Memory Safety for Low-Level Software/Hardware Interactions

John Criswell Nicolas Geoffray Vikram Adve
University of lllinois Université Pierre et Marie Curie University of Illinois
criswell @uiuc.edu INRIA/Regal vadve @uiuc.edu

nicolas.geoffray@lip6.fr

Abstract

Systems that enforce memory safety for today’s oper-
ating system kernels and other system software do not
account for the behavior of low-level software/hardware
interactions such as memory-mapped I/O, MMU config-
uration, and context switching. Bugs in such low-level
interactions can lead to violations of the memory safety
guarantees provided by a safe execution environment and
can lead to exploitable vulnerabilities in system software.
In this work, we present a set of program analysis and
run-time instrumentation techniques that ensure that er-
rors in these low-level operations do not violate the as-
sumptions made by a safety checking system. Our de-
sign introduces a small set of abstractions and interfaces
for manipulating processor state, kernel stacks, memory
mapped I/O objects, MMU mappings, and self modify-
ing code to achieve this goal, without moving resource
allocation and management decisions out of the kernel.
We have added these techniques to a compiler-based vir-
tual machine called Secure Virtual Architecture (SVA),
to which the standard Linux kernel has been ported previ-
ously. Our design changes to SVA required only an addi-
tional 100 lines of code to be changed in this kernel. Our
experimental results show that our techniques prevent re-
ported memory safety violations due to low-level Linux
operations and that these violations are not prevented by
SVA without our techniques. Moreover, the new tech-
niques in this paper introduce very little overhead over
and above the existing overheads of SVA. Taken together,
these results indicate that it is clearly worthwhile to add
these techniques to an existing memory safety system.

1 Introduction

Most modern system software, including commodity op-
erating systems and virtual machine monitors, are vul-
nerable to a wide range of security attacks because they
are written in unsafe languages like C and C++. In

fact, there has been an increase in recent years of at-
tack methods against the operating system (OS) kernel.
There are reported vulnerabilities for nearly all commod-
ity OS kernels (e.g., [2, 28, 43]). One recent project went
so far as to present one OS kernel bug every day for a
month for several different open source and commercial
kernels [26] (several of these bugs are exploitable vul-
nerabilities). Preventing these kinds of attacks requires
protecting the core kernel and not just device drivers:
many of the vulnerabilities are in core kernel compo-
nents [19, 40, 41, 43, 46].

To counter these threats, there is a growing body
of work on using language and compiler techniques to
enforce memory safety (defined in Section 2) for OS
code. These include new OS designs based on safe
languages [4, 18, 22, 33], compiler techniques to en-
force memory safety for commodity OSs in unsafe lan-
guages [10], and instrumentation techniques to isolate
a kernel from extensions such as device drivers [45,
47, 51]. We use the term “safe execution environment”
(again defined in Section 2) to refer to the guarantees
provided by a system that enforces memory safety for
operating system code. Singularity, SPIN, JX, JavaOS,
SafeDrive, and SVA are examples of systems that en-
force a safe execution environment.

Unfortunately, all these memory safety techniques
(even implementations of safe programming languages)
make assumptions that are routinely violated by low-
level interactions between an OS kernel and hardware.
Such assumptions include a static, one-to-one mapping
between virtual and physical memory, an idealized pro-
cessor whose state is modified only via visible program
instructions, I/O operations that cannot overwrite stan-
dard memory objects except input I/O targets, and a pro-
tected stack modifiable only via load/store operations
to local variables. For example, when performing type
checking on a method, a safe language like Java or
Modula-3 or compiler techniques like those in SVA as-
sume that pointer values are only defined via visible pro-

gram operations. In a kernel, however, a buggy kernel
operation might overwrite program state while it is off-
processor and that state might later be swapped in be-
tween the definition and the use of the pointer value, a
buggy MMU mapping might remap the underlying phys-
ical memory to a different virtual page holding data of a
different type, or a buggy 1/0 operation might bring cor-
rupt pointer values into memory.

In fact, as described in Section 7.1, we have injected
bugs into the Linux kernel ported to SVA that are capa-
ble of disabling the safety checks that prevented 3 of the 4
exploits in the experiments reported in the original SVA
work [10]: the bugs modify the metadata used to track
array bounds and thus allow buffer overruns to go un-
detected. Similar vulnerabilities can be introduced with
other bugs in low-level operations. For example, there
are reported MMU bugs [3, 39, 42] in previous versions
of the Linux kernel that are logical errors in the MMU
configuration and could lead to kernel exploits.

A particularly nasty and very recent example is an in-
sidious error in the Linux 2.6 kernel (not a device driver)
that led to severe (and sometimes permanent) corruption
of the e1000e network card [9]. The kernel was over-
writing I/O device memory with the x86 cmpxchg in-
struction, which led to corrupting the hardware. This bug
was caused by a write through a dangling pointer to /O
device memory. This bug took weeks of debugging by
multiple teams to isolate. A strong memory safety sys-
tem should prevent or constrain such behavior, either of
which would have prevented the bug.

All these problems can, in theory, be prevented by
moving some of the kernel-hardware interactions into a
virtual machine (VM) and providing a high-level inter-
face for the OS to invoke those operations safely. If an
OS is co-designed with a virtual machine implementing
the underlying language, e.g., as in JX [18], then elimi-
nating such operations from the kernel could be feasible.
For commodity operating systems such as Linux, Mac
OS X, and Windows, however, reorganizing the OS in
such a way may be difficult or impossible, requiring, at
a minimum, substantial changes to the OS design. For
example, in the case of SVA, moving kernel-hardware
interactions into the SVA VM would require extensive
changes to any commodity system ported to SVA.

Virtual machine monitors (VMMSs) such as VMWare
or Xen [16] do not solve this problem. They provide suf-
ficiently strong guarantees to enforce isolation and fair
resource sharing between different OS instances (i.e.,
different “domains”) but do not enforce memory safety
within a single instance of an OS. For example, a VMM
prevents one OS instance from modifying memory map-
pings for a different instance but does not protect an OS
instance from a bug that maps multiple pages of its own
to the same physical page, thus violating necessary as-

sumptions used to enforce memory safety. In fact, a
VMM would not solve any of the reported real-world
problems listed above.

In this paper, we present a set of novel techniques to
prevent low-level kernel-hardware interactions from vi-
olating memory safety in an OS executing in a safe ex-
ecution environment. There are two key aspects to our
approach: (1) we define carefully a set of abstractions
(an API) between the kernel and the hardware that en-
ables a lightweight run-time checker to protect hardware
resources and their behaviors; and (2) we leverage the
existing safety checking mechanisms of the safe execu-
tion environment to optimize the extra checks that are
needed for this monitoring. Some examples of the key
resources that are protected by our API include processor
state in CPU registers; processor state saved in memory
on context-switches, interrupts, or system calls; kernel
stacks; memory-mapped I/O locations; and MMU con-
figurations. Our design also permits limited versions of
self-modifying code that should suffice for most kernel
uses of the feature. Most importantly, our design pro-
vides these assurances while leaving essentially all the
logical control over hardware behavior in the hands of
the kernel, i.e., no policy decisions or complex mecha-
nisms are taken out of the kernel. Although we focus
on preserving memory safety for commodity operating
systems, these principles would enable any OS to reduce
the likelihood and severity of failures due to bugs in low-
level software-hardware interactions.

We have incorporated these techniques in the SVA
prototype and correspondingly modified the Linux 2.4.22
kernel previously ported to SVA [10]. Our new tech-
niques required a significant redesign of SVA-OS, which
is the API provided by SVA to a kernel for control-
ling hardware and using privileged hardware operations.
The changes to the Linux kernel were generally simple
changes to use the new SVA-OS API, even though the
new API provides much more powerful protection for the
entire kernel. We had to change only about 100 lines in
the SVA kernel to conform to the new SVA-OS API.

We have evaluated the ability of our system to prevent
kernel bugs due to kernel-hardware interactions, both
with real reported bugs and injected bugs. Our system
prevents two MMU bugs in Linux 2.4.22 for which ex-
ploit code is available. Both bugs crash the kernel when
run under the original SVA. Moreover, as explained in
Section 7.1, we would also prevent the e1000e bug in
Linux 2.6 if that kernel is run on our system. Finally,
the system successfully prevents all the low-level kernel-
hardware interaction errors we have tried to inject.

We also evaluated the performance overheads for two
servers and three desktop applications (two of which per-
form substantial I/O). Compared with the original SVA,
the new techniques in this paper add very low or negligi-

ble overheads. Combined with the ability to prevent real-
world exploits that would be missed otherwise, it clearly
seems worthwhile to add these techniques to an existing
memory safety system.

To summarize, the key contributions of this work are:

e We have presented novel mechanisms to ensure that
low-level kernel-hardware interactions (e.g., con-
text switching, thread creation, MMU changes, and
I/O operations) do not violate assumptions used to
enforce a safe execution environment.

e We have prototyped these techniques and shown
that they can be used to enforce the assumptions
made by a memory safety checker for a commodity
kernel such as Linux. To our knowledge, no pre-
vious safety enforcement technique provides such
guarantees to commodity system software.

e We have evaluated this system experimentally and
shown that it is effective at preventing exploits in
the above operations in Linux while incurring little
overhead over and above the overhead of the under-
lying safe execution environment of SVA.

2 Breaking Memory Safety with Low-
Level Kernel Operations

Informally, a program is type-safe if all operations in
the program respect the types of their operands. For
the purposes of this work, we say a program is mem-
ory safe if every memory access uses a previously initial-
ized pointer variable; accesses the same object to which
the pointer pointed initially;' and the object has not been
deallocated. Memory safety is necessary for type safety
(conversely, type safety implies memory safety) because
dereferencing an uninitialized pointer, accessing the tar-
get object out of bounds, or dereferencing a dangling
pointer to a freed object, can all cause accesses to un-
predictable values and hence allow illegal operations on
those values.

A safe programming language guarantees type safety
and memory safety for all legal programs [34]; these
guarantees also imply a sound operational semantics
for programs in the language. Language implementa-
tions enforce these guarantees through a combination
of compile-time type checking, automatic memory man-
agement (e.g., garbage collection or region-based mem-
ory management) to prevent dangling pointer references,
and run-time checks such as array bounds checks and
null pointer checks.

Four recent compiler-based systems for C, namely,
CCured [30], SafeDrive [51], SAFECode [15], and

Note that we permit a pointer to “leave” its target object and later
return, as long as it is not accessed while it is out of bounds [32].

SVA [10] enforce similar, but weaker, guarantees for C
code. Their guarantees are weaker in two ways: (a) they
provide type safety for only a subset of objects, and (b)
three of the four systems — SafeDrive, SAFECode and
SVA — permit dangling pointer references (use-after-
free) to avoid the need for garbage collection. Unlike
SafeDrive, however, SAFECode and SVA guarantee that
dangling pointer references do not invalidate any of the
other safety properties, i.e., partial type safety, memory
safety, or a sound operational semantics [14, 15]. We re-
fer to all these systems — safe languages or safety check-
ing compilers — as providing a safe execution environ-
ment.

All of the above systems make some fundamental as-
sumptions regarding the run-time environment in enforc-
ing their safety guarantees. In particular, these systems
assume that the code segment is static; control flow can
only be altered through explicit branch instructions, call
instructions, and visible signal handling; and that data
is stored either in a flat, unchanging address space or in
processor registers. Furthermore, data can only be read
and written by direct loads and stores to memory or di-
rect changes to processor registers.

Low-level system code routinely violates these as-
sumptions. Operating system kernels, virtual machine
monitors, language virtual machines such as a JVM or
CLR, and user-level thread libraries often perform op-
erations such as context switching, direct stack manip-
ulation, memory mapped I/O, and MMU configuration,
that violate these assumptions. More importantly, as ex-
plained in the rest of this section, perfectly type-safe code
can violate many of these assumptions (through logical
errors), i.e., such errors will not be prevented by the lan-
guage in the first place. This is unacceptable for safe lan-
guage implementations and, at least, undesirable for sys-
tem software because these violations can compromise
safety and soundness and thus permit the vulnerabilities
a safe language was designed to prevent, such as buffer
overflows or the creation of illegal pointer values.

There are, in fact, a small number of root causes (or
categories of root causes) of all these violations. This
section enumerates these root causes, and the next sec-
tion describes the design principles by which these root
causes can be eliminated. We assume throughout this
discussion that a safety checker (through some com-
bination of static and run-time checking) enforces the
language-level safety guarantees of a safe execution en-
vironment, described above, for the kernel.2 This allows
us to assume that the run-time checker itself is secure,
and that static analysis can be used soundly on kernel
code [15]. Our goal is to ensure the integrity of the as-

2This work focuses on enforcing memory safety for the kernel. The
same techniques could be applied to protect user-space threads from
these violations.

sumptions made by this safety checker. We refer to the
extensions that enforce these assumptions as a verifier.
Briefly, the fundamental categories of violations are:

e corrupting processor state when held in registers or
memory;

e corrupting stack values for kernel threads;
e corrupting memory mapped I/O locations;
e corrupting code pages in memorys;

e other violations that can corrupt arbitrary memory
locations, including those listed above.

Unlike the last category, the first four above are errors
that are specific to individual categories of memory.

2.1 Corrupting Processor State

Corrupting processor state can corrupt both data and con-
trol flow. The verifier must first ensure that processor
state cannot be corrupted while on the processor itself,
i.e., preventing arbitrary changes to processor registers.
In addition, however, standard kernels save processor
state (i.e., data and control registers) in memory where it
is accessible by standard (even type-safe) load and store
instructions. Any (buggy) code that modifies this state
before restoring the state to the processor can alter con-
trol flow (the program counter, stack pointer, return ad-
dress register, or condition code registers) or data val-
ues. In safe systems that permit dangling pointer refer-
ences, processor state can also be corrupted if the mem-
ory used to hold saved processor state (usually located on
the heap [5]) is freed and reallocated for other purposes.
Note that there are cases where the kernel makes ex-
plicit, legal, changes to the interrupted state of user-space
code. For example, during signal handler dispatch, the
kernel modifies interrupted program state that has been
saved to memory, including the interrupted program’s
program counter and stack pointer [5]. Also, returning
from a signal handler requires undoing the modifications
made by signal delivery. The verifier must be able to dis-
tinguish legal from illegal changes to saved state.

2.2 Corrupting Stack State

The kernel directly manages the stacks of both user and
kernel threads; it allocates and deallocates memory to
hold them, sets up initial stack frames for new threads
and signal handlers, and switches between stacks during
a context switch or interrupt/system call return.
Memory for the stack is obtained from some standard
memory allocation. Several safety violations are possible
through this allocated memory. First, the memory for the

stack should only be used for stack frames created during
normal function calls and not directly modified via arbi-
trary stores;> such stores could corrupt the stack frames
and thus compromise safety. Second, the memory for the
stack must not be deallocated and reused for other mem-
ory objects while the stack is still in use. Third, a context
switch must switch to a stack and its corresponding saved
processor state as a pair; a context switch should not load
processor state with the wrong stack or with a stack that
has been deallocated. Fourth, after a stack is deallocated,
live pointers to local variables allocated on the stack must
not be dereferenced (the exiting thread may have stored
pointers to such objects into global variables or the heap
where they are accessible by other threads).

2.3 Corrupting Memory-Mapped 1/0

Most systems today use memory-mapped I/O for con-
trolling I/O devices and either memory-mapped I/O or
DMA for performing data transfers. Many hardware ar-
chitectures treat regular memory and memory-mapped
I/0 device memory (hereafter called /O memory) iden-
tically, allowing a single set of hardware instructions to
access both. From a memory safety perspective, how-
ever, it is better to treat regular memory and I/O memory
as disjoint types of memory that are accessed using dis-
tinct instructions. First, I/O memory is not semantically
the same as regular memory in that a load may not re-
turn the value last stored into the location; program anal-
ysis algorithms (used to enforce and optimize memory
safety [15]) are not sound when applied to such mem-
ory. Second, I/O memory creates side-effects that regu-
lar memory does not. While erroneously accessing I/O
memory instead of regular memory may not be a mem-
ory safety violation per se, it is still an error with po-
tentially dire consequences. For example, the e1000e
bug [9] caused fatal damage to hardware when an in-
struction (cmpxchg) that was meant to write to mem-
ory erroneously accessed memory-mapped I/O registers,
which has undefined behavior. Therefore, for soundness
of regular memory safety and for protection against a se-
rious class of programming errors, it is best to treat reg-
ular memory and I/O memory as disjoint.

2.4 Corrupting Code

Besides the general memory corruption violations de-
scribed below, there are only two ways in which the con-
tents of code pages can be (or appear to be) corrupted.
One is through self-modifying code (SMC); the other is
through incorrect program loading operations (for new
code or loadable kernel modules).

3 An exception is when Linux stores the process’s task structure at
the bottom of the stack.

Self-modifying code directly modifies the sequence of
instructions executed by the program. This can modify
program behavior in ways not predicted by the compiler
and hence bypass any of its safety checking techniques.
For these reasons, most type-safe languages prohibit self-
modifying code (which is distinct from “self-extending”
behaviors like dynamic class loading). However, mod-
ern kernels use limited forms of self-modifying code
for operations like enabling and disabling instrumenta-
tion [9] or optimizing synchronization for a specific ma-
chine configuration [8]. To allow such optimizations, the
verifier must define limited forms of self-modifying code
that do not violate the assumptions of the safety checker.

Second, the verifier must ensure that any program
loading operation is implemented correctly. For ex-
ample, any such operation, including new code, self-
modifying code, or self-extending code (e.g., loadable
kernel modules) requires flushing the instruction cache.
Otherwise, cached copies of the old instructions may be
executed out of the I-cache (and processors with split in-
struction/data caches may even execute old instructions
with fresh data). This may lead to arbitrary memory
safety violations for the kernel or application code.

2.5 General Memory Corruption

Finally, there are three kinds of kernel functionality that
can corrupt arbitrary memory pages: (1) MMU configu-
ration; (2) page swapping; and (3) DMA. Note that errors
in any of these actions are generally invisible to a safety
checking compiler and can violate the assumptions made
by the compiler, as follows.

First, the kernel can violate memory safety with di-
rect operations on virtual memory. Fundamentally, most
of these are caused by creating an incorrect virtual-to-
physical page mapping. Such errors include modifying
mappings in the range of kernel stack memory, mapping
the same physical page into two virtual pages (uninten-
tionally), and changing a virtual-to-physical mapping for
a live virtual page. As before, any of these errors can
occur even with a type-safe language.

A second source of errors is in page swapping. When
a page of data is swapped in on a page fault, memory
safety can be violated if the data swapped in is not iden-
tical to the data swapped out from that virtual page. For
example, swapping in the wrong data can cause invalid
data to appear in pointers that are stored in memory.

Finally, a third source of problems is DMA. DMA
introduces two problems. First, a DMA configuration
error, device driver error, or device firmware error can
cause a DMA transfer to overwrite arbitrary physical
memory, violating type-safety assumptions. Second,
even a correct DMA transfer may bring in unknown data
which cannot be used in a type-safe manner, unless spe-

cial language support is added to enable that, e.g., to
prevent such data being used as pointer values, as in the
SPIN system [21].

3 Design Principles

We now describe the general design principles that a
memory safe system can use to prevent the memory er-
rors described in Section 2. As described earlier, we as-
sume a safety checker already exists that creates a safe
execution environment; the verifier is the set of exten-
sions to the safety checker that enforces the underlying
assumptions of the checker. Examples of safety checkers
that could benefit directly from such extensions include
SVA, SafeDrive, and XFI. We also assume that the kernel
source code is available for modification.

Processor State: Preventing the corruption of proces-
sor state involves solving several issues. First, the veri-
fier must ensure that the kernel does not make arbitrary
changes to CPU registers. Most memory safe systems
already do this by not providing instructions for such
low-level modifications. Second, the verifier must en-
sure that processor state saved by a context switch, in-
terrupt, trap, or system call is not accessed by mem-
ory load and store instructions. To do this, the verifier
can allocate the memory used to store processor state
within its own memory and allow the kernel to manipu-
late that state via special instructions that take an opaque
handle (e.g., a unique integer) to identify which saved
state buffer to use. For checkers like SVA and SafeDrive,
the safety checker itself prevents the kernel from manu-
facturing and using pointers to these saved state buffers
(e.g., via checks on accesses that use pointers cast from
integers). Additionally, the verifier should ensure that
the interface for context switching leaves the system in a
known state, meaning that a context switch should either
succeed completely or fail.

There are operations in which interrupted program
state needs to be modified by the kernel (e.g., signal han-
dler dispatch). The verifier must provide instructions
for doing controlled modifications of interrupted pro-
gram state; for example, it can provide an instruction
to push function call frames on to an interrupted pro-
gram’s stack [11]. Such instructions must ensure that
either their modifications cannot break memory safety
or that they only modify the saved state of interrupted
user-space programs (modifying user-space state cannot
violate the kernel’s memory safety).

Stack State: The memory for a kernel stack and for the
processor state object (the in-memory representation of
processor state) must be created in a single operation (in-
stead of by separate operations), and the verifier should
ensure that the kernel stack and processor state object

are always used and deallocated together. To ease imple-
mentation, it may be desirable to move some low-level,
error-prone stack and processor state object initialization
code into the verifier. The verifier must also ensure that
memory loads and stores do not modify the kernel stack
(aside from accessing local variables) and that local vari-
ables stored on the stack can no longer be accessed when
the kernel stack is destroyed.

Memory-mapped I/O: The verifier must require that
all I/O object allocations be identifiable in the kernel
code, (e.g., declared via a pseudo-allocator). It should
also ensure that only special I/O read and write instruc-
tions can access I/O memory (these special instructions
can still be translated into regular memory loads and
stores for memory-mapped I/O machines) and that these
special instructions cannot read or write regular mem-
ory objects. If the verifier uses type-safety analysis to
optimize run-time checks, it should consider I/O objects
(objects analogous to memory objects but that reside in
memory-mapped I/O pages) to be type-unsafe as the de-
vice’s firmware may use the [/O memory in a type-unsafe
fashion. Since it is possible for a pointer to point to both
I/O objects and memory objects, the verifier should place
run-time checks on such pointers to ensure that they are
accessing the correct type of object (memory or I/O), de-
pending upon the operation in which the pointer is used.

Kernel Code: The verifier must not permit the kernel
to modify its code segment. However, it can support a
limited version of self-modifying code that is easy to im-
plement and able to support the uses of self-modifying
code found in commodity kernels. In our design, the
kernel can specify regions of code that can be enabled
and disabled. The verifier will be responsible for replac-
ing native code with no-op instructions when the ker-
nel requests that code be disabled and replacing the no-
ops with the original code when the kernel requests the
code to be re-enabled. When analyzing code that can be
enabled and disabled, the verifier can use conservative
analysis techniques to generate results that are correct
regardless of whether the code is enabled or disabled.
For example, our pointer analysis algorithm, like most
other inter-procedural ones used in production compil-
ers, computes a may-points-to result [24], which can be
computed with the code enabled; it will still be correct,
though perhaps conservative, if the code is disabled.

To ensure that the instruction cache is properly
flushed, our design calls for the safety checker to handle
all translation to native code. The safety checker already
does this in JVMs, safe programming languages, and in
the SVA system [10]. By performing all translation to
native code, the verifier can ensure that all appropriate
CPU caches are flushed when new code is loaded into
the system.

General Memory Corruption: The verifier must im-
plement several types of protection to handle the general
memory corruption errors in Section 2.5.

MMU configuration: To prevent MMU misconfigu-
ration errors, the verifier must be able to control ac-
cess to hardware page tables or processor TLBs and vet
changes to the MMU configuration before they are ap-
plied. Implementations can use para-virtualization tech-
niques [16] to control the MMU. The verifier must pre-
vent pages containing kernel memory objects from be-
ing made accessible to non-privileged code and ensure
that pages containing kernel stack frames are not mapped
to multiple virtual addresses (i.e., double mapped) or
unmapped before the kernel stack is destroyed.* Veri-
fiers optimizing memory access checks must also pro-
hibit double mappings of pages containing type known
objects; this will prevent data from being written into
the page in a way that is not detected by compiler anal-
ysis techniques. Pages containing type-unknown mem-
ory objects can be mapped multiple times since run-time
checks already ensure that the data within them does not
violate any memory safety properties. The verifier must
also ensure that MMU mappings do not violate any other
analysis results upon which optimizations depend.

Page swapping: For page swapping, the kernel must
notify the verifier before swapping a page out (if not, the
verifier will detect the omission on a subsequent physical
page remapping operation). The verifier can then record
any metadata for the page as well as a checksum of the
contents and use these when the page is swapped back in
to verify that the page contents have not changed.

DMA: The verifier should prevent DMA transfers from
overwriting critical memory such as the kernel’s code
segment, the verifier’s code and data, kernel stacks (aside
from local variables), and processor state objects. Im-
plementation will require the use of IOMMU techniques
like those in previous work [17, 36]. Additionally, if the
verifier uses type information to optimize memory safety
checks, it must consider the memory accessible via DMA
as type-unsafe. This solution is strictly stronger than pre-
vious work (like that in SPIN [21]): it allows pointer val-
ues in input data whereas they do not (and they do not
guarantee type safety for other input data).

Entry Points: To ensure control-flow integrity, the ker-
nel should not be entered in the middle of a function.
Therefore, the verifier must ensure that all interrupt, trap,
and system call handlers registered by the kernel are the
initial address of a valid function capable of servicing the
interrupt, trap, or system call, respectively.

4We assume the kernel does not swap stack pages to disk, but the
design can be extended easily to allow this.

4 Background: Secure Virtual
Architecture

The Secure Virtual Architecture (SVA) system (Figure 1)
places a compiler-based virtual machine between the
processor and the traditional software stack [10, 11]. The
virtual machine (VM) presents a virtual instruction set
to the software stack and translates virtual instructions
to the processor’s native instruction set either statically
(the default) or dynamically. The virtual instruction set
is based on the LLVM code representation [23], which is
designed to be low-level and language-independent, but
still enables sophisticated compiler analysis and transfor-
mation techniques. This instruction set can be used for
both user-space and kernel code [11].

SVA optionally provides strong safety guarantees for
C/C++ programs compiled to its virtual instruction set,
close to that of a safe language. The key guarantees are:

1. Partial type safety: Operations on a subset of data
are type safe.

2. Memory safety: Loads and stores only access the
object to which the dereferenced pointer initially
pointed, and within the bounds of that object.

3. Control flow integrity: The kernel code only follows
execution paths predicted by the compiler; this ap-
plies to both branches and function calls.

4. Tolerating dangling pointers: SVA does not detect
uses of dangling pointers but guarantees that they
are harmless, either via static analysis (for type-
safe data) or by detecting violations through run-
time checks (for non-type safe data).

5. Sound operational semantics: SVA defines a virtual
instruction set with an operational semantics that is
guaranteed not to be violated by the kernel code;
sound program analysis or verification tools can be
built on this semantics.

Briefly, SVA provides these safety guarantees as fol-
lows. First, it uses a pointer analysis called Data Struc-
ture Analysis (DSA) [24] to partition memory into logi-
cal partitions (“points to sets”’) and to check which parti-
tions are always accessed or indexed with a single type.
These partitions are called “type-known” (TK); the rest
are “type-unknown” (TU). SVA then creates a run-time
representation called a “metapool” for each partition.
It maintains a lookup table in each metapool of mem-
ory objects and their bounds to support various run-time
checks. Maintaining a table per metapool instead of a
single global table greatly improves the performance of
the run-time checks [14].

Compile-time analysis with DSA guarantees that all
TK partitions are type-safe. Moreover, all uses of data

Applications
Cached
03 | transtations
Frafiie infa
Feme!
1
| Drivers i
; | irtual [SA
State HW Cache
s SvA AP
Trensiator Security policy E svA SVAVirtual
! {codegen) verifier | monitor Machine
i} =
Processor Mative [SA

Figure 1: System Organization with SVA [10]

and function pointers loaded out of TK partitions are
type safe. SVA simply has to ensure that dangling pointer
references to TK metapools cannot create a type vio-
lation by enforcing two constraints: (a) objects in TK
metapools are aligned identically; and (b) freed mem-
ory from such a metapool is never used for a different
metapool until the former is destroyed. These constraints
are enforced by modifying the kernel allocators manu-
ally during the process of porting the kernel to SVA; this
means that the allocators are effectively trusted and not
checked. To enforce these constraints for stack objects
belonging to TK metapools, SVA automatically modifies
the kernel code to allocate such objects on the heap. To-
gether, these guarantee that a pointer to a freed object and
a new object (including array elements) access values of
identical type [15].

At run-time, the SVA VM (thereafter called VM) per-
forms a number of additional checks and operations.
All globals and allocated objects are registered in the
metapool to which they belong (derived from the target
partition of the return pointer). Loads and stores that use
pointers loaded from TU metapools are checked by look-
ing up the target address in the metapool lookup table.
Note that this works whether or not the pointer value
is a dangling pointer, and even for pointers “manufac-
tured” by casting arbitrary integers. Similarly, it checks
function pointers obtained from TU metapools to ensure
that they only access one of the target functions of that
pointer predicted by DSA. Run-time checks also ensure
that pointers to TK objects that are loaded from TU mem-
ory objects are checked since a TU object may have an
invalid value for the TK pointer. All array indexing oper-
ations for TK or TU metapools are checked in the lookup
table, which records the bounds for each object [14]°.

Note that the VM relies on the safe execution environ-

5Note that we permit a pointer to “leave” its target object and later
return, as long as it is not accessed while it is out of bounds [32].

ment to protect the VM code and data memory instead of
using the MMU and incurring the cost of switching page
tables on every VM invocation. Since the environment
prevents access to unregistered data objects or outside
the bounds of legal objects, we can simply monitor all
run-time kernel object registrations and ensure that they
do not reside in VM code or data pages.

A subset of the SVA instruction set, SVA-OS, provides
instructions designed to support an operating system’s
special interaction with the hardware [10, 11]. These in-
clude instructions for loading from/storing to I/O mem-
ory, configuring the MMU, and manipulating program
state. An important property is that a kernel ported to
SVA using the SVA-OS instructions contains no assem-
bly code; this simplifies the compiler’s task of safety
checking within SVA. Nevertheless, these instructions
provide low-level hardware interactions that can gener-
ate all the problems described in Section 2 if used incor-
rectly; it is very difficult for the compiler to check their
correct use in the original design. In particular, the VM
does not perform any special checks for processor state
objects, direct stack manipulation, memory mapped I/O
locations, MMU configuration changes, or DMA opera-
tions. Also, it disallows self-modifying code.

For example, we tested two [39, 42] of the three re-
ported low-level errors we found for Linux 2.4.22, the
kernel version ported to SVA (we could not try the
third [3] for reasons explained in Section 7.1). Although
both are memory safety violations, neither of them was
detected or prevented by the original SVA.

5 Design

Our design is an extension of the original Secure Virtual
Architecture (SVA) described in Section 4. SVA pro-
vides strong memory safety guarantees for kernel code
and an abstraction of the hardware that is both low-level
(e.g., context switching, I/O, and MMU configuration
policies are still implemented in the kernel), yet easy to
analyze (because the SVA-OS instructions for interact-
ing with hardware are slightly higher level than typical
processor instructions). Below, we describe our exten-
sions to provide memory safety in the face of errors in
kernel-hardware interactions.

5.1 Context Switching

Previously, the SVA system performed context switch-
ing using the sva_load_-integer and sva_save_—
integer instructions [10], which saved from and
loaded into the processor the processor state (named In-
teger State). These instructions stored processor state in
a kernel allocated memory buffer which could be later
modified by memory-safe store instructions or freed by

the kernel deallocator. Our new design calls a single in-
struction named sva_swap_integer (see Table 1) that
saves the old processor state and loads the new state in a
single operation.

This design has all of the necessary features to pre-
serve memory safety when context switching. The
sva_swap-integer instruction allocates the memory
buffer to hold processor state within the VM’s memory
and returns an opaque integer identifier which can be
used to re-load the state in a subsequent call to sva_—
swap_-integer. Combined with SVA’s original pro-
tections against manufactured pointers, this prevents the
kernel from modifying or deallocating the saved proces-
sor state buffer. The design also ensures correct deal-
location of the memory buffer used to hold processor
state. The VM tracks which identifiers are mapped to al-
located state buffers created by sva_swap_integer;
these memory buffer/identifier pairs are kept alive until
the state is placed back on the processor by another call
to sva_swap-integer. Once state is placed back on
the processor, the memory buffer is deallocated, and the
identifier invalidated to prevent the kernel from trying to
restore state from a deallocated state buffer.

Finally, sva_swap_integer will either succeed to
context switch and return an identifier for the saved pro-
cessor state, or it will fail, save no processor state, and
continue execution of the currently running thread. This
ensures that the kernel stack and the saved processor state
are always synchronized.

5.2 Thread Management

A thread of execution consists of a stack and a saved
processor state that can be used to either initiate or con-
tinue execution of the thread. Thread creation is there-
fore comprised of three operations: allocating memory
for the new thread’s stack, initializing the new stack, and
creating an initial state that can be loaded on to the pro-
cessor using sva_swap-integer.

The VM needs to know where kernel stacks are lo-
cated in order to prevent them from being written by
load and store instructions. We introduce a new SVA in-
struction, sva_declare_stack, which a kernel uses
to declare that a memory object will be used as a
stack. During pointer analysis, any pointers passed
to sva_declare_stack and pointers that alias with
such pointers are marked with a special DeclaredStack
flag; this flag indicates that run-time checks are needed
on stores via such pointers to ensure that they are not
writing into a kernel stack. The compiler, on seeing
an sva_declare_stack instruction, will also verify,
statically (via pointer analysis) if possible but at run-time
if necessary, that the memory object used for the new
stack is either a global or heap object; this will prevent

Name

Description

sva_.swap-integer

Saves the current processor state into an internal memory buffer, loads previously saved
state referenced by its ID, and returns the ID of the new saved state.

sva-declare_stack

Declares that a memory object is to be used as a new stack.

sva.release_stack

Declares that a memory object is no longer used as a stack.

sva-init_stack Initializes a new stack.

Table 1: SVA Instructions for Context Switching and Thread Creation.

stacks from being embedded within other stacks. After
this check is done, sva_declare_stack will unregis-
ter the memory object from the set of valid memory ob-
jects that can be accessed via loads and stores and record
the stack’s size and location within the VM’s internal
data structures as a valid kernel stack.

To initialize a stack and the initial processor state
that will use the memory as a stack, we introduce
sva_init_stack; this instruction will initialize the
stack and create a new saved Integer State which can
be used in sva_swap_integer to start executing
the new thread. The sva_init_stack instruction
verifies (either statically or at run-time) that its argu-
ment has previously been declared as a stack using
sva_declare_stack. When the new thread wakes
up, it will find itself running within the function specified
by the call to sva_init_stack; when this function re-
turns, it will return to user-space at the same location as
the original thread entered.

Deleting a thread is composed of two operations. First,
the memory object containing the stack must be deal-
located. Second, any Integer State associated with the
stack that was saved on a context switch must be in-
validated. When the kernel wishes to destroy a thread,
it must call the sva_release_stack instruction; this
will mark the stack memory as a regular memory object
so that it can be freed and invalidates any saved Integer
State associated with the stack.

When a kernel stack is deallocated, there may be
pointers in global or heap objects that point to mem-
ory (i.e., local variables) allocated on that stack. SVA
must ensure that dereferencing such pointers does not
violate memory safety. Type-unsafe stack allocated ob-
jects are subject to load/store checks and are registered
with the SVA virtual machine [10]. In order for the
sva_release_stack instruction to invalidate such
objects when stack memory is reclaimed, the VM records
information on stack object allocations and associates
this information with the metadata about the stack in
which the object is allocated. In this way, when a stack is
deallocated, any live objects still registered with the vir-
tual machine are automatically invalidated as well; run-
time checks will no longer consider these stack allocated
objects to be valid objects. Type-known stack allocated
objects can never be pointed to by global or heap objects;
SVA already transforms such stack allocations into heap

allocations [15, 10] to make dangling pointer dereferenc-
ing to type-known stack allocated objects safe [15].

5.3 Memory Mapped 1/0

To ensure safe use of I/O memory, our system must be
able to identify where I/O memory is located and when
the kernel is legitimately accessing it.

Identifying the location of I/O memory is straightfor-
ward. In most systems, I/O memory is located at (or
mapped into) known, constant locations within the sys-
tem’s address space, similar to global variables. In some
systems, a memory-allocator-like function may remap
physical page frames corresponding to I/O memory to
a virtual memory address [5]. The insight is that I/O
memory is grouped into objects just like regular mem-
ory; in some systems, such I/O objects are even allocated
and freed like heap objects (e.g., Linux’s ioremap()
function [5]). To let the VM know where I/O memory
is located, we must modify the kernel to use a pseudo-
allocator that informs the VM of global I/O objects; we
can also modify the VM to recognize I/O “allocators”
like ioremap () just like it recognizes heap allocators
like Linux’s kmalloc () [5].

Given this information, the VM needs to determine
which pointers may point to I/O memory. To do so,
we modified the SVA points-to analysis algorithm [24]
to mark the target (i.e., the “points-to set”) of a pointer
holding the return address of the I/O allocator with a spe-
cial /O flag. This also flags other pointers aliased to
such a pointer because any two aliased pointers point to
a common target [24].

We also modified the points-to analysis to mark I/O
memory as type-unknown. Even if the kernel accesses
I/O memory in a type-consistent fashion, the firmware
on the I/O device may not. Type-unknown memory in-
curs additional run-time checks but allows kernel code
to safely use pointer values in such memory as pointers.

We also extended SVA to record the size and virtual
address location of every I/O object allocation and deal-
location by instrumenting every call to the I/O allocator
and deallocator functions. At run-time, the VM records
these I/O objects in a per-metapool data structure that
is disjoint from the structure used to record the bounds
of regular memory objects. The VM also uses new run-
time checks for checking I/0O load and store instructions.

Since I/O pointers can be indexed like memory point-
ers (an I/O device may have an array of control regis-
ters), the bounds checking code must check both regu-
lar memory objects and I/O memory objects. Load and
store checks on regular memory pointers without the I/O
flag remain unchanged; they only consider memory ob-
jects. New run-time checks are needed on both mem-
ory and I/O loads and stores for pointers that have both
the I/O flag and one or more of the memory flags (heap,
stack, global) to ensure that they only access regular or
I/0 memory objects, respectively.

5.4 Safe DMA

We assume the use of an IOMMU for preventing DMA
operations from overflowing object bounds or writing to
the wrong memory address altogether [13]. The SVA vir-
tual machine simply has to ensure that the /O MMU is
configured so that DMA operations cannot write to the
virtual machine’s internal memory, kernel code pages,
pages which contain type-safe objects, and stack objects.

We mark all memory objects that may be used for
DMA operations as type-unsafe, similar to /O memory
that is accessed directly. We assume that any pointer that
is stored into 1/0 memory is a potential memory buffer
for DMA operations. We require alias analysis to iden-
tify such stores; it simply has to check that the target ad-
dress is in I/O memory and the store value is of pointer
type. We then mark the points-to set of the store value
pointer as type-unknown.

5.5 Virtual Memory

Our system must control the MMU and vet changes to its
configuration to prevent safety violations and preserve
compiler-inferred analysis results. Below, we describe
the mechanism by which our system monitors and con-
trols MMU configuration and then discuss how we use
this mechanism to enforce several safety properties.

5.5.1 Controlling MMU Configuration

SVA provides different MMU interfaces for hardware
TLB processors and software TLB processors [11]. For
brevity, we describe only the hardware TLB interface and
how our design uses it to control MMU configuration.
The SVA interface for hardware TLB systems (given
in Table 2) is similar to those used in VMMs like
Xen [16] and is based off the paravirtops inter-
face [50] found in Linux 2.6. The page table is a 3-
level page table, and there are instructions for chang-
ing mappings at each level. In this design, the OS first
tells the VM which memory pages will be used for the
page table (it must specify at what level the page will

appear in the table); the VM then takes control of these
pages by zeroing them (to prevent stale mappings from
being used) and marking them read-only to prevent the
OS from accessing them directly. The OS must then
use special SVA instructions to update the translations
stored in these page table pages; these instructions al-
low SVA to first inspect and modify translations before
accepting them and placing them into the page table.
The sva_load_pagetable instruction selects which
page table is in active use and ensures that only page
tables controlled by SVA are ever used by the proces-
sor. This interface, combined with SVA’s control-flow
integrity guarantees [10], ensure that SVA maintains con-
trol of all page mappings on the system.

5.5.2 Memory Safe MMU Configuration

For preventing memory safety violations involving the
MMU, the VM needs to track two pieces of information.
First, the VM must know the purpose of various ranges
of the virtual address space; the kernel must provide the
virtual address ranges of user-space memory, kernel data
memory, and I/O object memory. This information will
be used to prevent physical pages from being mapped
into the wrong virtual addresses (e.g., a memory mapped
I/O device being mapped into a virtual address used by a
kernel memory object). A special instruction permits the
kernel to communicate this information to the VM.

Second, the VM must know how physical pages are
used, how many times they are mapped into the virtual
address space, and whether any MMU mapping makes
them accessible to unprivileged (i.e., user-space) code.
To track this information, the VM associates with each
physical page a set of flags and counters. The first set
of flags are mutually exclusive and indicate the purpose
of the page; a page can be marked as: L1 (Level-1 page
table page), L2 (Level-2 page table page), L3 (Level-
3 page table page), RW (a standard kernel page hold-
ing memory objects), IO (a memory mapped I/O page),
stack (kernel stack), code (kernel or SVA code), or
svamem (SVA data memory). A second flag, the TK
flag, specifies whether a physical page contains fype-
known data. The VM also keeps a count of the number
of virtual pages mapped to the physical page and a count
of the number of mappings that make the page accessible
to user-space code.

The flags are checked and updated by the VM when-
ever the kernel requests a change to the page tables
or performs relevant memory or I/O object allocation.
Calls to the memory allocator are instrumented to set
the RW and, if appropriate, the TK flag on pages
backing the newly allocated memory object. On sys-
tem boot, the VM sets the IO flag on physical pages
known to be memory-mapped I/O locations. The stack

Name

Description

sva_.endmem_init

End of the virtual memory boot initialization. Flags all page table pages, and mark them read-only.

sva.declare_ll_page

Zeroes the page and flags it read-only and L1.

sva-declare_l2_page

Zeroes the page and flags it read-only and L2.

sva-declare_l3_page

Puts the default mappings in the page and flags it read-only and L3.

sva.remove_ll_page

Unflags the page read-only and L1.

sva-remove_.l2_page

Unflags the page read-only and L2.

sva-remove_l3_page

Unflags the page read-only and L3.

sva_update_ll_mapping

Updates the mapping if the mapping belongs to an L1 page and the page is not already mapped for a
type known pool, sva page, code page, or stack page.

sva-update_l2_mapping

Updates the mapping if the mapping belongs to an L2 page and the new mapping is for an L1 page.

sva-update_l3_mapping

Updates the mapping if the mapping belongs to an L3 page and the new mapping is for an L2 page.

sva-load-pagetable

Check that the physical page is an L3 page and loads it in the page table register.

Table 2: MMU Interface for a Hardware TLB Processor.

flag is set and cleared by sva_declare_stack and
sva_release_stack, respectively. Changes to the
page table via the instructions in Table 2 update the coun-
ters and the L1, L2, andL 3 flags.

The VM uses all of the above information to detect,
at run-time, violations of the safety requirements in Sec-
tion 3. Before inserting a new page mapping, the VM
can detect whether the new mapping will create multi-
ple mappings to physical memory containing type-known
objects, map a page into the virtual address space of the
VM or kernel code segment, unmap or double map a
page that is part of a kernel stack, make a physical page
containing kernel memory accessible to user-space code,
or map memory-mapped I/O pages into a kernel mem-
ory object (or vice-versa). Note that SVA currently trusts
the kernel memory allocators to (i) return different vir-
tual addresses for every allocation, and (ii) not to move
virtual pages from one metapool to another until the orig-
inal metapool is destroyed.

5.6 Self-modifying Code

The new SVA system supports the restricted version of
self-modifying code described in Section 3: OS kernels
can disable and re-enable pre-declared pieces of code.
SVA will use compile-time analysis carefully to ensure
that replacing the code with no-op instructions will not
invalidate the analysis results.

We define four new instructions to support self-
modifying code. The first two instructions, sva_-
begin_alt and sva_end_alt enclose the code re-
gions that may be modified at runtime. They must
be properly nested and must be given a unique iden-
tifier. The instructions are not emitted in the native
code. The two other instructions, sva_disable_code
and sva_enable_code execute at runtime. They take
the identifier given to the sva_begin_alt and sva_—
end_alt instructions. sva_disable_code saves the
previous code and inserts no-ops in the code, and sva_—
enable_code restores the previous code.

With this approach, SVA can support most uses of
self-modifying code in operating systems. For instance,
it supports the alternatives® framework in Linux
2.6 [8] and Linux’s ftrace tracing support [9] which
disables calls to logging functions at run-time.

5.7 Interrupted State

On an interrupt, trap, or system call, the original SVA
system saves processor state within the VM’s internal
memory and permits the kernel to use specialized in-
structions to modify the state via an opaque handle called
the interrupt context [10, 11]. These instructions, which
are slightly higher-level than assembly code, are used by
the kernel to implement operations like signal handler
dispatch and starting execution of user programs. Since
systems such as Linux can be interrupted while running
kernel code [5], these instructions can violate the ker-
nel’s memory safety if used incorrectly on interrupted
kernel state. To address these issues, we introduce sev-
eral changes to the original SVA design.

First, we noticed that all of the instructions that manip-
ulate interrupted program state are either memory safe
(e.g., the instruction that unwinds stack frames for ker-
nel exception handling [11]) or only need to modify the
interrupted state of user-space programs. Hence, all in-
structions that are not intrinsically memory safe will ver-
ify that they are modifying interrupted user-space pro-
gram state. Second, the opaque handle to the interrupt
context will be made implicit so that no run-time checks
are needed to validate it when it is used. We have ob-
served that the Linux kernel only operates upon the most
recently created interrupt context; we do not see a need
for other operating systems of similar design to do so, ei-
ther. Without an explicit handle to the interrupt context’s
location in memory, no validation code is needed, and
the kernel cannot create a pointer to the saved program
state (except for explicit integer to pointer casts, uses of
which will be caught by SVA’s existing checks) [10].

SLinux 2.6, file include/asm-x86/alternative.h

5.8 Miscellaneous

To ensure control-flow integrity requirements, the VM
assumes control of the hardware interrupt descriptor ta-
ble; the OS kernel must use special instructions to asso-
ciate a function with a particular interrupt, trap, or sys-
tem call [11, 29]. Similar to indirect function call checks,
SVA can use static analysis and run-time checks to en-
sure that only valid functions are registered as interrupt,
trap, or system call handlers.

SVA provides two sets of atomic memory instructions:
sva_fetch_and_phi where phi is one of several in-
teger operations (e.g., add), and sva_compare_and_—
swap which performs an atomic compare and swap. The
static and run-time checks that protect regular memory
loads and stores also protect these operations.

6 Modifications to the Linux Kernel

We implemented our design by improving and extend-
ing the original SVA prototype and the SVA port of
the Linux 2.4.22 kernel [10]. The previous section de-
scribed how we modified the SVA-OS instructions. Be-
low, we describe how we modified the Linux kernel
to use these new instructions accordingly. We modi-
fied less than 100 lines from the original SVA kernel
to port our kernel to the new SVA-OS API; the origi-
nal port of the 1386 Linux kernel to SVA modified 300
lines of architecture-independent code and 4,800 lines of
architecture-dependent code [10].

6.1 Changes to Baseline SVA

The baseline SVA system in our evaluation (Section 7) is
an improved version of the original SVA system [10] that
is suitable for determining the extra overhead incurred by
the run-time checks necessitated by the design in Sec-
tion 5. First, we fixed several bugs in the optimization of
run-time checks. Second, while the original SVA system
does not analyze and protect the whole kernel, there is no
fundamental reason why it cannot. Therefore, we chose
to disable optimizations which apply only to incomplete
kernel code for the experiments in Section 7. Third, the
new baseline SVA system recognizes ioremap () as an
allocator function even though it does not add run-time
checks for I/0 loads and stores. Fourth, we replaced
most uses of the _get_free_pages () page allocator
with kmalloc () in code which uses the page alloca-
tor like a standard memory allocator; this ensures that
most kernel allocations are performed in kernel pools
(i.e., kmem_cache_ts) which fulfill the requirements
for allocators as described in the original SVA work [10].

We also modified the SVA Linux kernel to use the new
SVA-OS instruction set as described below. This ensured

that the only difference between our baseline SVA sys-
tem and our SVA system with the low-level safety protec-
tions was the addition of the run-time checks necessary
to ensure safety for context switching, thread manage-
ment, MMU, and I/O memory safety.

6.2 Context Switching/Thread Creation

The modifications needed for context switching were
straightforward. We simply modified the switch_to
macro in Linux [5] to use the sva_swap_integer in-
struction to perform context switching.

Some minor kernel modifications were needed to use
the new thread creation instructions. The original 1386
Linux kernel allocates a single memory object which
holds both a thread’s task structure and the kernel stack
for the thread [5], but this cannot be done on our system
because sva_declare_stack requires that a stack
consumes an entire memory object. For our prototype,
we simply modified the Linux kernel to perform separate
allocations for the kernel stack and the task structure.

6.3 1/0

As noted earlier, our implementation enhances the
pointer analysis algorithm in SVA (DSA [24]) to mark
pointers that may point to I/O objects. It does this by
finding calls to the Linux __ioremap () function. To
make implementation easier, we modified ioremap ()
and ioremap_nocache () in the Linux source to be
macros that call __ioremap().

Our test system’s devices do not use global I/O mem-
ory objects, so we did not implement a pseudo allocator
for identifying them. Also, we did not modify DSA to
mark memory stored into I/O device memory as type-
unknown. The difficulty is that Linux casts pointers into
integers before writing them into I/O device memory.
The DSA implementation does not have solid support for
tracking pointers through integers i.e., it does not con-
sider the case where an integer may, in fact, be pointing
to a memory object. Implementing these changes to pro-
vide DMA protection is left as future work.

6.4 Virtual Memory

We implemented the new MMU instructions and run-
time checks described in Section 5.5 and ported the SVA
Linux kernel to use the new instructions. Linux already
contains macros to allocate, modify and free page table
pages. We modified these macros to use our new API
(which is based on the paravirtops interface from
Linux 2.6). We implemented all of the run-time checks
except for those that ensure that I/O device memory isn’t

mapped into kernel memory objects. These checks re-
quire that the kernel allocate all I/O memory objects
within a predefined range of the virtual address space,
which our Linux kernel does not currently do.

7 Evaluation and Analysis

Our evaluation has two goals. First, we wanted
to determine whether our design for low-level soft-
ware/hardware interaction was effective at stopping se-
curity vulnerabilities in commodity OS kernels. Second,
we wanted to determine how much overhead our design
would add to an already existing memory-safety system.

7.1 Exploit Detection

We performed three experiments to verify that our sys-
tem catches low-level hardware/software errors: First,
we tried two different exploits on our system that were
reported on Linux 2.4.22, the Linux version that is ported
to SVA. The exploits occur in the MMU subsystem; both
give an attacker root privileges. Second, we studied the
e1000e bug [9]. We could not duplicate the bug because
it occurs in Linux 2.6, but we explain why our design
would have caught the bug if Linux 2.6 had been ported
to SVA. Third, we inserted many low-level operation er-
rors inside the kernel to evaluate whether our design pre-
vents the safety violations identified in Section 2.

Linux 2.4.22 exploits. We have identified three re-
ported errors for Linux 2.4.22 caused by low-level
kernel-hardware interactions [3, 39, 42]. Our experi-
ment is limited to these errors because we needed hard-
ware/software interaction bugs that were in Linux 2.4.22.
Of these, we could not reproduce one bug due to a lack
of information in the bug report [3]. The other two errors
occur in the mremap system call but are distinct errors.

The first exploit [42] is due to an overflow in a count
of the number of times a page is mapped. The exploit
code overflows the counter by calling fork, mmap, and
mremap a large number of times. It then releases the
page, giving it back to the kernel. However, the exploit
code still has a reference to the page; therefore, if the
page is reallocated for kernel use, the exploit code can
read and modify kernel data. Our system catches this
error because it disallows allocating kernel objects in a
physical page mapped in user space.

The second exploit [39] occurs because of a missing
error check in mremap which causes the kernel to place
page table pages with valid page table entries into the
page table cache. However, the kernel assumes that page
table pages in the page table cache do not contain any
entries. The exploit uses this vulnerability by calling
mmap, mremap and munmap to release a page table

page with page entries that contain executable memory.
Then, on an exec system call, the linker, which exe-
cutes with root privileges, allocates a page table page,
which happens to be the previously released page. The
end result is that the linker jumps to the exploit’s exe-
cutable memory and executes the exploit code with root
privileges. The SVA VM prevents this exploit by always
zeroing page table pages when they are placed in a page
directory so that no new, unintended, memory mappings
are created for existing objects.

The e1000e bug. The fundamental cause of the e1000e
bug is a memory load/store (the x86 cmpxchg instruc-
tion) on a dangling pointer, which happens to point
to an I/O object. The cmpxchg instruction has non-
deterministic behavior on I/O device memory and may
corrupt the hardware. The instruction was executed by
the £ trace subsystem, which uses self-modifying code
to trace the kernel execution. It took many weeks for
skilled engineers to track the problem. With our new
safety checks, SVA would have detected the bug at its
first occurrence. The self-modifying code interface of
SVA-OS only allows enabling and disabling of code;
writes to what the kernel (incorrectly) thought was its
code is not possible. SVA actually has a second line of
defense if (hypothetically) the self-modifying code inter-
face did not detect it: SVA would have prevented the /O
memory from being mapped into code pages, and thus
prevented this corruption. (And, hypothetically again, if
a dangling pointer to a data object had caused the bug,
SVA would have detected any ordinary reads and writes
trying to write to I/O memory locations.)

Kernel error injection. To inject errors, we added new
system calls into the kernel; each system call triggers a
specific kind of kernel/hardware interaction error that ei-
ther corrupts memory or alters control flow. We inserted
four different errors. The first error modifies the saved
Integer State of a process so that an invalid Integer State
is loaded when the process is scheduled. The second
error creates a new MMU mapping of a page contain-
ing type-known kernel memory objects and modifies the
contents of the page. The third error modifies the MMU
mappings of pages in the stack range. The fourth error
modifies the internal metadata of SVA to set incorrect
bounds for all objects. This last error shows that with the
original design, we can disable the SVA memory safety
checks that prevent Linux exploits; in fact, it would not
be difficult to do so with this bug alone for three of the
four kernel exploits otherwise prevented by SVA [10].
All of the injected errors were caught by the new
SVA implementation. With the previous implementation,
these errors either crash the kernel or create undefined
behavior. This gives us confidence about the correctness
of our new design and implementation of SVA. Note that

we only injected errors that our design addresses because
we believe that our design is “complete” in terms of the
possible errors due to kernel-hardware interactions. Nev-
ertheless, the injection experiments are useful because
they validate that the design and implementation actu-
ally solve these problems.

7.2 Performance

To determine the impact of the additional run-time
checks on system performance, we ran several experi-
ments with applications typically used on server and end-
user systems. We ran tests on the original Linux 2.4.22
kernel (marked 1386 in the figures and tables), the same
kernel with the original SVA safety checks [10] (marked
SVA), and the SVA kernel with our safety checks for low-
level software/hardware interactions (marked SVA-OS).

It is important to note that an underlying memory
safety system like SVA can incur significant run-time
overhead for C code, especially for a commodity ker-
nel like Linux that was not designed for enforcement of
memory safety. Such a system is not the focus of this
paper. Although we present our results relative to the
original (unmodified) Linux/i386 system for clarity, we
focus the discussion on the excess overheads introduced
by SVA-OS beyond those of SVA since the new tech-
niques in SVA-OS are the subject of the current work.

We ran these experiments on a dual-processor AMD
Athlon 2100+ at 1,733 MHz with 1 GB of RAM and a 1
Gb/s network card. We configured the kernel as an SMP
kernel but ran it in on a single processor since the SVA
implementation is not yet SMP safe. Network experi-
ments used a dedicated 1 Gb/s switch. We ran our exper-
iments in single-user mode to prevent standard system
services from adding noise to our performance numbers.

We used several benchmarks in our experiments: the
thttpd Web server, the OpenSSH sshd encrypted file
transfer service, and three local applications — bzip2 for
file compression, the lame MP3 encoder, and a perl in-
terpreter. These programs have a range of different de-
mands on kernel operations. Finally, to understand why
some programs incur overhead while others do not, we
used a set of microbenchmarks including the HBench-
OS microbenchmark suite [6] and two new tests we
wrote for the poll and select system calls.

Application Performance First, we used
ApacheBench to measure the file-transfer band-
width of the thttpd web server [31] serving static HTML
pages. We configured ApacheBench to make 5000
requests using 25 simultaneous connections. Figure 2
shows the results of both the original SVA kernel and
the SVA kernel with the new run-time checks described
in Section 5. Each bar is the average bandwidth of 3
runs of the experiment; the results are normalized to the

" SVA Checks 27z | SVA-OS Checks oo

1k S

N
N
=
N T
X M N A
g 08r _ 7 = WA A A
"j T = m N = \) N N N N
8 B §
B o6l M 1
N
=
£
8 04l i
2 o
N
=]
2
¥ o02¢f E
el
=}
<
m Q|
1 2 4 8 16 32 64 128 256 512 1024
File Size (KB)
Figure 2: Web Server Bandwidth (Linux/i386 = 1.0)
12 T T T T
a SVA Checks &Zzza SVA-OS Checks
N
N
o 1r]
[}
=1
g
~ 08 1
Q
e
el
0]
Boo6 | E
<
=
Y
o
Z 04r b
=
R
S
% 02 -
=}
<
M

8 32 128 512
File Size (MB)

Figure 3: SSH Server Bandwidth (Linux/i386 = 1.0)

original 1386 Linux kernel. For small files (1 KB - 32
KB) in which the original SVA system adds significant
overhead, our new run-time checks incur a small amount
of additional overhead (roughly a 9% decrease in
bandwidth relative to the SVA kernel). However, for
larger file sizes (64 KB or more), the SVA-OS checks
add negligible overhead to the original SVA system.

We also measured the performance of sshd, a login
server offering encrypted file transfer. For this test, we
measured the bandwidth of transferring several large files
from the server to our test client; the results are shown in
Figure 3. For each file size, we first did a priming run
to bring file system data into the kernel’s buffer cache;
subsequently, we transfered the file three times. Figure 3
shows the mean of the receive bandwidth of the three
runs normalized to the mean receive bandwidth mea-

Benchmark | i386 (s) SVA (s) SVA-OS (s) % Increase from | Description
i386 to SVA-OS
bzip2 18.7 (0.47) 18.3 (0.47) 18.0 (0.00) 0.0% Compressing 64 MB file
lame 133.3(3.3) | 132(0.82) 126.0 (0.82) | -0.1% Converting 206 MB WAV file to MP3
perl 22.3(0.47) 22.3(0.47) 22.3(0.47) 0.0% Interpreting scrabbl.pl from SPEC 2000
Table 3: Latency of Applications. Standard Deviation Shown in Parentheses.
450 perf:ent overhead that the applicat.ions experijcnf:ed exe-
wh - non o oo SV Checks | cgtmg on the SVA-OS kernel relative to the original 1386
m W] M A Linux kernel. The results show that our system adds vir-
350 ' . tually no overhead for these applications, even though
2 a0l | some of the programs (bzip2 and lame) perform substan-
2 tial amounts of I/O. Table 4 shows the latency of the ap-
:E:/ 250 1 plications during their priming runs; our kernel shows no
= 200 | overhead even when the kernel must initiate I/O to re-
—§ trieve data off the physical disk.
g 1o} .

100 |

4 8 16 32 64 128 256 512 102420484096
File Size (KB)

Figure 4: File System Bandwidth

Benchmark | i386 (s) | SVA (s) | SVA-OS (s)
bzip2 41 40 40
lame 203 202 202
perl 24 23 23

Table 4: Latency of Applications During Priming Run.

sured on the original 1386 kernel; note that the units on
the X-axis are MB. Our results indicate that there is no
significant decrease in bandwidth due to the extra run-
time checks added by the original SVA system or the new
run-time checks presented in this paper. This outcome is
far better than thttpd, most likely due to the large file
sizes we transfered via scp. For large file sizes, the net-
work becomes the bottleneck: transferring an 8§ MB file
takes 62.5 ms on a Gigabit network, but the overheads for
basic system calls (shown in Table 5) show overheads of
only tens of microseconds.

To see what effect our system would have on end-
user application performance, we ran experiments on the
client-side programs listed in Table 3. We tested bzip2
compressing a 64 MB file, the LAME MP3 encoder con-
verting a 206 MB file from WAV to MP3 format, and the
perl interpreter running the training input from the SPEC
2000 benchmark suite. For each test, we ran the program
once to prime any caches within the operating system and
then ran each program three times. Table 3 shows the av-
erage of the execution times of the three runs and the

Microbenchmark Performance To better understand
the different performance behaviors of the applications,
we used microbenchmarks to measure the overhead our
system introduces for primitive kernel operations. For
these experiments, we configured HBench-OS to run
each test 50 times.

Our results for basic system calls (Table 5) indicate
that the original SVA system adds significant overhead
(on the order of tens of microseconds) to individual sys-
tem calls. However, the results also show that our new
safety checks only add a small amount of additional over-
head (25% or less) to the original SVA system.

We also tested the file system bandwidth, shown in
Figure 4. The results show that the original SVA system
reduces file system bandwidth by about 5-20% for small
files but that the overhead for larger files is negligible.
Again, however, the additional checks for low-level ker-
nel operations add no overhead.

The microbenchmark results provide a partial explana-
tion for the application performance results. The appli-
cations in Table 3 experience no overhead because they
perform most of their processing in user-space; the over-
head of the kernel does not affect them much. In contrast,
the sshd and thttpd servers spend most of their time ex-
ecuting in the kernel (primarily in the poll(), select(), and
write() system calls). For the system calls that we tested,
our new safety checks add less than several microseconds
of overhead (as shown in Table 5). For a small network
transfer of 1 KB (which takes less than 8 us on a Giga-
bit network), such an overhead can affect performance.
However, for larger files sizes (e.g., an 8 MB transfer that
takes 62.5 ms), this overhead becomes negligible. This
effect shows up in our results for networked applications
(thttpd and sshd): smaller file transfers see significant
overhead, but past a certain file size, the overhead from
the run-time safety checks becomes negligible.

Benchmark 1386 (us) SVA (us) SVA-OS % Increase from | Description
(us) SVA to SVA-OS

getpid 0.16 (0.001) | 0.37 (0.000) | 0.37 (0.006) | 0.0% Latency of getpid() syscall

openclose 1.10 (0.009) | 11.1(0.027) 12.1 (0.076) | 9.0% Latency of opening and closing a file

write 0.25 (0.001) 1.87 (0.012) 1.86 (0.010) | -0.4% Latency of writing a single byte to /dev/null

signal handler 1.59 (0.006) | 6.88 (0.044) | 8.49(0.074) | 23% Latency of calling a signal handler

signal install 0.34 (0.001) 1.56 (0.019) 1.95 (0.007) | 25% Latency of installing a signal handler

pipe latency 2.74 (0.014) | 30.5(0.188) | 35.9(0.267) | 18% Latency of ping-ponging one byte message be-
tween two processes

poll 1.16 (0.043) | 6.47 (0.080) | 7.03(0.014) | 8.7% Latency of polling both ends of a pipe for reading
and writing. Data is always available for reading.

select 1.00 (0.019) | 8.18 (0.133) 8.81 (0.020) | 7.7% Latency of testing both ends of a pipe for reading
and writing. Data is always available for reading.

Table 5: Latency of Kernel Operations. Standard Deviation Shown in Parentheses.

8 Related Work

Previous work has explored several approaches to pro-
viding greater safety and reliability for operating sys-
tem kernels. Some require complete OS re-design, e.g.,
capability-based operating systems [37, 38] and micro-
kernels [1, 25]. Others use isolation (or “sandboxing’)
techniques, including device driver isolation within the
OS [35, 44, 45, 51] or the hypervisor [17]. While ef-
fective at increasing system reliability, none of these ap-
proaches provide the memory safety guarantees provided
by our system, e.g., none of these prevent corruption of
memory mapped I/O devices, unsafe context switching,
or improper configuration of the MMU by either kernel
or device driver code. In fact, none of these approaches
could protect against the Linux exploits or device cor-
ruption cases described in Section 7. In contrast, our
system offers protection from all of these problems for
both driver code and core kernel code.

The EROS [38] and Coyotos [37] systems provide a
form of safe (dynamic) typing for abstractions, e.g., ca-
pabilities, at their higher-level OS (“node and page”)
layer. This type safety is preserved throughout the de-
sign, even across I/O operations. The lower-level layer,
which implements these abstractions, is written in C/C++
and is theoretically vulnerable to memory safety errors
but is designed carefully to minimize them. The design
techniques used here are extremely valuable but difficult
to retrofit to commodity systems.

Some OSs written in type-safe languages, including
JX [18], SPIN [21], Singularity [22], and others [20] pro-
vide abstractions that guarantee that loads and stores to
I/0 devices do not access main memory, and main mem-
ory accesses do not access /0O device memory. However,
these systems either place context switching and MMU
management within the virtual machine run-time (JX) or
provide no guarantee that errors in these operations can-
not compromise the safety guarantees of the language in
which they are written.

Another approach that could provide some of the guar-

antees of our work is to add annotations to the C lan-
guage. For example, SafeDrive’s annotation system [51]
could be extended to provide our I/O memory protections
and perhaps some of our other safety guarantees. Such
an approach, however, would likely require changes to
every driver and kernel module, whereas our approach
only requires a one-time port to the SVA instruction set
and very minor changes to machine-independent parts of
the kernel.

The Devil project [27] defines a safe interface to hard-
ware devices that enforces safety properties. Devil could
ensure that writes to the device’s memory did not ac-
cess kernel memory, but not vice versa. Our SVA ex-
tensions also protect I/O memory from kernel memory
and provide comprehensive protection for other low-
level hardware interactions, such as MMU changes, con-
text switching, and thread management.

Mondrix [49] provides isolation between memory
spaces within a kernel using a word-granularity mem-
ory isolation scheme implemented in hardware [48]. Be-
cause Mondrix enables much more fine-grained isolation
(with acceptable overhead) than the software supported
isolation schemes discussed earlier, it may be able to pre-
vent some or all of the memory-related exploits we dis-
cuss. Nevertheless, it cannot protect against other errors
such as control flow violations or stack manipulation.

A number of systems provide Dynamic Information
Flow Tracking or “taint tracking” to enforce a wide range
of security policies, including memory safety, but most
of these have only reported results for user-space appli-
cations. Raksha [12] employed fine-grain information
flow policies, supported by special hardware, to prevent
buffer overflow attacks on the Linux kernel by ensur-
ing that injected values weren’t dereferenced as point-
ers. Unlike our work, it does not protect against attacks
that inject non-pointer data nor does it prevent use-after-
free errors of kernel stacks and other state buffers used in
low-level kernel/hardware interaction. Furthermore, this
system does not work on commodity hardware.

The CacheKernel [7] partitions its functionality into an
application-specific OS layer and a common “cache ker-
nel” that handles context-switching, memory mappings,
etc. The CacheKernel does not aim to provide memory
safety, but its two layers are conceptually similar to the
commodity OS and the virtual machine in our approach.
A key design difference, however, is that our interface
also attempts to make kernel code easier to analyze. For
example, state manipulation for interrupted programs is
no longer an arbitrary set of loads/stores to memory but
a single instruction with a semantic meaning.

Our system employs techniques from VMMs. The
API provided by SVA for configuring the MMU securely
is similar to that presented by para-virtualized hypervi-
sors [16, 50]. However, unlike VMMs, our use of these
mechanisms is to provide fine-grain protection internal
to a single domain, including isolation between user and
kernel space and protection of type-safe main memory,
saved processor state, and the kernel stack. For exam-
ple, hypervisors would not be able to guard against [42],
which our system does prevent, even though it is an
MMU error. Also, a hypervisor that uses binary rewrit-
ing internally, e.g., for instrumenting itself, could be vul-
nerable to [9], just as the Linux kernel was. We believe
VMMs could be a useful farget for our work.

SecVisor [36] is a hypervisor that ensures that only
approved code is executed in the processor’s privileged
mode. In contrast, our system does not ensure that kernel
code meets a set of requirements other than being mem-
ory safe. Unlike SVA, SecVisor does not ensure that the
approved kernel code is memory safe.

9 Conclusion

In this paper, we have presented new mechanisms to en-
sure that low-level kernel operations such as processor
state manipulation, stack management, memory mapped
I/0, MMU updates, and self-modifying code do not vio-
late the assumptions made by memory safety checkers.
We implemented our design in the Secure Virtual Ar-
chitecture (SVA) system, a safe execution environment
for commodity operating systems, and its corresponding
port of Linux 2.4.22. Only around 100 lines of code were
added or changed to the SVA-ported Linux kernel for the
new techniques. To our knowledge, this is the first paper
that (i) describes a design to prevent bugs in low-level
kernel operations from compromising memory safe op-
erating systems, including operating systems written in
safe or unsafe languages; and (ii) implements and evalu-
ates a system that guards against such errors.

Our experiments show that the additional runtime
checks add little overhead to the original SVA prototype
and were able to catch multiple real-world exploits that
would otherwise bypass the memory safety guarantees

provided by the original SVA system. Taken together,
these results indicate that it is clearly worthwhile to add
these techniques to an existing memory safety system.

Acknowledgments

We wish to thank our shepherd, Trent Jaeger, and the
anonymous reviewers for their helpful and insightful
feedback.

References

[11 ACCETTA, M., BARON, R., BOLOSKY, W., GOLUB, D.,
RASHID, R., TEVANIAN, A., AND YOUNG, M. Mach: A
new kernel foundation for unix development. In Proc. USENIX
Annual Technical Conference (Atlanta, GA, USA, July 1986),
pp. 93-113.

[2] APPLE COMPUTER, INC. Apple Mac OS X kernel semop
local stack-based buffer overflow vulnerability, April 2005.
http://www.securityfocus.com/bid/13225.

[3] ARCANGELI, A. Linux kernel mremap lo-
cal privilege escalation vulnerability, May 2006.
http://www.securityfocus.com/bid/18177.

[4] BERSHAD, B., SAVAGE, S., PARDYAK, P., SIRER, E. G.,
BECKER, D., FIuCZYNSKI, M., CHAMBERS, C., AND EG-
GERS, S. Extensibility, Safety and Performance in the SPIN
Operating System. In Proc. ACM SIGOPS Symp. on Op. Sys.
Principles (Copper Mountain, CO, USA, 1995), pp. 267-284.

[S] BOVET, D. P., AND CESATI, M. Understanding the LINUX Ker-
nel, 2nd od, O’Reilly, Sebastopol, CA, 2003.

[6] BROWN, A. A Decompositional Approach to Computer System
Performance. PhD thesis, Harvard College, April 1997.

[7] CHERITON, D. R., AND DUDA, K. J. A caching model of oper-
ating system kernel functionality. In Proc. USENIX Symp. on Op.
Sys. Design and Impl. (Monterey, CA, USA, November 1994),
pp. 179-193.

[8] CORBET. SMP alternatives,
http://lwn.net/Articles/164121.

[9] CORBET, J. The source of the e1000e corruption bug, October
2008. http://lwn.net/Articles/304105.

[10] CRISWELL,J., LENHARTH, A., DHURJATI, D., AND ADVE, V.
Secure Virtual Architecture: A Safe Execution Environment for
Commodity Operating Systems. In Proc. ACM SIGOPS Symp.
on Op. Sys. Principles (Stevenson, WA, USA, October 2007),
pp. 351-366.

[11] CRISWELL, J., MONROE, B., AND ADVE, V. A virtual instruc-
tion set interface for operating system kernels. In Workshop on
the Interaction between Operating Systems and Computer Archi-
tecture (Boston, MA, USA, June 2006), pp. 26-33.

[12] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Real-world
buffer overflow protection for userspace & kernelspace. In Pro-
ceedings of the USENIX Security Symposium (San Jose, CA,
USA, 2008), pp. 395-410.

[13] DEVICES, A. M. AMD64 architecture programmer’s manual
volume 2: System programming, September 2006.

December 2005.

[14] DHURJATI, D., AND ADVE, V. Backwards-compatible array
bounds checking for C with very low overhead. In Proc. of
the Int’l Conf. on Software Engineering (Shanghai, China, May
2006), pp. 162-171.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

DHURJATI, D., KOWSHIK, S., AND ADVE, V. SAFECode: En-
forcing alias analysis for weakly typed languages. In Proc. ACM
SIGPLAN Conf. on Programming Language Design and Imple-
mentation (PLDI) (Ottawa, Canada, June 2006), pp. 144-157.

DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A,
PRATT, 1., WARFIELD, A., BARHAM, P., AND NEUGEBAUER,
R. Xen and the art of virtualization. In Proc. ACM SIGOPS
Symp. on Op. Sys. Principles (Bolton Landing, NY, USA, Octo-
ber 2003), pp. 164-177.

FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, 1.,
WARFIELD, A., AND WILLIAMS, M. Safe hardware access
with the xen virtual machine monitor. In Proceedings of the First
Workshop on Operating System and Architectural Support for the
on demand IT InfraStructure (Boston, MA, USA, October 2004).

GOLM, M., FELSER, M., WAWERSICH, C., AND KLEINODER,
J. The JX Operating System. In Proc. USENIX Annual Technical
Conference (Monterey, CA, USA, June 2002), pp. 45-58.

GUNINSKI, G. Linux kernel multiple local vulnerabilities, 2005.
http://www.securityfocus.com/bid/11956.

HALLGREN, T., JONES, M. P., LESLIE, R., AND TOLMACH,
A. A principled approach to operating system construction in
haskell. In Proc. ACM SIGPLAN Int’l Conf. on Functional Pro-
gramming (Tallin, Estonia, September 2005), pp. 116-128.

HSIEH, W., FIUCZYNSKI, M., GARRETT, C., SAVAGE, S.,
BECKER, D., AND BERSHAD, B. Language support for exten-
sible operating systems. In Workshop on Compiler Support for
System Software (Arizona, USA, February 1996).

HuNnT, G. C., LARUS, J. R., ABADI, M., AIKEN, M.,
BARHAM, P., FHNDRICH, M., HODSON, C. H. O., LEVI, S.,
MURPHY, N., STEENSGAARD, B., TARDITI, D., WOBBER, T.,
AND ZILL, B. An overview of the Singularity project. Tech. Rep.
MSR-TR-2005-135, Microsoft Research, October 2005.

LATTNER, C., AND ADVE, V. LLVM: A compilation framework
for lifelong program analysis and transformation. In Proc. Conf.
on Code Generation and Optimization (San Jose, CA, USA, Mar
2004), pp. 75-88.

LATTNER, C., LENHARTH, A. D., AND ADVE, V. S. Making
context-sensitive points-to analysis with heap cloning practical
for the real world. In Proc. ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation (PLDI) (San Diego,
CA, USA, June 2007), pp. 278-289.

LIEDTKE, J. On micro-kernel construction. SIGOPS Oper. Syst.
Rev. 29, 5 (1995), 237-250.

LMH. Month of kernel bugs (MoKB) archive,
http://projects.info-pull.com/mokb/.

2006.

MERILLON, F., REVEILLERE, L., CONSEL, C., MARLET, R.,
AND MULLER, G. Devil: an IDL for hardware programming.
In USENIX Symposium on Operating System Deisgn and Imple-
mentation (San Diego, CA, USA, October 2000), pp. 17-30.

MICROSYSTEMS, S. Sun solaris sysinfo system call
kernel memory reading vulnerability, = October 2003.
http://www.securityfocus.com/bid/8831.

MONROE, B. M. Measuring and improving the performance of
Linux on a virtual instruction set architecture. Master’s thesis,
Computer Science Dept., Univ. of Illinois at Urbana-Champaign,
Urbana, IL, Dec 2005.

NEcULA, G. C., CONDIT, J., HARREN, M., MCPEAK, S.,
AND WEIMER, W. Ccured: type-safe retrofitting of legacy soft-
ware. ACM Transactions on Programming Languages and Sys-
tems (2005).

POSKANZE, J. thttpd - tiny/turbo/throttling http server, 2000.
http://www.acme.com/software/thttpd.

[32]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

RUWASE, O., AND LAM, M. A practical dynamic buffer
overflow detector. In In Proceedings of the Network and Dis-
tributed System Security (NDSS) Symposium (San Diego, CA,
USA, 2004), pp. 159-169.

SAULPAUGH, T., AND MIRHO, C. Inside the JavaOS Operating
System. Addison-Wesley, Reading, MA, USA, 1999.

ScoTT, M. L. Programming Language Pragmatics. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 2001.

SELTZER, M. 1., ENDO, Y., SMALL, C., AND SMITH, K. A.
Dealing with disaster: Surviving misbehaved kernel extensions.
In USENIX Symposium on Operating System Deisgn and Imple-
mentation (Seattle, WA, October 1996), pp. 213-227.

SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. Secvisor: a
tiny hypervisor to provide lifetime kernel code integrity for com-
modity OSes. SIGOPS Oper. Syst. Rev. 41, 6 (2007), 335-350.

SHAPIRO, J., DOERRIE, M. S., NORTHUP, E., SRIDHAR, S.,
AND MILLER, M. Towards a verified, general-purpose operat-
ing system kernel. In Ist NICTA Workshop on Operating System
Verification (Sydney, Australia, October 2004).

SHAPIRO, J. S., AND ADAMS, J. Design evolution of the EROS
single-level store. In Proceedings of the USENIX Annual Techni-
cal Conference (Berkeley, CA, USA, June 2002), pp. 59-72.

STARSETZ, P. Linux kernel do_mremap function vma
limit local privilege escalation vulnerability, February 2004.
http://www.securityfocus.com/bid/9686.

STARZETZ, P. Linux kernel elf core dump local buffer overflow
vulnerability. http://www.securityfocus.com/bid/13589.

STARZETZ, P. Linux kernel IGMP multiple vulnerabilities, 2004.
http://www.securityfocus.com/bid/11917.

STARZETZ, P., AND PURCZYNSKI, W. Linux kernel
do_mremap function boundary condition vulnerability, January
2004. http://www.securityfocus.com/bid/9356.

STARZETZ, P., AND PURCZYNSKI, W. Linux kernel setsock-
opt MCAST_MSFILTER integer overflow vulnerability, 2004.
http://www.securityfocus.com/bid/10179.

SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improv-
ing the reliability of commodity operating systems. ACM Trans.
Comput. Syst 23, 1 (2005), 77-110.

ULFAR ERLINGSSON, ABADI, M., VRABLE, M., BuDIU, M.,
AND NECULA, G. C. XFI: Software guards for system address
spaces. In USENIX Symposium on Operating System Deisgn and
Implementation (Seattle, WA, USA, November 2006), pp. 75-88.
VAN SPRUNDEL, I. Linux kernel bluetooth signed buffer index
vulnerability. http://www.securityfocus.com/bid/12911.

WAHBE, R., Lucco, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. ACM SIGOPS
Operating Systems Review 27,5 (1993), 203-216.

WITCHEL, E., CATES, J., AND ASANOVIC., K. Mondrian
memory protection. In Proc. Int’l Conf. on Architectural Support

for Programming Languages and Operating Systems (ASPLOS)

(San Jose, CA, USA, October 2002), pp. 304-316.

WITCHEL, E., RHEE, J., AND ASANOVIC, K. Mondrix: Mem-
ory isolation for linux using mondriaan memory protection. In
Proc. ACM SIGOPS Symp. on Op. Sys. Principles (Brighton, UK,
October 2005), pp. 31-44.

WRIGHT, C. Para-virtualization
http://lwn.net/Articles/194340.

ZHou, F., CONDIT, J., ANDERSON, Z., BAGRAK, I., EN-
NALS, R., HARREN, M., NECULA, G., AND BREWER, E.
Safedrive: Safe and recoverable extensions using language-
based techniques. In USENIX Symposium on Operating Sys-
tem Deisgn and Implementation (Seattle, WA, USA, November
2006), pp. 45-60.

interfaces, 2006.

