves that more clearly show the
trends. Later on we compute freshness values based on
the actual rate of change we measured on the web.

To plot the graph, we also assumed that the crawled
pages are immediately made available to users, as op-
posed to making them all available at the end of the
crawl. We believe most of the current crawlers are op-
erating in batch mode.

From the figure, we can see that the collection starts
growing stale when the crawler is idle (freshness de-
creases in white regions), and the collection gets fresher
when the crawler revisits pages (freshness increases in
grey regions). Note that the freshness is not equal to
1 even at the end of each crawl (the right ends of grey
regions), because some pages have already changed dur-
ing the crawl. Also note that the freshness of the collec-
tion decreases exponentially in the white region. This
trend is consistent with the experimental result of Fig-
ure 5.

Steady crawler: A steady crawlerruns continuously
without any pause (Figure 7(b)). In the figure, the en-
tire area is grey, because the crawler runs continuously.
Contrary to the batch-mode crawler, the freshness of the
steady crawler is stable over time because the collection
is continuously and incrementally updated.

While freshness evolves differently for the batch-
mode and the steady crawler, one canprove (based on
the Poisson model) that their freshnessaveraged over
time is the same, if they visit pages at the sameav-
eragespeed. That is, when the steady and the batch-
mode crawler revisit all pages every month (even though
the batch-mode crawler finishes a crawl in a week), the
freshness averaged over time is the same for both.

Even though both crawlers yield in the same average
freshness, the steady crawler has an advantage over the
batch-mode one, because it can collect pages at a lower
peakspeed. To get the same average speed, the batch-
mode crawler must visit pages at a higher speed when it
operates. This property increases the peak load on the
crawler’s local machine and on the network. From our
crawling experience, we learned that the peak crawling

0.5

0.5 0.5

0.51

1 1

11.5

1.5 1.5

1.52

2 2

2

0.1

0.1 0.1

0.1
0.2

0.2 0.2

0.2
0.3

0.3 0.3

0.3
0.4

0.4 0.4

0.4
0.5

0.5 0.5

0.5
0.6

0.6 0.6

0.6
0.7

0.7 0.7

0.7
0.8

0.8 0.8

0.8

Freshness Freshness

Time

Time

Time

Time

Freshness Freshness

(a) A steady crawler (b) A batch-mode crawler

Figure 8: Freshness of the crawler’s and the current col-
lection

speed is avery sensitive issue for many entities on the
web. For instance, when the WebBase crawler ran at a
very high speed, it once crashed the central router for the
Stanford network. After that incident, Stanford network
managers have closely monitored our crawling activity
to ensure it runs at a reasonable speed. Also, the web-
masters of many web sites carefully trace how often a
crawler accesses their sites. If they feel a crawler runs
too fast, they sometimes block the crawler completely
from accessing their sites.

4.2 Is the collection updated in-place?

When a crawler replaces an old version of a page with
a new one, it may update the pagein-place, or it may
performshadowing[9]. With shadowing, a new set of
pages is collected from the web, and stored in asep-
arate spacefrom the current collection. After all new
pages are collected and processed, the current collec-
tion is instantaneously replaced by this new collection.
To distinguish, we refer to the collection in the shadow-
ing space as thecrawler’s collection, and the collection
that is currently available to users as thecurrent collec-
tion.

Shadowing a collection may improve the availability
of the current collection, because the current collection
is completely shielded from the crawling process. Also,
if the crawler’s collection has to be pre-processed before
it is made available to users (e.g., an indexer may need to
build an inverted-index), the current collection can still
handle users’ requests during this period. Furthermore,
it is probably easier to implement shadowing than in-
place updates, again because the update/indexing and
the access processes are separate.

However, shadowing a collection may decrease
freshness. To illustrate this issue, we use Figure 8. In
the figure, the graphs on the top show the freshness of
the crawler’s collection, while the graphs at the bottom
show the freshness of the current collection. To simplify
our discussion, we assume that the current collection
is instantaneously replaced by the crawler’s collection
right after all pages are collected.

When the crawler is steady, the freshness of the
crawler’s collection will evolve as in Figure 8(a), top.
Because a new set of pages are collected from scratch

205



Steady Batch-mode

In-place 0.88 0.88
Shadowing 0.77 0.86

Table 1: Freshness of the collection for various choices

say every month, the freshness of the crawler’s collec-
tion increases from zero every month. Then at the end of
each month (dotted lines in Figure 8(a)), the current col-
lection is replaced by the crawler’s collection, making
their freshness the same. From that point on, the fresh-
ness of the current collection decreases, until the current
collection is replaced by a new set of pages. To com-
pare how freshness is affected by shadowing, we show
the freshness of the current collectionwithout shadow-
ing as a dashed line in Figure 8(a), bottom. The dashed
line is always higher than the solid curve, because when
the collection is not shadowed, new pages are immedi-
ately made available. Freshness of the current collection
is always higherwithoutshadowing.

In Figure 8(b), we show the freshness of abatch-
modecrawler when the collection is shadowed. The
solid line in Figure 8(b) top shows the freshness of the
crawler’s collection, and the solid line at the bottom
shows the freshness of the current collection. For com-
parison, we also show the freshness of the current col-
lection without shadowingas a dashed line at the bot-
tom. (The dashed line is slightly shifted to the right, to
distinguish it from the solid line.) The grey regions in
the figure represent the time when the crawler operates.

At the beginning of each month, the crawler starts
to collect a new set of pages from scratch, and the
crawl finishes in a week (the right ends of grey regions).
At that point, the current collection is replaced by the
crawler’s collection, making their freshness the same.
Then the freshness of the current collection decreases
exponentially until the current collection is replaced by
a new set of pages.

Note that the dashed line and the solid line in Fig-
ure 8(b) bottom, are the same most of the time. For the
batch-mode crawler, freshness is mostly the same, re-
gardless of whether the collection is shadowed or not.
Only when the crawler is running (grey regions), the
freshness of thein-place updatecrawler is higher than
that of shadowingcrawler, because new pages are im-
mediately available to users with the in-place update
crawler.

In Table 1 we contrast the four possible choices we
have discussed (shadowing versus in-place, and steady
versus batch), using the change rates measured in our
experiment. To construct the table, we assumed that all
pages change with anaverage4 month interval, based
on the result of Section 3.1. (Even if the average change
interval of pages is not exactly 4 months, the result is
not much different.) Also, we assumed that the steady
crawler revisits pages steadily over a month, and that
the batch-mode crawler recrawls pages only in the first
week of every month. The entries in Table 1 give the
expected freshness of the current collection. From the

λ

f

λhλ1

f
1f
h

Figure 9: Change frequency of a page vs. optimal revisit
frequency of the page

table, we can see that the freshness of the steady crawler
significantly decreases with shadowing, while the fresh-
ness of the batch-mode crawler is not much affected by
shadowing. Thus, if one is building such a crawler,
shadowing is a good option since it is simpler to im-
plement, and in-place updates are not a significant win
in this case. In contrast, the gains are significant for a
steady crawler, so in-place updates may be a good op-
tion.

Note that, however, this conclusion is very sensitive
to how often web pages change and how often a crawler
runs. For instance, consider a scenario where web pages
change every month (as opposed to every 4 months),
and a batch crawler operates for the first two weeks of
every month. Under these parameters, the freshness of
a batch crawler with in-place updates is0.63, while the
freshness is0.50 with a shadowing crawler. Therefore,
if a crawler focuses on a dynamic portion of the web
(e.g.,com domain), the crawler may need to adopt the
in-place update policy, even when it runs in batch mode.

4.3 Are pages refreshed at the same frequency?

As the crawler updates pages in the collection, it may
visit the pages either at the same frequency or at differ-
ent frequencies.
Fixed frequency: The crawler revisits web pages at the
same frequency, regardless of how often they change.
We believe this fixed-frequency policy is often adopted
by a batch-mode crawler, since a batch-mode crawler
commonly revisits all pages in the collection in every
batch.
Variable frequency: The result of Section 3.1 showed
that web pages change at widely different frequencies.
Given this result, the crawler may optimize therevisit
frequencyfor a page, based on how often the page
changes. Note that the variable-frequency policy is
well suited for thesteadycrawler within-place updates.
Since the steady crawler visits pages continuously, it
can adjust the revisit frequency with arbitrary granular-
ity and thus increase the freshness of the collection.

If a variable frequency is used, the crawler needs a
strategy for deciding at what rate to visit each page. In-
tuitively, one may suspect that the crawler should revisit
a page more often, when it changes more often. How-
ever, reference [3] shows that this intuition may not be
right, depending on the freshness metric used. For in-
stance, Figure 9 shows how often a crawler should visit
a page, to optimize the freshness metric [3]. The hor-
izontal axis represents the change frequency of a page,
and the vertical axis shows the optimal revisit frequency

206



� -

� -

� -

Batch-mode

ShadowingIn-place update

Steady

Variable frequency Fixed Frequency

• Less load on
network/server

• High freshness • Easy to implement
• (possibly) High

collection
availability of the

Figure 10: Two possible crawlers and their advantages

for that page. For example, if a page in the collection
changes at the frequency�1, the crawler should visit
the page at the frequencyf1. (We do not show specific
numbers in the graph, because the scale of the graph
depends on how often pages change and how often the
crawler revisits the pages. However, theshapeof the
graph is always the same regardless of the scenario. For
details, see [3].) Note that when a page changes at a low
frequency (� < � h ), the crawler should visit the page
more often as it changes more often (f increases as�
increases). However, when the page changes at a high
frequency (� > �h ), the crawler should visit the page
less often as it changes more often (f decreases as�
increases).

We can understand this unexpected result through
the following simple example. Suppose that a crawler
maintains two pages,p 1 andp 2, in its collection. Also
suppose that pagep 1 changes every day and pagep 2

changes every second. Due to bandwidth limitations,
the crawler can crawl only one page per day, and it has
to decide which page to crawl. Probabilistically, if the
crawler revisits pagep 1, p 1 will remain up-to-date for a
half of the day. Therefore, the freshness of the collec-
tion will be 0.5 for a half of the day. (One out of two
pages remain up-to-date for a half of the day.) Instead,
if the crawler revisits pagep 2, p 2 will remain up-to-date
for a half second, so the freshness will be0.5 only for
a half second. Clearly, it is better to visitp 1 (which
changes less often thanp 2), than to visitp 2! From this
example, we can see that the optimal revisit frequency
is not always proportional to the change frequency of
a page. The optimal revisit frequency depends on how
often pages change and how often the crawler revisits
pages, and it should be carefully determined. In refer-
ence [3], we study this problem in more detail. The ref-
erence shows that one can increase the freshness of the
collection by 10%–23% by optimizing the revisit fre-
quencies.

We summarize the discussion of this section in Fig-
ure 10. As we have argued, there exist two “reasonable”
combinations of options, which have different advan-
tages. The crawler on the left gives us high freshness
and results in low peak loads. The crawler on the right
may be easier to implement and interferes less with a
highly utilized current collection. The left-hand side
corresponds to theincremental crawlerwe discussed in

Algorithm 1 Operation of an incremental crawler
Input AllUrls: a set of all URLs known

CollUrls: a set of URLs in the local collection
(We assumeCollUrls is full from the beginning.)

Procedure
[1]while (true)
[2] url← selectToCrawl(AllUrls)
[3] page← crawl(url)
[4] if (url ∈ CollUrls) then
[5] update(url, page)
[6] else
[7] tmpurl← selectToDiscard(CollUrls)
[8] discard(tmpurl)
[9] save(url, page)
[10] CollUrls← (CollUrls− {tmpurl}) ∪ {url}
[11] newurls← extractUrls(page)
[12] AllUrls← AllUrls∪ newurls

Figure 11: Conceptual operational model of an incre-
mental crawler

the introduction, and the right-hand side corresponds to
the periodic crawler. In the next section, we discuss
how we can implement an effective incremental crawler,
with the properties listed on the left-hand side of the di-
agram.

5 Architecture for an incremental crawler
In this section, we study how to implement an effective
incremental crawler. To that end, we first explain how
the incremental crawler conceptually operates and iden-
tify two key decisions that an incremental crawler con-
stantly makes. Based on these observations, we propose
an architecture for the incremental crawler.

5.1 Operational model of an incremental crawler

In Figure 11 we show pseudo-code that describes how
an incremental crawler operates. This code shows the
conceptualoperation of the crawler, not an efficient or
complete implementation. (In Section 5.2, we show
how an actual incremental crawler operates.) In the al-
gorithm,AllUrls records the set ofall URLs discovered,
andCollUrls records the set of URLs in the collection.

Note that when a crawler continuously crawls the
web, the crawler has two important goals in mind. The
first goal is to maintain its local collection “fresh” and
the second goal is to improve the “quality” of the lo-
cal collection by replacing “less important” pages with
“more important” pages. To achieve these goals, the
crawler needs to make a careful decision on what page
to crawl next. In the algorithm, the crawler makes de-
cisions in Step [2] and [7] and two decisions are tightly
intertwined. That is, when the crawler decides to crawl
a new page (Step [2]), ithas todiscard a page from
the collection to make room for the new page. There-
fore, when the crawler decides to crawl a new page, the
crawler should decide what page to discard (Step [7]).

207



AllUrls

discard

sc
an

crawl

add/remove

pu
sh

ba
ck

po
p checksum

Ranking
Module Module

Update

Module

Crawl

CollUrls

addUrls

update/save

sc
an

Collection

Figure 12: Architecture of the incremental crawler

We refer to this selection/discard decision as therefine-
ment decision.

Note that this refinement decision should be based on
the “importance” of pages. To measure importance, the
crawler can use a number of metrics, including PageR-
ank [4, 10] and Hub and Authority [8]. Clearly, the im-
portance of the discarded page should be lower than the
importance of the new page. In fact, the discarded page
should have thelowestimportance in the collection, to
maintain the collection of the highest quality.

Together with the refinement decision, the crawler
decides on what page toupdatein Step [2]. That is,
instead of visiting a new page, the crawler may decide
to visit an existing page to refresh its image. To maintain
the collection “fresh,” the crawler has to select the page
that will increase the freshness most significantly, and
we refer to this decision asupdate decision.

5.2 Architecture for an incremental crawler

To achieve the two goals for incremental crawlers, and
to effectively implement the corresponding decision
process, we propose the architecture for an incremental
crawler shown in Figure 12. The architecture consists
of three major modules (RankingModule , Update-
Module andCrawlModule ) and three data structures
(AllUrls, CollUrls andCollection). The lines and ar-
rows show data flow between modules, and the labels
on the lines show the corresponding commands. Two
data structures,AllUrls andCollUrls, maintain informa-
tion similar to that shown in Figure 11.AllUrls records
all URLs that the crawler has discovered, andCollUrls
records the URLs that are/will be in theCollection.
CollUrls is implemented as a priority-queue, where the
URLs to be crawled early are placed in the front.

The URLs in CollUrls are chosen by theRank-
ingModule . TheRankingModule constantly scans
through AllUrls and theCollection to make there-
finement decision. For instance, if the crawler uses
PageRank as its importance metric, theRankingMod-
ule constantly reevaluates the PageRanks of all URLs,
based on the link structure captured in theCollection.2

2Note that even if a pagep does not exist in theCollection, the
RankingModule can estimate PageRank ofp, based on how many
pages in theCollection have a link top.

When a pagenot in CollUrls turns out to be more impor-
tant than a page withinCollUrls, the RankingMod-
ule schedules for replacement of the less-important
page inCollUrls with that more-important page. The
URL for this new page is placed on the top ofCollUrls,
so that theUpdateModule can crawl the page imme-
diately. Also, theRankingModule discards the less-
important page from theCollection to make space for
the new page.

While theRankingModule refines theCollection,
theUpdateModule maintains theCollection “fresh”
(update decision). It constantly extracts the top entry
from CollUrls, requests theCrawlModule to crawl
the page, and puts the crawled URL back intoCollUrls.
The position of the crawled URL withinCollUrls is de-
termined by the page’sestimatedchange frequency and
its importance. (The closer a URL is to the head of the
queue, the more frequently it will be revisited.)

To estimate how often a particular page changes,
theUpdateModule records the checksum of the page
from the last crawl and compares that checksum with
the one from the current crawl. From this compari-
son, theUpdateModule can tell whether the page has
changed or not. In [2], we explain how theUpdate-
Module can estimate the change frequency of a page
based on this change history. In short, we propose two
“estimators,”EP andEB , for the change frequency of
a page.

EstimatorEP is based on the Poisson process model
verified in Section 3.4, while estimatorEB is based on
a Bayesian inference method. Essentially,EP is the
same as the method described in Section 3.1. To im-
plementEP , the UpdateModule has to record how
many times the crawler detected changes to a page for,
say, last 6 months. ThenEP uses this number to get
a confidence interval for the change frequency of that
page.

The goal of estimatorEB is slightly different from
that ofEP . Instead of measuring a confidence interval,
EB tries to categorize pages into different frequency
classes, say, pages that change every week (classCW )
and pages that change every month (classCM ). To
implementEB , the UpdateModule stores the prob-
ability that pagep i belongs to each frequency class
(P {p i ∈ CW } and P {p i ∈ CM }) and updates these
probabilities based on detected changes. For instance,
if the UpdateModule learns that pagep 1 did not
change for one month, theUpdateModule increases
P {p 1∈ CM } and decreasesP {p 1∈ CW }. For details,
see [2].

Note that it is also possible to keep update statistics
on larger units than a page, such as a web site or a direc-
tory. If web pages on a site change at similar frequen-
cies, the crawler may trace how many times the pages on
that site changed for last 6 months, and get a confidence
interval based on the site-level statistics. In this case, the
crawler may get a tighter confidence interval, because
the frequency is estimated onlarger number of pages

208



(i.e., larger sample). However, if pages on a site change
at highly different frequencies, this average change fre-
quency may not be sufficient to determine how often to
revisit pages in that site, leading to a less-than optimal
revisit frequency.

Also note that theUpdateModule may need to
consult the “importance” of a page in deciding on re-
visit frequency. If a certain page is “highly important”
and the page needs to be always up-to-date, theUp-
dateModule may revisit the page much more often
than other pages with similar change frequency. To im-
plement this policy, theUpdateModule also needs to
record the “importance” of each page.

Returning to our architecture, theCrawlModule
crawls a page and saves/updates the page in theCollec-
tion, based on the request from theUpdateModule .
Also, theCrawlModule extracts all links/URLs in the
crawled page and forwards the URLs toAllUrls. The
forwarded URLs are included inAllUrls, if they are new.
While we show only one instance of theCrawlMod-
ule in the figure, note that multipleCrawlModule ’s
may run in parallel, depending on how fast we need to
crawl pages.

Separating the update decision (UpdateModule )
from the refinement decision (RankingModule ) is
crucial for performance reasons. For example, to visit
100 million pages every month,3 the crawler has to visit
pages at about 40 pages/second. However, it may take
a while to select/deselect pages forCollection, because
computing the importance of pages is often expensive.
For instance, when the crawler computes PageRank, it
needs to scan through theCollection multiple times,
even if the link structure has changed little. (To learn
more on the complexity of PageRank computation and
how we can efficiently compute PageRank, see [7].)
Clearly, the crawler cannot recompute the importance
of pages for every page crawled, when it needs to run
at 40 pages/second. By separating the refinement de-
cision from the update decision, theUpdateModule
can focus on updating pages at high speed, while the
RankingModule carefully refines theCollection.

6 Related Work
Several papers investigate how to build an effective
crawler. Reference [4] studies what pages a crawler
should visit, when it cannot store a complete web im-
age. Reference [1] looks at how to collect web pages
related to aspecifictopic, in order to build a specialized
web collection. The techniques discussed in these ref-
erences can be used for theRankingModule in our
architecture, to improve quality of the collection. In [2],
we study how to estimate the change frequency of a web
page by revisiting the page periodically. References [3]
and [5] study how often a crawler should visit a page
when it knows how often the page changes. The algo-
rithms described in these references can be used for the
UpdateModule , to improve freshness of the collec-

3Many search engines report numbers similar to this.

tion. We believe these references are complementary to
our work, because we present an incremental-crawler
architecture, which can use any of the algorithms in
these papers.

References [13] and [6] experimentally study how
often web pages change. Reference [11] studies the re-
lationship between the “desirability” of a page and its
lifespan. However, none of these studies are as exten-
sive as ours in terms of the scale and the length of the ex-
periment. Also, their focus is different from ours. Ref-
erence [13] investigates page changes to improveweb
caching policies, and reference [11] studies how page
changes are related toaccess patterns.

7 Conclusion
In this paper we have studied how to build an effec-
tive incremental crawler. To understand how the web
evolves over time, we first described a comprehensive
experiment, conducted on 720,000 web pages from 270
web sites over 4 months. Based on the results, we dis-
cussed various design choices for a crawler and the pos-
sible trade-offs. We then proposed an architecture for an
incremental crawler, which combines the best strategies
identified.

References
[1] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawl-

ing: A new approach to topic-specific web resource discovery.
In Proceedings of the 8th World-Wide Web Conference, 1999.

[2] J. Cho and H. Garcia-Molina. Estimating frequency of
change. Technical report, Stanford University, 2000.http:
//dbpubs.stanford.edu/pub/2000-4 .

[3] J. Cho and H. Garcia-Molina. Synchronizing a database to im-
prove freshness. InProceedings of the 2000 ACM SIGMOD,
2000.

[4] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling
through URL ordering. InProceedings of the 7th World-Wide
Web Conference, 1998.

[5] E. Coffman, Jr., Z. Liu, and R. R. Weber. Optimal robot schedul-
ing for web search engines. Technical report, INRIA, 1997.

[6] F. Douglis, A. Feldmann, and B. Krishnamurthy. Rate of change
and other metrics: a live study of the world wide web. In
USENIX Symposium on Internetworking Technologies and Sys-
tems, 1999.

[7] T. Haveliwala. Efficient computation of pagerank. Techni-
cal report, Stanford University, 1999.http://dbpubs.
stanford.edu/pub/1999-31 .

[8] J. M. Kleinberg. Authoritive sources in a hyperlinked environ-
ment. InProceedings of 9th ACM-SIAM Symposium on Discrete
Algorithms, 1998.

[9] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast
file system for UNIX.ACM Transactions on Computer Systems,
2(3):181–197, 1984.

[10] L. Page and S. Brin. The anatomy of a large-scale hypertextual
web search engine. InProceedings of the 7th World-Wide Web
Conference, 1998.

[11] J. Pitkow and P. Pirolli. Life, death, and lawfulness on the elec-
tronic frontier. InProceedings of International Conference on
Computer and Human Interaction, 1997.

[12] H. M. Taylor and S. Karlin.An Introduction To Stochastic Mod-
eling. Academic Press, 3rd edition, 1998.

[13] C. E. Wills and M. Mikhailov. Towards a better understanding
of web resources and server responses for improved caching. In
Proceedings of the 8th World-Wide Web Conference, 1999.

209


