Auditing to Keep Online Storage Services Honest

Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, Ram Swaminathan (HP Labs, Palo Alto)
Mehul . Shah@hp.com, Mary .Baker@hp.com, Jeff._Mogul@hp.com, Ram.Swaminathan@hp.com

Abstract

A growing number of online service providers offer to
store customers’ photos, email, file system backups, and
other digital assets. Currently, customers cannot make
informed decisions about the risk of losing data stored
with any particular service provider, reducing their in-
centive to rely on these services. We argue that third-
party auditing is important in creating an online service-
oriented economy, because it allows customers to eval-
uate risks, and it increases the efficiency of insurance-
based risk mitigation. We describe approaches and sys-
tem hooks that support both internal and external audit-
ing of online storage services, describe motivations for
service providers and auditors to adopt these approaches,
and list challenges that need to be resolved for such au-
diting to become a reality.

1 Introduction

The year is 2027. Alice and Bob are preparing a fam-
ily photo album for the wedding of their daughter Carly,
and want to include her baby photos. They took these
photos with a digital camera in 2002, and uploaded them
to the LensElephant photo-sharing service. For 25 years,
they have paid LensElephant a small fee to store their
photos. But today, after they click on Carly’s baby-photo
thumbnails to view the full files, they see nothing but an
error message “Sorry, those files are corrupted.”

This scenario is not just a dark fantasy. Many online
services allow customers — both end users and businesses
— to store data for as long as they want, and some charge
for the service. Yet news reports [1, 5] reveal that even
the most popular sites can lose data, and customers have
no rational basis on which to evaluate the risk of data
loss or to choose between storage services. Although
examples in this paper focus on online storage services,
the problem generalizes to the nascent “online service-
oriented economy”’ (OSOE) in which businesses and end
users purchase IT services from a variety of online ser-
vice providers (OSPs). For this nascent economy to be-
come established, customers will need ways to assess
risk and gain trust in OSPs.

Third-party auditing is an accepted method for estab-
lishing trust between two parties with potentially dif-
ferent incentives. Auditors assess and expose risk, en-
abling customers to choose rationally between compet-
ing services. Over time, a system that includes audi-
tors reduces risk for customers: when combined with
a penalty or incentive mechanism, auditing gives incen-

tives to providers to improve their services. Penalty and
incentive mechanisms become supportable when risks
are well understood. We believe auditing is necessary
not only for traditional businesses, but also for online
services to create a viable OSOE.

Auditing of OSPs is not feasible yet. First, customers
are not yet sophisticated enough to demand risk assess-
ment. Second, OSPs do not yet provide support for third-
party audits.

In this paper, we describe the issues involved in mak-
ing auditing online services a reality. We speculate on
an insurance-based incentive system to encourage audits
of OSPs. For concreteness, we focus on audit-enabling
interfaces that online storage services should support.

2 What We Mean by Auditing

OSPs must convince customers that their platforms are
reliable. Because a customer knows that a provider’s pri-
mary incentive is to make a profit, not simply to serve the
customer’s needs, this is a variant of what economists
call the “principal-agent problem” [14]: how does the
customer know whether to trust the provider?

One way is to rely on a trusted third-party auditor, who
has sufficient access to the provider’s environment. An
auditor understands the service level agreement (SLA)
between a customer and a provider and quantifies the
extent to which a provider might not meet the SLA.
The auditor has expertise and capabilities that the cus-
tomer does not. Auditors understand the threats posed,
know best practices, and have the resources to check for
process adherence and service quality. They perform
these checks through well-defined interfaces to the ser-
vice. With proper safeguards, auditors can investigate
providers who serve multiple customers without fear of
information leakage.'

Inspired by methods for auditing “bricks and mortar”
businesses, we identify two approaches: external audit-
ing and internal auditing. We also suggest some princi-
ples that should apply to auditing of online services.

2.1 Internal vs. external auditing

We illustrate the two types of audits using an analogy
to the restaurant business. A restaurant’s “SLA” is to pro-
vide its diners with enjoyable and safe meals at reason-
able expense. We can audit restaurants simply by trying
out the service, or (using third parties) by relying on rec-
ommendations from friends or food critics. This corre-

IThis paragraph is adapted from [9].

sponds to external auditing of a service. External audits
evaluate the quality of service through externally avail-
able interfaces, and usually assume that one can predict
future success (“reputation”) from limited samples. With
this approach, we can determine whether the restaurant
is enjoyable, but it might not warn us in advance if the
food is sometimes contaminated.

So we also rely on health inspectors to go into the
kitchen and identify procedures that might result in sick
customers. This corresponds to internal auditing, which
determines the extent to which a service follows best
practices. Internal audits evaluate the structure and pro-
cesses within a service to ensure that the service can con-
tinue to meet its objectives (SLAs). To do so, these audits
need specialized interfaces that reveal and test the inner
workings of a service. Other examples of internal au-
dits include fire marshal inspections of office buildings
to check electrical codes, and accounting firms check-
ing whether corporations meet FASB standards. As with
health inspections, these internal audits warn customers
of practices that could lead to impending disasters. Cus-
tomers can use this information to choose between ser-
vices or complement one service with another.

We need both internal and external audits of OSPs.
External audits can only confirm past behavior, so with-
out internal audits, we could not predict upcoming prob-
lems or assess risk exposure. On the other hand, internal
audits might not be exhaustive and might be based on
incomplete failure models; we can use external audit re-
sults to assess whether internal audits are really working.

2.2 Auditable metrics

Auditing requires metrics. Typically, best practices
determine the relevant metrics for internal audits, and the
SLAs determine the relevant metrics for external audits.
Metrics need not be quantitative; they may simply indi-
cate whether the service follows a certain practice. For
example, a financial audit might (among other metrics)
check whether accounting data conforms with appropri-
ate standards; a health inspection could verify that raw
food is always stored below 45°F. Sections 4 and 5 de-
scribe metrics for internal and external audits of storage
services, respectively.

2.3 Desirable properties

In this section, we list desirable properties for both
internal and external audits. These are ideal goals, and
might not all be fully achievable.
Establish standards for comparison. One purpose of
auditing is to allow customers to make a rational choice.
To do so, they need standards to compare the results of
two different audits performed at different times, of dif-
ferent providers, and by different auditors. Without stan-
dards we are not even sure what is being audited.
Minimize auditing cost. Auditing imposes costs on
OSPs, which should not outweigh its benefits.

Introduce no new vulnerabilities. Auditing interfaces
inherently provide new ways to access an online service.
These interfaces, and their implementations, should not
introduce ways of attacking or corrupting the system.
Protect customer data privacy. Customers often do not
want their data revealed or leaked. For OSPs that include
customer privacy in their SLA, auditing approaches that
reveal customer data to auditors are a vulnerability and
should be avoided.

Protect proprietary provider information. OSPs sel-
dom want to reveal internal information (including key
technologies) to competitors or hackers.

Audit results must be trustworthy. Audits should not
be biased either toward the OSP or the customer.

Avoid prescribing a technology. Technologies used
to implement and support online services continually
change. Audit practices that prescribe or prefer a
particular technology could inhibit transitions to bet-
ter technologies. Thus, external audits should rely on
implementation-independent interfaces, if possible. Al-
though internal audits must be technology-aware to spot
flaws in technical approaches, they should adapt quickly
to avoid constraining service implementors.

3 Motivating audit processes

Providers will not offer auditing interfaces unless there
is motivation to do so. Mechanisms to provide such mo-
tivation are more likely to be social than technical, but
we should keep them in mind when trying to design the
system interfaces that support auditing.

Generally, these behavior-changing mechanisms ei-
ther use penalties or incentives, or a combination. For
example, regulations (and the associated fines), laws (and
the threat of incarceration), or loss of reputation (which
can put a provider out of business) are penalty-based
mechanisms. Market forces (i.e., the ability to charge
a premium for better service), or the need to obtain cost-
effective insurance, can create incentives.

3.1 Theroleof insurance providers

Users of traditional services (e.g., home remodeling
contractors) understand the value of selecting insured
providers. Similarly, we believe that in many cases cus-
tomers are likely to prefer insured OSPs, since it gives
them both protection against SLA violations and a clear
signal about which providers are trustworthy enough to
be insurable.

Insurance companies will not insure OSPs unless they
can quantify their risk, which gives both insurers and
OSPs an incentive to use auditors. Since insurance pre-
miums will reflect both the known risks and the uncer-
tainty in risks, OSPs will have an incentive (reduced pre-
miums) to improve their risk-management practices and
to increase their transparency to auditors. Insurers will
pass audit costs to the OSPs, giving them an incentive to
improve auditing interfaces to reduce audit costs.

Others have projected this benefit for a more specific
area, security-risk auditing:

Beginning in January 2007, “financial service providers

[in South Korea] will be required to insure customers’ ac-

counts to cover financial damage caused by hackers and fi-

nancial accidents.” ... [this] will, in effect, turn insurance
providers into [security] compliance auditors. Those fi-
nancial services providers who follow sound security pro-
cedures will be a better risk, and therefore see more favor-

able insurance rates. [7]

In theory, individual consumers could do their own exter-
nal audits, but they are unlikely to be able to afford the
costs and skills associated with professional risk audits.
Insurance-based mechanisms are scalable; they allow an
OSP to efficiently convince many customers that their
SLAs will be met.

Insurance-based mechanisms are especially suitable
for online storage services. We usually protect valuable
physical assets (e.g. homes, jewelry) with insurance, so
it is natural to extend this mechanism to digital assets.
For this mechanism to work, however, we need ways of
assigning value to data, which remains an open problem.
For certain data, such as business assets, we may be able
assign a value based on the cost incurred as a result of
loss. However, this assessment is more difficult for sen-
timental data such as family photos.

Although insurance-based incentives may not extend
to all online services, they are applicable to many OSPs,
such as financial or utility computing services.

3.2 Chicken-or-egg Problem

We realize that existing OSPs will face costs to add
support for auditing, both internal and external. These in-
clude additional hardware, new software, additional net-
work bandwidth, new procedures, additional employees,
and training. There is also a chicken-or-egg problem:
OSPs will be reluctant to incur these costs before audit-
ing is the norm, but auditing cannot become ubiquitous
until the OSPs support it.

We see a plausible evolutionary path, however. OSPs
will initially perform self-auditing to comply with regu-
lations such as Sarbanes-Oxley (SOX); most large com-
panies already do significant IT auditing for SOX com-
pliance, although they probably do not yet check long-
term storage processes. Once these self-audit mecha-
nisms are in place, they can then be used as selling points,
to differentiate well-run providers against their competi-
tion. Insurance companies will then also have a basis for
writing data-loss policies.

3.3 Quid custodiet ipsos custodes?

Auditing depends on the competence and honesty of
the auditors, properties that themselves need to be en-
forced. Financial auditors are already subject to regula-
tory and legal sanctions (for example, Arthur Anderson
was forced to close its audit business after repeated in-
stances of malfeasance, including their work for Enron).

Insurers will also tend to avoid auditors who do bad jobs,
as this exposes the insurers to unprofitable risks.

Likewise, insurance-based incentives depend on the
competence and honesty of the insurers. We assume
that OSOE insurers will be subject to existing insurance-
industry regulations, and will not disappear when it
comes time to pay up.

Having multiple competing auditors can help ensure
trustworthy results. This implies the need for standard
auditing interfaces, to avoid “auditor lock-in.”

4 Internal Auditing for Storage Services

Internal auditing checks the inside behavior and pro-
cesses of a provider to assess the likelihood the provider
will fail to meet its SLAs. In this section, we describe the
difficulty in internally auditing storage services and out-
line auditing interfaces online storage services can sup-
port to address the difficulty.

The SLAs for a storage service can include data in-
tegrity (customer bits are preserved), data exit (cus-
tomers can get their original data), security, privacy, and
more. Although auditing can apply to all of these, in this
paper we mainly focus on data integrity.

4.1 Internal auditsarehard

To assess the risk of violating data integrity, an auditor
must understand the threats and the current best practices
to prevent data loss. Unfortunately, this information is
hard to obtain for storage services:

e Only a few studies describe failures and their causes in
deployed large-scale storage systems [10, 12]. Baker et
al. [2] provide a list of known threats to data preserva-
tion, e.g. natural disasters and insider attack.

e Individual organizations can learn to recognize certain
bad practices that have resulted in data loss, but de-
termining “best practices” requires comparison and ex-
perimentation. This in turn requires sharing failure in-
formation across different environments and vendors.
Storage services have been reluctant to share this data.

The current situation is counter-productive for both

customers and providers. Customers cannot assess ser-
vice quality, and storage services can only make im-
provements based on internal data. Once a system with
proper incentives is established, storage services will al-
low internal audits. Trusted third-party auditors will then
be in a position to piece together this information gradu-
ally and integrate it into the audit process.

4.2 Threatsand hooksfor internal audits

We list three classes of threats to data integrity that au-
dits must address. (There are others!) For each class, we
touch on potential best practices and outline the hooks
storage services could provide to check for adherence to
these practices.

Latent faults: Many potential sources of data corrup-
tion are not immediately visible (e.g., damage from suc-

cessful but undetected attacks; undetected human errors;
bit rot in the storage medium). These “latent” faults re-
quire periodic checking of the data [2]. Auditors need
hooks to know whether the storage service checks for
appropriate sources of latent faults, whether the checks
happen often enough, and whether there are enough in-
dependent replicas of the data to support successful re-
pair when the checks uncover damage. To support au-
diting, the storage service could provide interfaces that
access log files to verify the frequency and success of
checks. Another possible hook would allow an auditor
to implant triggers on random data to notify the auditor
when the data is accessed for particular checks.

Correlated faults: Correlated failures increase the
risk of data loss. Example sources of correlated failures
include lack of diversity in software and hardware plat-
forms, in geographic locations of storage, and in num-
ber of independently administered domains. Storage ser-
vices should provide hooks that expose the level of di-
versity along these and other dimensions, to gauge the
potential for correlated failures.

Recovery faults: Data is often more vulnerable to
corruption and loss during recovery procedures, since
these might be executed only rarely and are often less
well debugged. Recovery also tends to take effect after
things have gone wrong, when the system being recov-
ered may be in an unanticipated state. Thus, it is impor-
tant for storage services to practice regular “fire drills,”
(in which they deliberately disable disks, nodes or sites
or deliberately corrupt or destroy data), and then mea-
sure the success of the resulting recovery mechanisms.
System hooks should allow auditors to see logs of these
faults and the resulting recovery activity. (Faulty recov-
ery may corrupt unrelated data, which might only be de-
tected through further audits.)

More importantly, storage services should provide
hooks that allow auditors to test recovery safely. They
should allow auditors to inject data corruption into “de-
coy” files, or to take disks or systems offline temporarily.

There are many open issues related to internal audit-
ing, including:

e How much overhead does internal auditing add?

e Could internal audits cause unwanted damage?

e Beyond providing a checklist of preventive steps taken,
we do not have ways to translate internal audits into a
quantitative risk of future data loss.

e We will need ways to evolve the internal-auditing pro-
cess and hooks without disrupting storage services.

5 External Auditing for Storage Services
An external audit provides an end-to-end measure-
ment of service quality in terms of its SLA. The primary
SLA for storage services is to maintain data integrity,
which we quantify by the past rate of data loss. We ob-
tain this rate by measuring the fraction of data lost at

appropriate intervals. There are a few direct methods for
measuring this fraction, such as sampling the service’s
stored contents or simply downloading all content. Ex-
ternal sampling cannot detect small but important losses
because it only checks a fraction of the data. Exhaustive
checks are intrusive and infeasible. In this section, we
detail the problems with these approaches and propose a
solution to overcome these problems.

5.1 Hurdlesfor detecting data loss

A simple method for auditing data integrity is to sam-
ple stored data through the public read and write inter-
faces of a storage service. This approach requires no
modification to the service. The auditor simply creates
some “fake” user accounts, uploads content, and peri-
odically extracts all of the uploaded content and ensures
the result matches the original. For some services (e.g.,
Amazon’s S3), we can access the read and write inter-
faces programmatically. For other services (e.g., email
or photo sharing sites), we might need additional effort
(e.g. screen-scraping) to crawl and download uploaded
content. We cannot externally audit services that ac-
tively prevent users from downloading their content. If
our premises about the advantage of auditing are correct,
customers will eventually avoid such services.

This simple approach meets our guidelines but has
drawbacks. First, devious services would have an in-
centive to identify auditors’ accounts and devote more
resources to those than others. Second, the approach suf-
fers from limited coverage. Even if the service is not
biased, the auditor can only introduce a limited number
of fake accounts and a limited amount of data without
excessive overhead to both service and the auditor. A
small sample can only detect loss from failures that af-
fect a large fraction of the data (e.g. natural disasters or
major operator error).

Another option is for storage services to provide ded-
icated, auditor-only read interfaces that allow access to
all internal customer data. The auditor can then com-
pute cryptographic hashes (e.g., using SHA-1) of each
customer data object, and then replicate these hashes
(perhaps at other storage services), later using these to
check the original content. Unfortunately, to detect small
amounts of loss, an audit must check nearly all the data.
For example, imagine an SLA that requires a storage ser-
vice to maintain 1PB, and the service has lost ten 1KB
blocks. If no additional damage occurs, we would need
to randomly sample 40% of the 1PB to have better than
a 98% chance of detecting at least 1 lost block. Since
auditors will want to know the loss rate with high preci-
sion, this approach is too expensive. It requires transfer-
ring nearly all customer data, which would consume too
much network bandwidth. This approach also violates
our customer-privacy principle. Straightforward encryp-
tion is not a viable privacy solution, since it relies on

keeping secret keys for the long term. Customers are
prone to losing keys, and the auditor has no way to check
if the key remains intact.

5.2 A privacy-preserving approach

We propose a solution that allows auditors to detect
any change to stored data, malicious or otherwise, while
adhering to our auditing principles. In our scheme, we
encrypt data to hide it from the auditor, and we store
both the encrypted data and key with the storage service.
To check data integrity, our method uses a challenge-
response protocol in which the service can respond cor-
rectly only if both the encrypted data and key are intact.
The auditor can glean nothing about the data or key from
these checks, and these checks incur little network over-
head since the messages are small. Our solution also
allows the auditor to assist in returning the key and en-
crypted data to the customer, while maintaining customer
privacy. With our method, the customer need not main-
tain any long-term secrets or state, and the auditor needs
only a little long-term state.

Our scheme is based on the following assumptions.
Since many sites, such as email hosting or photo sharing,
offer value-added services beyond storage, customers are
willing to reveal their data to a service. Services have
other legal and social incentives not to leak this data. A
customer may claim data loss either innocently or fraud-
ulently, and services have an incentive to hide data loss.
The auditor does not collude with either the service or
customer, because its task is to assess service quality ac-
curately. The auditor can, however, accidentally or pur-
posefully gain or leak private customer information.

Our solution has three phases: initialization, verifica-
tion, and extraction. In initialization, the storage service
commits to storing a document on behalf of the customer,
and the auditor initializes long-term state. During verifi-
cation, the auditor repeatedly checks the stored contents.
Finally, in extraction, the auditor assists in returning the
data to the customer in case of doubt or dispute. We
sketch each of these next.

During initialization, the storage service commits to
storing the key, K, and encrypted data, Fx (D), after re-
ceiving these items from the customer. The service com-
mits by publishing two values: a data-commitment that
is a hash of the encrypted data, H(Ex (D)), using a se-
cure digest such as SHA-1, and a key-commitment that
hides the key using modular exponentiation, g mod p
(g is a generator of Z*, and p is a large prime). Because
these functions are one-way and collision-resistant, these
values bind the service to the encrypted data and the key
without revealing either. The service publishes these val-
ues to one or more auditors. (We also have methods to
transfer the values from one auditor to the next, or make
them publicly available so anyone can audit.) An audi-
tor must remember these values, typically much smaller

than the data, for all subsequent checks.

The auditor also precomputes a list of challenges
and corresponding responses for checking the encrypted
data. Each challenge-response pair is a random number,
R;, and a hash (implemented with keyed-hash message
authentication codes — HMACs) that can be computed
only by knowing R; and the encrypted data in entirety.
This list is much smaller than the encrypted data, and its
contents are unknown a priori to the service.

During verification, the auditor must check that (a) the
encrypted data is unchanged and (b) the encryption key
is unchanged. For (a), the auditor randomly selects a pair
from its precomputed list, sends the challenge to the ser-
vice, and awaits the correct response. The auditor must
discard the pair after use, otherwise the service may cheat
by using previously cached results. When the auditor ex-
hausts this list, it can generate more pairs by getting the
encrypted data from the service, which is potentially ex-
pensive, and verifying the encrypted data’s hash.

Our main innovation is how to repeatedly check (b)
without revealing the key to the auditor. We rely on the
hardness of the discrete-log and the commutativity of
modular exponentiation to generate challenge-response
pairs from the key-commitment. The key-verification
protocol between the auditor, A, and service, S is:

1. A chooses a random 3 s.t. g” is a generator of Zy.
2. Asends g®to S.

3. S computes and sends (g”)% to A.

4. Achecks (g%)P = (g°)K else declares S lost key.

In steps 1-2, the auditor generates a random challenge
while keeping [secret from the service. Because of the
hardness of the discrete-log, the service, in step 3, must
compute the response anew using the key. Since mod-
ular exponentiation commutes, the auditor uses the key-
commitment, in step 4, to check the response.

For extraction, the auditor assists in returning the en-
crypted data simply by forwarding it to the customer af-
ter verifying its hash. The auditor also forwards the key,
but before forwarding, we must first establish a shared
random secret, X, between the service and customer, C,
which is used to hide the key. The auditor also needs g%
to check the key. We skip the protocol for pre-arranging
these values and instead focus on key forwarding:

1. Ssends K + X to A.
2. A checks g% g* = gF+X else declares S lost key.
3. Asends K + X to C.

In step 1, the shared secret, X, is a “blinding” value that
hides the key. In step 2, ¢g* hides the blind from the
auditor, while allowing it to verify the key. The customer,
after step 3, extracts the key by subtracting X .

Our protocols detect data loss and are not vulnerable
to a cheating storage service. Given an honest auditor,
the protocols either leave no doubt that the key and data
are intact or reveal which party is at fault. We can prove

that the auditor, honest or otherwise, learns nothing about
the data contents when using these protocols. Thus, the
auditor can reveal transcripts of the interaction to addi-
tional external parties, thereby providing an audit trail of
the audit itself, without violating our privacy principle.

To support our protocols, storage services must ex-
port hooks for challenge-response queries and compute
expensive functions for responses. Since our protocols
mostly send small hashes, the main overhead comes from
computing HMACs rather than network traffic. If we
limit the number of checks, however, this overhead can
be tolerable for a service. We measured the performance
of a SHA-1 HMAC over files stored on five S00GB SATA
disks with a 2-core 2GHz Intel Xeon 5130 at 362 MB/s.
At this peak rate, 50 CPUs in parallel can check 1PB in
16 hours. Spread over 30 days, this work imposes less
than 2% overhead. Since many large-scale storage ser-
vices handle an archival workload in which most data is
rarely touched, checking monthly is reasonable.

6 Related Work

Storage-related auditing: Baker et al. [2] describe
threats to long-term storage and a reliability model,
which includes the effect of latent faults and periodic in-
ternal checks of data integrity. Miller and Schwarz [13]
describe an efficient method for checking online storage,
but it cannot provide full coverage and privacy simulta-
neously. OceanStore [4] periodically checks stored data
for integrity, but relies on users to keep secret keys for
privacy and does not offer an interface for external au-
diting. LOCKSS [8] is a P2P archival system for library
periodicals. Although a library site in LOCKSS periodi-
cally performs audits of its content, there is no need for
complete privacy since the contents are published. Lil-
libridge et al. [6] present a P2P backup scheme in which
peers request random blocks from their backup peers.
This scheme can detect data loss from free-riding peers,
but does not ensure all data is unchanged.

Auditing in general: One of us (Mogul) previously
suggested that auditing support would become neces-
sary for IT outsourcing in general [9]. Satyanarayanan
proposed dealing with a variety of “Internet risks” by
an audit-like mechanism (“inspection-enforced safety”)
based on periodic signed, encrypted snapshots of entire
virtual machine states, which would then be inspected
when necessary (e.g., during legal proceedings) [11].
Others have suggested building accountable systems that
provide an non-repudiable history of their state and ac-
tions [15]. These audit trails are useful for detecting and
pinpointing problems after the fact, and could support in-
ternal and external audits.

Click fraud scares businesses that advertise through
search engines [3]. To preserve advertiser confidence
(on pain of lost business), search engines internally self-
audit click streams; also, advertisers can externally audit

search engines by monitoring the “click-throughs.”

7 Conclusion

In this paper, we motivate the need for auditing to sup-
port an online service-oriented economy. We highlight
issues around both internal and external auditing and de-
tail ways of auditing online storage services.

References

[1] M. Arrington. Gmail Disaster: Reports of Mass Email
Deletions. TechCrunch, http://www.techcrunch.
com/2006/12/28/gmail-disaster-
reports-of-mass-email-deletions/, Dec.
2006.

[2] M. Baker, M. Shah, D. Rosenthal, M. Roussopoulos,
P. Maniatis, T. Giuli, and P. Bungale. A Fresh Look at
the Reliability of Long-term Digital Storage. In Proc. Eu-
roSys, Leuven, Belgium, Apr. 2006.

[3] B. Grow and B. Elgin. Click Fraud: The Dark
Side of Online Advertising. BusinessWeek Online,
http://www.businessweek.com/magazine/
content/06_40/b4003001.htm, Oct. 2006.

[4] J. Kubiatowicz et al. OceanStore: An Architecture for
Global-Scale Persistent Storage. ASPLOS Nov. 2000.

[5] D. Lazarus. Precious Photos Disappear. San Francisco
Chronicle, http://www.sfgate.com/cgi-bin/
article._cgi?file=/chronicle/archive/
2005/02/02/BUG7QB3UOS1.DTL, Feb. 2005.

[6] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A Cooperative Internet Backup Scheme. Proc.
USENIX Annual Conf., pages 29-41, June 2003.

[7] T. Liston. Korean Financial Service Providers Re-
quired to Insure Accounts. SANS NewsBites, http:
//www_sans.org/newsletters/newsbites/
newshites.php?vol=8&issue=97, Dec. 2005.

[8] P. Maniatis, D. S. H. Rosenthal, M. Roussopoulos,
M. Baker, T. Giuli, and Y. Muliadi. Preserving Peer Repli-
cas by Rate-Limited Sampled Voting. In Proc. SOSP,
pages 44-59, Oct. 2003.

[9] J.C.Mogul. Operating Systems Should Support Business
Change. In Proc. HotOS X, June 2005.

[10] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
Trends in a Large Disk Drive Population. In Proc. FAST,
Feb. 2007.

[11] M. Satyanarayanan. Inspection-enforced Internet Safety.
In NSF Workshop on Grand Challenges in Distributed
Systems, MLL.T., Sep. 2005. http://pdos.csail.
mit.edu/"kaashoek/nsf/.

[12] B. Schroeder and G. Gibson. Disk Failures in the Real
World: What does an MTTF of 1,000,000 hours mean to
you? In Proc. FAST, Feb. 2007.

[13] T. Schwarz and E. Miller. Store, Forget, and Check: Us-
ing Algebraic Signatures to Check Remotely Adminis-
tered Storage. ICDCS July 2006.

[14] J. K. Shim and J. G. Siegel. Dictionary of Economics.
Wiley, 1995.

[15] A. Yumerefendi and J. Chase. The Role of Accountability
in Dependable Distributed Systems. HotDep, 2005.

