1

A crawler is a program that automatically collects We
pages to create a local index and/or a local collection
web pages. Roughly, a crawler starts off with an in
tial set of URLSs, calleseed URLsIt first retrieves the

pages identified by the seed URLSs, extracts any URLs

The Evolution of the Web and
Implications for an Incremental Crawler

Junghoo Cho

Hector Garcia-Molina

Department of Computer Science
Stanford, CA 94305
{cho, hectof@cs.stanford.edu

Abstract

In this paper we study how to build an ef-
fective incremental crawler. The crawler se-
lectively and incrementally updates its index
and/or local collection of web pages, instead of
periodically refreshing the collection in batch
mode. The incremental crawler can improve
the “freshness” of the collection significantly
and bring in new pages in a more timely man-
ner. We first present results from an experi-
ment conducted on more than half million web
pages over 4 months, to estimate how web
pages evolve over time. Based on these ex-
perimental results, we compare various design
choices for an incremental crawler and discuss
their trade-offs. We propose an architecture for
the incremental crawler, which combines the
best design choices.

Introduction

aperiodic crawler Alternatively, the crawler may keep
visiting pages after the collection reaches its target size,
to incrementallyupdate/refresh the local collection. By
this incremental update, the crawler refreshes existing
pages and replaces “less-important” pages with new and
“more-important” pages. When the crawler operates in
this mode, we call it aimcremental crawler

In principle, the incremental crawler can be more ef-
fective than the periodic one. For instance, if the crawler
can estimate how often pages change, the incremental
crawler may revisit only the pages that have changed
(with high probability), instead of refreshing the entire
collection altogether. This optimization may result in
substantial savings in network bandwidth and signifi-
cant improvement in the “freshness” of the collection.
Also, the incremental crawler may index/collect a new
page in a more timely manner than the periodic crawler
does. That s, the periodic crawler can index a new page
only after the next crawling cycle starts, but the incre-
mental crawler may immediately index the new page,
right after it is found. Given the importance of web
search engines (and thus web crawlers), even minor im-
provement in these areas may enhance the users’ expe-
fience quite significantly.
. Clearly, the effectiveness of crawling techniques
heavily depends on how web pages change over time.
Ifymost web pages change at similar frequencies, the

iodic and the incremental crawlers may be equally

the pages, and adds the new URLs to a queue of U -))
to be scanned. Then the crawler gets URLs from t% ective, because both crawlers in fact revisit all pages
queue (in some order), and repeats the process. at thesamefrequencies. Also, if the web is quite static

In general, the crawler can update its index and/gPd Only a small number of pages appear/disappear ev-
local collection in two different ways. Traditionally, the€"y month, tfhe 'Sf“.e IOf.hOW fast new pages are brought
crawler visits the web until the collection has a desif? May be of negligible importance to most users.
able number of pages, and stops visiting pages. Thenln this paper we will study how we can construct
when itis necessary to refresh the collection, the crawfp effective incremental crawler. To that end, we first
builds a brand new collection using the same process §&idy how the web evolves over time, through an exper-
scribed above, and then replaces the old collection wifi€nt conducted on more than half million web pages
this brand new one. We refer to this type of crawler 48f more than 4 months. Based on these results, we

then compare various design choices for a crawler, dis-

Permission to copy without fee all or part of this material is grante€USSsing how these choices affect the crawler’s effective-
provided that the copies are not made or distributed for direct conmess. Through this discussion, we will also compare
mercial advantage, the VLDB copyright notice and the title of thez|ative advantages/disadvantages of a periodic and an
E;?)';Cr""ntq'i‘;’;i (";‘:c(‘)f”tshga\‘}:wafgfse“ ;‘;‘; g‘;‘;CeeE'rS] dgo'\‘l’vir]‘etr:‘ta‘Tgocpg[')’;goi cremental crawler. Finally, we propose an architecture
erwise, or to republish, requires a fee and/or special permission fro ran Anc.:rememal crawler, which combines the best de-
the Endowment. sign choices. L
Proceedings of the 26th VLDB Conference, In summary, our contribution is as follows:
Cairo, Egypt, 2000.

o We study how web pages evolve over time, by an

200

experiment conducted on 720,000 web pages fpagesat each site, whose contents may vary from visit
multiple months (Sections 2 and 3). We use ouo visit. Pages may leave the window if they are deleted
operational WebBase crawler for this experimenbr moved deeper within the site. Pages may also enter
(An earlier version of this crawler was used for théhe window, as they are created or moved closer to the
Google search engine [10].) root. Thus, this scheme is superior to one that simply

o We identify various design choices for an incretracks a fixed set of pages, since such a scheme would
mental crawler, and using our experimental datAot capture new pages.
we quantify the impact of various choices (Sec- We considered a variation of the page window
tion 4). Our results let us make more informedcheme, where pages that disappeared from the window
decisions on the structure of a crawler. would still be tracked, if they still exist elsewhere in the

° Based on our ObservationS, we propose an arcﬁite. ThIS SCheme COU|d y|e|d S“ghtly be’[tel’ StatistiCS (_)n
tecture for an incremental crawler, which mainthe lifetime of pages. However, we did not adopt this
tains only “important” pages and adjusts revisi{ariation because it forces us to crawl a growing num-
change (Section 5). below, we very much wanted to bound the load placed

] on web servers throughout our experiment.
2 Experimental setup 29 Site selection

Our initial experiment tries to answer the followingrg select the actual sites for our experiment, we used
questions about the evolving web: the snapshot of 42 million web pages in our WebBase

e How often does a web page change? repository. Based on this snapshot, we identified top
¢ What is the lifespan of a page? 400 “popul:_;xr“ sites as the cand_idate sites To measure
e How long does it take for 50% of the web tothe popularity of sites, we essentially counted how many

change? pages in our repository have a link to each site, and

e used the count as the popularity measure of a site.
en, we contacted the webmasters of all candidate
sites to get their permission for our experiment. Af-

Note that an incremental crawler itself also has to aer this step, 270 sites remained, including sites such
swer some of these questions. For instance, the cravdgryahoo lgttp://yahoo.com), Microsoft (http:
has to estimate how often a page changes, in order/fidicrosoft.com), and StanfordHttp://www.
decide how often to revisit the page. The techniquesanford.edu). Obviously, focusing on the “popu-
used for our experiment will shed a light on how an intar” sites biases our results to a certain degree, but we
cremental crawler should operate and which statistidselieve this bias is toward what most people are inter-
gathering mechanisms it should adopt. ested in.

To answer our questions, we crawled around 720,0001n our site list, 132 sites belong tmmand 78 sites to
pages from 270 sites every day, from February 178du. The sites ending with “.net” (11 sites) and “.org”
through June 24th, 1999. This was done with the Staf1-9 sites) are classified astorg and the sites ending
ford WebBase crawler, a system designed to create amith “.gov” (28 sites) and “.mil” (2 sites) agov .
maintain large web repositories (currently 300GB ;

HTML is stored). In this section we briefly discuss hO\?\/j'3 Number of pages at each site
the particular sites and pages were selected. After selecting the web sites to monitor, we still need to
decide the window of pages to crawl from each site. In
our experiment, we crawled 3,000 pages at each site.
For our experiment, we adopted agtive crawlingap- That is, starting from the root pages of the selected
proach with apage window With active crawling, a Sites we followed links in a breadth-first search, up to
crawler visits pages of interest periodically to see if the3s000 pages per site. This “3,000 page window” was
have changed. This is in contrast to a passive scherfig¢ided for practical reasons. In order to minimize the
where say a proxy server tracks the fraction of nel@ad on a site, we ran the crawler only at night (9PM
pages it sees, driven by the demand of its local useli3’ough 6AM PST), waiting at least 10 seconds between
A passive scheme is less obtrusive, since no additiofi@fiuests to a single site. Within these constraints, we
load is placed on web servers beyond what would n&ould crawl at most 3,000 pages from a site every day.
urally be placed. However, we use active crawling bg Results

cause it lets us collect much better statistics, i.e., we can)) .) .
determine what pages to check and how frequently. From the experiment described in the previous section,

The pages to actively crawl are determined as foke collected statistics on how often pages change (by
lows. We start with a list of root pages for sites ofhange we meaanychange to the textual content of a
interest. We periodically revisit these pages, and Visit 1yore precisely, we used PageRank as the popularity measure,

some predetermined number of pages that are reachaliuh is similar to the link count. To learn more about PageRank,
breadth first, from that root. This gives usvindow of please refer to [10, 4, 7].

e Can we describe changes of web pages by am
ematical model?

2.1 Monitoring technique

201

WVVV V VVV VV VvV

(@ I I I I I I I
‘ldayA‘ A A A A & v : pageis modified
- | :pageisaccessed
W WW A : changeis detected.
®
A A

Figure 1: The cases when the estimated change interval
is lower than the real value

page) and how long they stay on the web, and we report <18 ZHeew Zimontn Zamontns o
the result in this section. (a) Over all domains

3.1 How often does a page change? 05

Based on the data that we collected, we can analyze ¢

how long it takes for a web page to change. For ex- os

ample, if a page existed within our window for 50 days, 0

and if the page changed 5 times in that period, we can |

estimate theverage change intervalf the page to be ' . I

50 days/5 = 10 days. Note that the granularity of the es- — <iday >lday >lweek >Imonih >amonihs

timated change interval is one day, because we can de- B (E,) For each domain

tect at mostone change per day, gven ifthe page Chanﬁﬁﬁlre 2: Fraction of pages with given average interval
more often (Figure 1(a)). Also, if a page changes sev;
eral times a day and then remains unchanged, say, %Ichange

a week (Figure 1(b)), the estimated interval might b the fifth bar of Figure 2(a)). As erude approxima-
much longer than the true value. In this case, Nowevgpy if we assume that the pages in the first bar change
we can interpret our estimation as the interval betwegery day and the pages in the fifth bar change every
thebatches of changewhich might be more meaning-year 'the overall average change interval of a web page
ful than the average interval of change. is about 4 months.

In Figure 2 we summarize the result of this analysis. |n summary, web pages change rapidly overall, and
In the figure, the horizontal axis represents the averag@ actual rates vary dramatically from site to site. Thus,
change interval of pages, and the vertical axis showgjood crawler that is able to effectively track all these

the fraction of pages changed at the given average #hanges will be able to provide much better data than
terval. Figure 2(a) shows the statistics collected ovghe that is not sensitive to changing data.

all domains, and Figure 2(b) shows the statistics broken : .
down to each domain. For instance, from the second l%a? Whatis the lifespan of a page?
of Figure 2(a) we can see that 15% of the pages hawethis subsection we study how long we can access a
a change interval longer than a day and shorter thaparticular page, once it appears on the web. To address
week. this question, we investigated how long we could de-
From the first bar of Figure 2(a), we can observect each page during our experiment. That is, for every
that a surprisingly large number of pages change page that we crawled, we checked how many days the
very high frequencies: More than 20% of pages haghge was accessible within our window (regardless of
changed whenever we visited them! As we can seghether the page content had changed), and used that
from Figure 2(b), these frequently updated pages aramber as theisible lifesparof the page. Note that the
mainly from thecom domain. More than 40% of pagesvisible lifespan of a page is not the same asaitsual
in the com domain changed every day, while less thalifespan, because we measure how long the page was
10% of the pages in other domains changed at that frésible within our window. However, we believe the vis-
qguency (Figure 2(b) first bars). In particular, the pagédisie lifespan is a close approximation to the lifespan of
in edu andgov domain are very static. More thana pageconceived by usersf the web. That is, when a
50% of pages in those domains did not change at aker looks for an information from a particular site, she
for 4 months (Figure 2(b) fifth bars). Clearly, pages aiften starts from its root page and follows links. Since
commercial sites, maintained by professionals, are upe user cannot infinitely follow links, she concludes the
dated frequently to provide timely information and atpage of interest does not exist or has disappeared, if the
tract more users. page is not reachable within a few links from the root
Note that it is not easy to estimate theeragechange page. Therefore, many users often look at onlyia-
interval over all web page, because we conducted tlewof pages from a site, not the entire site.
experiment for a limited period. While we know how Because our experiment was conducted in a limited
often a page changes if its change interval is longer thiame period, measuring the visible lifespan of a page is
one day and shorter than 4 months, we do not know enet as straightforward as we just described. Figure 3
actly how often a page changes, when its change interitistrates the problem in detail. For the pages that
is out of this range (the pages corresponding to the fieghpearednd disappeared during our experiment (Fig-

N

s

202

b
@ page detected © page detected 0.5 | | [}l Method 1

s s 0.4 D Method 2
© page detected @ page detected 03
- S 0.2
Figure 3: Issues in estimating the lifespan of a page 01 ﬁ I

ure 3(b)), we can measure how long the page stayed Slweek ek ZAmanih, >amonths
in our window precisely. However, for the pages that (a) Over all domains

existed from the beginning (Figure 3(a) and (d)) or at
the end of our experiment (Figure 3(c) and (d)), we
do not know exactly how long the page was in our 04

[Jgov

window, because we do not know when the page ap- o3
peared/disappeared. To take this error into account, o>
we estimated the visible lifespan in two different ways.
First, we used the lengthin Figure 3 as the lifespan H— —

of a page (Method 1), and second, we assumed that the slweek Stweek SSimonth * >4months
lifespan is2 for pages corresponding to (a), (c) and B (b) F"or each domain
(d) (Method 2). Clearly, the lifespan of (a), (c) and (d%. 4P ¢ f ith ai isible [if
pages can be anywhere betweeand infinity, but we Igure 4. Fercentage ot pages with given Visibie liles-
believe2 is areasonable guess, which givespprox-
imaterange for the lifespan of pages. 3

Figure 4(a) shows the result estimated by the twos
methods. In the figure, the horizontal axis shows the vis-s
ible lifespan and the vertical axis shows the fraction of ,
pages with given lifespan. For instance, from the second
bar of Figure 4(a), we can see that Method 1 estimates
that around 19% of the pages have a lifespan of longer 2 40 60 80 100 120 ™50 "G ~s0 100 120
than one week and shorter than 1 month, and Methog 2 (& Over dl domains (b) For each domain .
estimates that the fraction of the corresponding paged{gure 5: Fraction of pages that did not change or dis-
around 16%. Note that Methods 1 and 2 give us simil@Ppear until given date.
numbers for the pages with a short lifespan (the firstand
the second bar), but their estimates are very different fofc" time. Thatiis, we investigate how long it takes for
longer lifespan pages (the third and fourth bar). This’ Of the pages within our window to change.
result is because the pages with a longer lifespan havel© get this information, we traced how many pages
higher probability of spanning over the beginning or th# our window remained unchanged after a certain pe-
end of our experiment and their estimates can be diffélod, and the result is shown in Figure 5. In the figure,
ent by a factor of 2 for Method 1 and 2. In Figure 4(bfhe horizontal axis shows the number of days from the
we show the lifespan of pages for different domains. R£ginning of the experiment and the vertical axis shows
avoid cluttering the graph, we only show the histograf€ fraction of pages that were unchanged by the given
obtained by Method 1. day. _ _

Interestingly, we can see that a significant number of From Figure 5(a), we can see that it takes about
pages are accessible for a relatively long period. Mop® days for 50% of the web to change or to be re-
than 70% of the pages over all domains remained in ddlaced by new pages. From Figure 5(b), we can confirm
window for more than one month (Figure 4(a), the thirghat different domains evolve at highly different rates.
and the fourth bars), and more than 50% of the pagedfiir instance, it took only 11 days for 50% of them
theedu andgov domain stayed for more than 4 monthgomain to change, while the same amount of change
(Figure 4(b), fourth bar). As expected, the pages in tfeok almost 4 months for thgov domain (Figure 5(b)).
com domain were the shortest lived, and the pages fimilarly to the previous results, tteem domain is the

theedu andgov domain lived the longest. most dynamic, followed by theetorg domain. The
edu and thegov domains are the most static. Again,

3.3 How long does it take for 50% of the web t0 o results highlight the need for a crawler that can track
change? these massive but skewed changes effectively.

In the previous subsections, we mainly focused on hogv4

anindividualweb page evolves over time. For instance,

we studied how often a page changes, and how long it

stays within our window. Now we slightly change ouNow we study whether we can describe changes of web

perspective and study how theeb as a whol@volves pages by a mathematical model. In particular, we study

Il com
lnetorg

edu

N

Can we describe changes of a page by a mathe-
matical model?

203

0.1¢- axis in the graph is logarithmic to emphasize that the
T distribution is exponential. The line in the graph is the
prediction by a Poisson process. While there exist small
variations, we can clearly see that a Poisson process pre-
dicts the observed data very well. We also plotted the
same graph for the pages with other change intervals
and got similar results when we had sufficient data.
Although our results indicate that a Poisson process

0.001

0. 0001

GO @ w0 w100 describes the web page changes very well, they are lim-
Figure 6: Change intervals of pages (with 20 day avdted due to the constraint of our experiment. We crawled
age change interval) web pages on a daily basis, so our result does not ver-

ify the Poisson model for the pages that change very
whether changes of web pages followPaisson pro- often. Also, the pages that change very slowly were
cess Building a change model of the web is very impomot verified either, because we conducted our experi-
tant, in order to compare how effective different crawlment for four months and did not detect any changes
ing policies are. For instance, if we want to compate those pages. However, we believe that most crawlers
how “fresh” crawlers maintain their local collectionsmay not have high interest in learning exactly how often
we need to compare how many pages in the collectitiinse pages change. For example, the crawling inter-
are maintained up-to-date, and this number is hard to ¢ied of most crawlers is much longer than a day, so they
without a proper change model for the web. do not particularly care whether a page changes exactly

A Poisson process is often used to model a sequeneee every day or more than once every day.

of randomevents that happeindependentlyvith fixed Also, a set of web pages may be updated at a regular
rate over time. For instance, occurrences of fatal autoterval, and their changes may not necessarily follow a
accidents, arrivals of customers at a service center, tedf®isson process. However, a crawler cannot easily iden-
phone calls originating in a region, etc., are usuallyfy these pages when it maintains hundreds of millions
modeled by a Poisson process. We believe a Poissifrweb pages, so the entire set of pages that the crawler
process is a good model for changes of web pages, benages may be considered to change by a random pro-
cause many web pages have the properties that we jpesgs on average. Thus, we believe it is safe to use the
mentioned. For instance, pages in the CNN web si®isson model to compare crawler strategies in the next
change at thaveragerate of once a day, but the changsection.
of a particular page is quite random, because update of L.
the page depends on how the news related to that p4ge Crawler design issues

develops over time. The results of previous section showed us how web

Under a Poisson process, we can compute the tiligyes change over time. Based on these results, we
between two events. To compute this interval, let ys, discuss various design choices for a crawler and
assume that the first event happened at time 0, andigfir possible trade-offs. One of our central goals is

be the time when the next event occurs. Then the maintain the local collection up-to-date. To capture
probability density function of is exponential [12]. 1o “fresh” a collection is, we will use the metfiesh-
esdn [3]. Informally, freshness represents the fraction
f “up-to-date” pages in the local collection. For in-
stance, when all pages in the collection are up-to-date
(i.e., the same as theurrent stateof their real-world
gunterparts), the freshness of the collection is 1, while
e freshness of the collection is 0.5 when a half of the
Sllection is up-to-date. (In [3] we also discuss a sec-
ond metric, the “age” of crawled pages. This metric can
$0 be used to compare crawling strategies, but the con-

Lh;ir? re;:im(:a'cl.ognt?hc;u\:vi)t()pﬁ ;lénae:\fglrgaé?égeo?cs:ﬁt;?eet usions are not significantly different from the ones we
Page; 9 9€ reach here using the simpler metric of freshness.)

i, Where ; may differ from page to page. Then we se-

lect only the pages whoseerage change intervaise, 4.1 Is the collection updated in batch-mode?
say, 10 days and plot the distribution of their change in- . . .
tervals. If the pages indeed follow a Poisson proceds crawler needs to revisit web pages in order to main-

this graph should be distributed exponentially. In F{%—%ﬂ the local collection up-to-date. Depending on how

Lemma 1l If s the time to the occurrence of the ne%
event in aPoisson proceswsith rate , the probability
density function for is f ()= e~ tfort >0. o

We can use Lemma 1 to verify whether web chang
follow a Poisson process. That is, if changes to a pa
follow a Poisson process of rate its change inter-
vals should follow the distributione™ . To compare

ure 6, we show one of the graphs plotted this way. e crawler updates its collection, the crawler can be
obtained the graph for the pages with 20 day changi@ssified as one of the following:

interval. The horizontal axis represents the interval bBatch-mode crawler: A batch-mode crawlerunspe-
tween successive changes, and the vertical axis shaigglically (say, once a month), updatiradl pages in
the fraction of changes with that interval. The verticdahe collection in each crawl. We illustrate how such a

204

Freshness Freshness Freshness Freshness
0.8 0.8

0.6 0.6
0.4 0.4
0.2 0.2

ocoocooo00
RPNWAUOOONO
PNWAhUUTON©O

0 1 2 Time (mohth) 1 2 Time (mohth)

(a) A batch-mode crawler (b) A steady crawler ’ /Tm Ti

300000000

Time

Figure 7: Freshness evolution of a batch-mode/steaggf reshness e os Freshihess 52
crawler 08 08

crawler operates in Figure 7(a). In the figure, the NOBS k- o3 |

izontal axis represents time and the grey region sho®$ = | > 2Ti[r)ﬁlﬂ Bioe=-S = $ 1

when the crawler operates. The vertical axis in the
graph represents the freshness of the collection, and the
curve in the graph shows how freshness changes ofigure 8: Freshness of the crawler’s and the current col-
time. The dotted line shows freshnesgeraged over lection

time The curves in this section are obtained analyticall . e .

using a Poisson model. (We do not show the derivgpeed is avery sensitive issue for many entities on the
tion here due to space constraints.) We use a high pd{- For instance, when the WebBase crawler ran at a
change rate to obtain curves that more clearly show Y high speed, it once crashed the central router for the

trends. Later on we compute freshness values base anford network. After that incident, Stanford network
the acfual rate of change we measured on the web, Managers have closely monitored our crawling activity

To plot the graph, we also assumed that the crawl Odesrt]:g%;trguanns %:briﬁzgn(ﬁgjﬁeﬁgc Q'ﬁgwtgﬁgeg‘
pages are immediately made available to users, as Qp- y y

posed to making them all available at the end of ﬂ; awler accesses their sites. If they feel a crawler runs

(a) A steady crawler (b) A batch-mode crawler

crawl. We believe most of the current crawlers are o r'(;) rrjzfg’céggi)/nsﬁrr?eﬁﬁlgtzz block the crawler completely
erating in batch mode. 9 '

From the figure, we can see that the collection stads?2 Is the collection updated in-place?

growing stale when the crawler is idle (freshness d@gna 4 crawler replaces an old version of a page with
creases in white regions), and the collection gets fres Chew one. it may update the paigeplace or it may

when the crawler revisits pages (freshness increase H?formshadowinq9] With shadowing, a new set of
grey regions). Note that the freshnes_s is not equal gges is collected from the web, and ’stored iseq-

1 even at the end of each crawl (the right ends of greY,ie gpacefrom the current collection. After all new
regions), because some pages have already changed dlile.s a6 collected and processed, the current collec-
It_ng tge crawl. Also note t?altlth.e ftrﬁShnﬁfS of the co1lle fon is instantaneously replaced by this new collection.
ion decreases exponentially in the white region. Thig, jigtinguish, we refer to the collection in the shadow-
trend is consistent with the experimental result of quhg space as therawler’s collection and the collection

ure 5. that is currently available to users as tharent collec-
Steady crawler: A steady crawleruns continuously tion.
without any pause (Figure 7(b)). In the figure, the en- Shadowing a collection may improve the availability
tire area is grey, because the crawler runs continuousiythe current collection, because the current collection
Contrary to the batch-mode crawler, the freshness of tisgecompletely shielded from the crawling process. Also,
steady crawler is stable over time because the collectipthe crawler’s collection has to be pre-processed before
is continuously and incrementally updated. itis made available to users (e.g., an indexer may need to
While freshness evolves differently for the batchbuild an inverted-index), the current collection can still
mode and the steady crawler, one gaove (based on handle users’ requests during this period. Furthermore,
the Poisson model) that their freshnes®raged over it is probably easier to implement shadowing than in-
time is the same if they visit pages at the san@v/- place updates, again because the update/indexing and
eragespeed. That is, when the steady and the batdhe access processes are separate.
mode crawler revisit all pages every month (even though However, shadowing a collection may decrease
the batch-mode crawler finishes a crawl in a week), tfieshness. To illustrate this issue, we use Figure 8. In
freshness averaged over time is the same for both. the figure, the graphs on the top show the freshness of
Even though both crawlers yield in the same averatfee crawler’s collection, while the graphs at the bottom
freshness, the steady crawler has an advantage oversthgw the freshness of the current collection. To simplify
batch-mode one, because it can collect pages at a lowdr discussion, we assume that the current collection
peakspeed. To get the same average speed, the baishinstantaneously replaced by the crawler’s collection
mode crawler must visit pages at a higher speed whenight after all pages are collected.
operates. This property increases the peak load on theNhen the crawler is steady, the freshness of the
crawler’s local machine and on the network. From oarawler’s collection will evolve as in Figure 8(a), top.
crawling experience, we learned that the peak crawliBgcause a new set of pages are collected from scratch

205

| || Steady| Batch-mode|

In-place 0.88 0.88
Shadowing|| 0.77 0.86
Table 1: Freshness of the collection for various choices

by

say every month, the freshness of the crawler’s collegmure 9: Change frequency of a page vs. optimal revisit
tion increases from zero every month. Then at the en F?quency of the page

each month (dotted lines in Figure 8(a)), the current col-
lection is replaced by the crawler’s collection, makingable, we can see that the freshness of the steady crawler
their freshness the same. From that point on, the fresfignificantly decreases with shadowing, while the fresh-
ness of the current collection decreases, until the curreiiss of the batch-mode crawler is not much affected by
collection is replaced by a new set of pages. To comshadowing. Thus, if one is building such a crawler,
pare how freshness is affected by shadowing, we shewadowing is a good option since it is simpler to im-
the freshness of the current collectisthout shadow- plement, and in-place updates are not a significant win
ing as a dashed line in Figure 8(a), bottom. The dashggthis case. In contrast, the gains are significant for a

line is always higher than the solid curve, because wheseady crawler, so in-place updates may be a good op-
the collection is not shadowed, new pages are immegon.

ately made available. Freshness of the current collectionNote that, however, this conclusion is very sensitive
is always highewithoutshadowing. to how often web pages change and how often a crawler
In Figure 8(b), we show the freshness obatch- runs. Forinstance, consider a scenario where web pages
modecrawler when the collection is shadowed. Thehange every month (as opposed to every 4 months),
solid line in Figure 8(b) top shows the freshness of ttend a batch crawler operates for the first two weeks of
crawler’s collection, and the solid line at the bottorevery month. Under these parameters, the freshness of
shows the freshness of the current collection. For com-batch crawler with in-place updateg)i$3, while the
parison, we also show the freshness of the current cfseshness i9.50 with a shadowing crawler. Therefore,
lection without shadowings a dashed line at the botif a crawler focuses on a dynamic portion of the web
tom. (The dashed line is slightly shifted to the right, t¢e.g.,com domain), the crawler may need to adopt the
distinguish it from the solid line.) The grey regions inn-place update policy, even when it runs in batch mode.
the figure represgnt the time when the crawler operatgss ae pages refreshed at the same frequency?
At the beginning of each month, the crawler starts) .)
to collect a new set of pages from scratch, and tﬁé_the crawler u_pdates pages in the collection, it may
crawl finishes in a week (the right ends of grey regiongjisit the pages either at the same frequency or at differ-
At that point, the current collection is replaced by thgnt frequencies.
crawler’s collection, making their freshness the samEixed frequency: The crawler revisits web pages at the
Then the freshness of the current collection decreasasne frequency, regardless of how often they change.
exponentially until the current collection is replaced bWe believe this fixed-frequency policy is often adopted
a new set of pages. by a batch-mode crawler, since a batch-mode crawler
Note that the dashed line and the solid line in Figgommonly revisits all pages in the collection in every
ure 8(b) bottom, are the same most of the time. For thatch.
batch-mode crawler, freshness is mostly the same, Xerriable frequency: The result of Section 3.1 showed
gardless of whether the collection is shadowed or néivat web pages change at widely different frequencies.
Only when the crawler is running (grey regions), thgiven this result, the crawler may optimize treisit
freshness of thn-place updatecrawler is higher than frequencyfor a page, based on how often the page
that of shadowingcrawler, because new pages are inghanges. Note that the variable-frequency policy is
mediately available to users with the in-place updaigell suited for thesteadycrawler within-place updates
crawler. Since the steady crawler visits pages continuously, it
In Table 1 we contrast the four possible choices wean adjust the revisit frequency with arbitrary granular-
have discussed (shadowing versus in-place, and steégynd thus increase the freshness of the collection.
versus batch), using the change rates measured in outf a variable frequency is used, the crawler needs a
experiment. To construct the table, we assumed thatstlategy for deciding at what rate to visit each page. In-
pages change with aaverage4 month interval, based tuitively, one may suspect that the crawler should revisit
on the result of Section 3.1. (Even if the average changgage more often, when it changes more often. How-
interval of pages is not exactly 4 months, the result &ver, reference [3] shows that this intuition may not be
not much different.) Also, we assumed that the steadght, depending on the freshness metric used. For in-
crawler revisits pages steadily over a month, and thetance, Figure 9 shows how often a crawler should visit
the batch-mode crawler recrawls pages only in the figtpage, to optimize the freshness metric [3]. The hor-
week of every month. The entries in Table 1 give thizontal axis represents the change frequency of a page,
expected freshness of the current collection. From thad the vertical axis shows the optimal revisit frequency

206

Batch-mode

1 I
| | Algorithm 1 Operation of an incremental crawler
1 I
~—— | Shadowing X
1]
1 I
1 I
1]
1 I

Input AllUrls: a set of all URLs known
CollUrls: a set of URLs in the local collection
(We assumeollUrls is full from the beginning.)

|
1
|
| In-place update
|
|
|
|

S _____

Variable frequencyy ~— 1 Fixed Frequency Procedure

bommmmmmm - ! bmmmmmmmees - [1]while (true)

e High freshness e Easy to implement [2] url — selectToCrawlllUrls)

e Less load on e (possibly) High [3] page — crawl(url)

network/server availability of the [4] if (url € CollUrls) then
- _ collection _ 5] update(rrl, page)
Figure 10: Two possible crawlers and their advantages [6] else
)]) [7] tmpurl — selectToDiscardfollUrls)

for that page. For example, if a page in the collection [g] discard¢mpurl)
changes at the frequency, the crawler should visit 9] save(rl, page)
the page at the frequengy. (We do not show specific [10] CollUrls < (CollUrls — {tmpurl}) U {url}

numbers in the graph, because the scale of the graph [11] newurls « extractUrlspage)
depends on how often pages change and how often the [12] AllUrls < AllUrls U newurls
crawler revisits the pages. However, thleapeof the
graph is always the same regardless of the scenario. For - -
details, see [3].) Note that when a page changes at a loigure 11: Conceptual operational model of an incre-
frequency (), the crawler should visit the pagemental crawler

more often as it changes more oftefificreases as

increases). However, when the page changes at a htiﬁgl introduction, and the right-hand side corresponds to

frequency (>), the crawler should visit the paget periodic crawler In the next section, we discuss
less often as it changes more oftef decreases as how we can implement an effective incremental crawler,

increases). with the properties listed on the left-hand side of the di-

We can understand this unexpected result throuﬁﬂram'
the following simple example. Suppose that a Crawlg Architecture for an incrementa| Craw'er
maintains two pages,; and », in its collection. Also
suppose that page; changes every day and page In this section, we study how to implement an effective
changes every second. Due to bandwidth limitation§cremental crawler. To that end, we first explain how
the crawler can crawl only one page per day, and it hte incremental crawler conceptually operates and iden-
to decide which page to crawl. Probabilistically, if théify two key decisions that an incremental crawler con-
crawler revisits page;, ; will remain up-to-date for a stantly makes. Based on these observations, we propose
half of the day. Therefore, the freshness of the collean architecture for the incremental crawler.
tion will be 0.5 for a half of the day. (One out of tWo g 1 50 ational model of an incremental crawler
pages remain up-to-date for a half of the day.) Instedd;
if the crawler revisits page,, » will remain up-to-date In Figure 11 we show pseudo-code that describes how
for a half second, so the freshness will @& only for an incremental crawler operates. This code shows the
a half second. Clearly, it is better to visi{ (which conceptuabperation of the crawler, not an efficient or
changes less often than), than to visit 5! From this complete implementation. (In Section 5.2, we show
example, we can see that the optimal revisit frequenbgw an actual incremental crawler operates.) In the al-
is not always proportional to the change frequency gbrithm,AllUrls records the set all URLSs discovered,
a page. The optimal revisit frequency depends on hamdCollUrls records the set of URLs in the collection.
often pages change and how often the crawler revisitsNote that when a crawler continuously crawls the
pages, and it should be carefully determined. In refekeb, the crawler has two important goals in mind. The
ence [3], we study this problem in more detail. The refirst goal is to maintain its local collection “fresh” and
erence shows that one can increase the freshness ofiigesecond goal is to improve the “quality” of the lo-
collection by 10%-23% by optimizing the revisit frecal collection by replacing “less important” pages with
quencies. “more important” pages. To achieve these goals, the

We summarize the discussion of this section in Figrawler needs to make a careful decision on what page
ure 10. As we have argued, there exist two “reasonable’crawl next. In the algorithm, the crawler makes de-
combinations of options, which have different advareisions in Step [2] and [7] and two decisions are tightly
tages. The crawler on the left gives us high freshneisgertwined. That is, when the crawler decides to crawl
and results in low peak loads. The crawler on the rightnew page (Step [2]), ihas todiscard a page from
may be easier to implement and interferes less withttee collection to make room for the new page. There-
highly utilized current collection. The left-hand siddore, when the crawler decides to crawl a new page, the
corresponds to thecremental crawlewe discussed in crawler should decide what page to discard (Step [7]).

207

Ranki ng|
Modul e 2%

% Mbdul e

Aluts /5P cI/Q &
ollUrls Qé\
<

Updat e When a pageotin CollUrls turns out to be more impor-
tant than a page withi€ollUrls, the RankingMod-

ule schedules for replacement of the less-important
page inCollUrls with that more-important page. The
URL for this new page is placed on the top@dllUrls,

so that thdJpdateModule can crawl the page imme-
diately. Also, theRankingModule discards the less-
important page from th€ollection to make space for
the new page.

While theRankingModule refines theCollection,
theUpdateModule maintains theCollection “fresh”
(update decision It constantly extracts the top entry
from CollUrls, requests th&CrawlModule to crawl
the page, and puts the crawled URL back iGwl|Urls.

We refer to this selection/discard decision asréfime- 1€ position of the crawled URL withigollUrls is de-
ment decision termined by the page®stimatecthange frequency and

Note that this refinement decision should be based {if Importance. (The closer a URL is to the head of the
the “importance” of pages. To measure importance, tHd€U€, the more frequently it will be revisited.)
crawler can use a number of metrics, including PageR- TO estimate how often a particular page changes,
ank [4, 10] and Hub and Authority [8]. Clearly, the imtheUpdateModule records the checksum of the page
portance of the discarded page should be lower than ffem the last crawl and compares that checksum with
importance of the new page. In fact, the discarded paéje one from the current crawl. From this compari-
should have théowestimportance in the collection, to Son, theUpdateModule can tell whether the page has
maintain the collection of the highest quallity. changed or not. In [2], we explain how ti#pdate-

Together with the refinement decision, the crawldfiodule can estimate the change frequency of a page
decides on what page tgpdatein Step [2]. That is, based on this change history. In short, we propose two
instead of visiting a new page, the crawler may decid@stimators,”"E2 andE , for the change frequency of
to visit an existing page to refresh itsimage. To maintafhPage.
the collection “fresh,” the crawler has to select the page EstimatorE is based on the Poisson process model
that will increase the freshness most significantly, awerified in Section 3.4, while estimaté is based on
we refer to this decision agpdate decision a Bayesian inference method. Essentially, is the
same as the method described in Section 3.1. To im-
plementE , the UpdateModule has to record how
To achieve the two goals for incremental crawlers, amdany times the crawler detected changes to a page for,
to effectively implement the corresponding decisiogay, last 6 months. TheR uses this number to get
process, we propose the architecture for an incremerdgatonfidence interval for the change frequency of that
crawler shown in Figure 12. The architecture consispage.

of three major modules}ankingModule , Update- The goal of estimatoE is slightly different from
Module andCrawlModule)and three data structureshat of £ . Instead of measuring a confidence interval,
(A”UrlS, CollUrls and CO”eCtlon). The lines and ar- E tries to Categorize pages into different frequency
rows ShOW data flow between modules, and the Iab@ﬁssesl say, pages that Change every week (dags

on the lines show the corresponding commands. Twad pages that change every month (class). To
data structures\llUrls andCollUrls, maintain informa- jmplementE , the UpdateModule stores the prob-

tion similar to that shown in Figure 1AllUrls records ab|||ty that page ; be|0ngs to each frequency class
all URLs that the crawler has _discoyered, afmill_JrIs ({:eC }Yand { ;e C }) and updates these
records the URLs that are/will be in th@ollection. probabilities based on detected changes. For instance,
CollUrls is implemented as a priority-queue, where thg the UpdateModule learns that page; did not
URLs to be crawled early are placed inthe front. change for one month, tHépdateModule increases
The URLs inCollUrls are chosen by th&®ank- { 1eC } and decreases{ € C }. For details,
ingModule . TheRankingModule constantly scans see [2].
through AllUrls and theCollection to make there-
finement decisian For instance, if the crawler useg,,
PageRank as its importance metric, RenkingMod-
ule constantly reevaluates the PageRanks of all UR
based on the link structure captured in @ellection.?

g%

addUrl

Collection

Figure 12: Architecture of the incremental crawler

5.2 Architecture for an incremental crawler

Note that it is also possible to keep update statistics
larger units than a page, such as a web site or a direc-
tory. If web pages on a site change at similar frequen-
Lrﬁes, the crawler may trace how many times the pages on
that site changed for last 6 months, and get a confidence
2Note that even if a page does not exist in th€ollection, the INterval based on the site-level statistics. In this case, the
RankingModule ~can estimate PageRankmfbased on how many Crawler may get a tighter confidence interval, because
pages in theCollection have a link tap. the frequency is estimated darger number of pages

208

(i.e., larger sample). However, if pages on a site chantien. We believe these references are complementary to
at highly different frequencies, this average change frear work, because we present an incremental-crawler
guency may not be sufficient to determine how often rchitecture, which can use any of the algorithms in
revisit pages in that site, leading to a less-than optimalese papers.
revisit frequency. References [13] and [6] experimentally study how
Also note that theUpdateModule may need to often web pages change. Reference [11] studies the re-
consult the “importance” of a page in deciding on rdationship between the “desirability” of a page and its
visit frequency. If a certain page is “highly importantlifespan. However, none of these studies are as exten-
and the page needs to be always up-to-date/Ue Sive as ours in terms of the scale and the length of the ex-
dateModule may revisit the page much more ofteperiment. Also, their focus is different from ours. Ref-
than other pages with similar change frequency. To irafence [13] investigates page changes to impresb
plement this policy, th&JpdateModule also needs to caching policiesand reference [11] studies how page
record the “importance” of each page. changes are related &mcess patterns
Returning to our architecture, tr(érawIM_oduIe 7 Conclusion
crawls a page and saves/updates the page iGdtec-
tion, based on the request from thipdateModule . In this paper we have studied how to build an effec-
Also, theCrawIModule extracts all links/URLSs in the tive incremental crawler. To understand how the web
crawled page and forwards the URLsAdUrls. The evolves over time, we first described a comprehensive
forwarded URLs are included #llUrls, if they are new. experiment, conducted on 720,000 web pages from 270
While we show only one instance of ti@¥rawIMod- ~ Web sites over 4 months. Based on the results, we dis-
ule in the figure, note that multipl€rawlModule ’s cussed various design choices for a crawler and the pos-
may run in parallel, depending on how fast we need &ible trade-offs. We then proposed an architecture for an
crawl pages. incremental crawler, which combines the best strategies
Separating the update decisiodpdateModule) identified.
from the refinement decisiorRénkingModule) is References
crucial for performance reasons. For example, to visit

100 million pages every monththe crawler has to visit [5. Chakrabarti M. van den Berg, and B. Dom. Focused crawl
H Ing: new approacn to topic-specific web resource aiscovery.
pages at about 40 pageS/Second' However, it may take In Proceedings of the 8th World-Wide Web Confered®99.

a while to select/deselect pages @ollection, because [y 5 cho and H. Garcia-Molina. Estimating frequency of
computing the importance of pages is often expensive. change. Technical report, Stanford University, 2000tp:

For instance, when the crawler computes PageRank, it //dbpubs.stanford.edu/pub/2000-4

needs to scan through ti@ollection multiple times, [3] J. Cho and H. Garcia-Molina. Synchronlzmg a database to im-
even if the link structure has changed little. (To learn fiove freshness. IRroceedings of the 2000 ACM SIGMOD
more on the complexﬁy of PageRank computation ang] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling
how we can efficiently compute PageRank, see [7].)" through URL ordering. IrProceedings of the 7th World-Wide
Clearly, the crawler cannot recompute the importance Web Conferencel998.

of pages for every page crawled, when it needs to ru] E. Coffman, Jr., Z. Liu, and R. R. Weber. Optimal robot schedul-
at 40 pages/second_ By Separating the refinement de- ing for web search engines. Technical report, INRIA, 1997.
cision from the update decision, thipdateModule [6] F.Douglis, A. Feldmann, and B. Krishnamurthy. Rate of change
can focus on updating pages at high speed, while the and other metrics: a live study of the world wide web. In

. . . USENIX Symposium on Internetworking Technologies and Sys-
RankingModule carefully refines th€ollection. tems 1999.

[7] T. Haveliwala. Efficient computation of pagerank. Techni-
6 Related Work cal report, Stanford University, 1999.http://dbpubs.

. . . stanford.edu/pub/1999-31
Several papers investigate how to build an effectiv E] J. M. Kleinberg. Authoritive sources in a hyperlinked environ-

crawler. Reference [4] studies what pages a crawler’ [ont inproceedings of 9th ACM-SIAM Symposium on Discrete

should visit, when it cannot store a complete web im- Algorithms 1998.

age. Reference [1] looks at how to collect web pages] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast

related to apecifictopic, in order to build a specialized file system for UNIX.ACM Transactions on Computer Systems

web collection. The techniques discussed in these ref—] i(?-lgl‘lgg 1:34- he anatomy of a & rvoertoxtual
; : . Page and S. Brin. The anatomy of a large-scale hypertextua

erenpes can be. used for tR@nklngModule . In-our web search engine. IRroceedings of the 7th World-Wide Web

architecture, to improve quality of the collection. In [2], Conference1998.

we study how to estimate the change frequency of a wgly . pitkow and P. Pirolii. Life, death, and lawfulness on the elec-

page by revisiting the page periodically. References [3] tronic frontier. InProceedings of International Conference on

and [5] study how often a crawler should visit a page Computer and Human Interactipd997.

when it knows how often the page changes. The a|dé2] H. M. Taylor and S. KarlinAn Introduction To Stochastic Mod-

. . . eling. Academic Press, 3rd edition, 1998.
rithms described in these references can be used for[tﬁ?

: C. E. Wills and M. Mikhailov. Towards a better understanding
UpdateMOdUIe , 1o Improve freshness of the collec- of web resources and server responses for improved caching. In

Proceedings of the 8th World-Wide Web Confered&89.

3Many search engines report numbers similar to this.

209

