
Designing Controllable Computer Systems

Christos Karamanolis
Hewlett-Packard Labs

Magnus Karlsson
Hewlett-Packard Labs

Xiaoyun Zhu
Hewlett-Packard Labs

Abstract
Adaptive control theory is emerging as a viable approach
for the design of self-managed computer systems. This
paper argues that the systems community should not be
concerned with the design of adaptive controllers—there
are off-the-shelf controllers that can be used to tune any
system that abides by certain properties. Systems research
should instead be focusing on the open problem of design-
ing and configuring systems that are amenable to dynamic,
feedback-based control. Currently, there is no systematic
approach for doing this. To that aim, this paper introduces
a set of properties derived from control theory that con-
trollable computer systems should satisfy. We discuss the
intuition behind these properties and the challenges to be
addressed by system designers trying to enforce them. For
the discussion, we use two examples of management prob-
lems: 1) a dynamically controlled scheduler that enforces
performance goals in a 3-tier system; 2) a system where
we control the number of blades assigned to a workload to
meet performance goals within power budgets.

1 Introduction

As the size and complexity of computer systems grow, sys-
tem administration has become the predominant factor of
ownership cost [6] and a main cause for reduced system
dependability [14]. The research community has recog-
nized the problem and there have been several calls to ac-
tion [11, 17]. All these approaches propose some form of
self-managed, self-tuned systems that aim at minimizing
manual administrative tasks.

As a result, computers are increasingly designed as closed-
loop systems: as shown in Figure 1, a controller automati-
cally adjusts certain parameters of the system, on the basis
of feedback from the system. Examples of such closed-
loop systems aim at managing the energy consumption
of servers [4], automatically maximizing the utilization of
data centers [16, 18], or meeting performance goals in file
servers [9], Internet services [10, 12] and databases [13].

Controller System

measurements

actuators

Closed−Loop System

Figure 1: A closed-loop system.

When applying dynamic control, it is important that the re-
sulting closed-loop system is stable (does not exhibit large
oscillations) and converges fast to the desired end state.
Many existing closed-loop systems use ad-hoc controllers
and are evaluated using experimental methods. We claim
that a more rigorous approach is needed for designing dy-
namically controlled systems. In particular, we advocate
the use of control theory, because it results in systems
that can be shown to work beyond the narrow range of a
particular experimental evaluation. Computer system de-
signers can take advantage of decades of experience in the
field and can apply well-understood and often automated
methodologies for controller design.

However, we believe that systems designers should not be
concerned with the design of controllers. Control theory
is an active research field on its own, which has produced
streamlined control methods [2] or even off-the-shelf con-
troller implementations [1] that systems designers can use.
Indeed, we show that many computer management prob-
lems can be formulated so that standard controllers can
be applied to solve them. Thus, the systems community
should stick with systems design; in this case, systems that
are amenable to dynamic, feedback-based control. That
is, provide the necessary tunable system parameters (actu-
ators) and export the appropriate feedback metrics (mea-
surements), so that an off-the-shelf controller can be ap-
plied without destabilizing the system, while it ensures fast
convergence to the desired goals. Traditionally, control
theory has been concerned with systems that are governed
by laws of physics (e.g., mechanical devices), thus allow-
ing to make assertions about the existence or not of certain

properties. This is not necessarily the case with software
systems. We have seen in practice that checking whether a
system is controllable or, even more, building controllable
systems is a challenging task often involving non-intuitive
analysis and system modifications.

As a first step in addressing the latter problem, this pa-
per proposes a set of necessary and sufficient properties
that any system must abide by to be controllable by a stan-
dard adaptive controller that needs little or no tuning for
the specific system. These properties are derived from the
theoretical foundations of a well-known family of adaptive
controllers. The paper discusses the intuition and impor-
tance of these properties from a systems perspective and
provides insights about the challenges facing the designer
that tries to enforce them. The discussion has been mo-
tivated by lessons learned while designing self-managed
systems for an adaptive enterprise environment [17]. In
particular, we elaborate on the discussion of the properties
with two very diverse management problems: 1) enforcing
soft performance goals in networked service by dynami-
cally adjusting the shares of competing workloads; 2) con-
trolling the number of blades assigned to a workload to
meet performance goals within power budgets.

2 Dynamic Control

Many computer management problems can be cast as on-
line optimization problems. Informally speaking, the ob-
jective is to have a number of measurements obtained from
the system converge to the desired goals by dynamically
setting a number of system parameters (actuators). The
problem is formalized as an objective function that has to
be minimized. A formal problem specification is outside
the scope of this paper. The key point here is that there are
well-understood, standard controllers that can be used to
solve such optimization problems. Existing research has
shown that, in the general case, adaptive controllers are
needed to trace the varying behavior of computer systems
and their changing workloads [9, 12, 18].

2.1 Self-tuning regulators

For the discussion in this paper, we focus on one of the
best-known families of adaptive controllers, namely Self-
Tuning Regulators (STR)) [2], that have been widely used
in practice to solve on-line optimization control problems.
The term “self-tuning” comes from the fact that the con-
troller parameters are automatically tuned to obtain the de-
sired properties of the closed-loop system. The design of
closed-loop systems involves many tasks such as model-
ing, design of control law, implementation, and validation.
STR controllers aim at automating these tasks. Thus, they
can be used out-of-the-box for many practical cases. Other

y_ref(t)

model

goals
system

measurements

actuators

regulator
self−tuning

y(t)

u(t)

y(t)
model

estimator

control
law

Figure 2: The components of a self-tuning regulator.

types of adaptive controllers proposed in the literature usu-
ally require more intervention by the designer.

As shown in Figure 2, an STR consists of two basic
modules: the model estimator module on-line estimates
a model that describes the current measurements from the
system as a function of a finite history of past actuator val-
ues and measurements; that model is then used by the con-
trol law module that sets the actuator values. We propose
using a linear model of the following form for model esti-
mation in the STR:

y(t) =
n

∑
i=1

Aiy(t− i)+
n−1

∑
i=0

Biu(t− i−d0) (1)

where y(t) is a vector of the N measurements at time t and
u(t) is a vector capturing the M actuator settings at time t.
Ai and Bi are the model parameters, with dimensions com-
patible with those of vectors y(t) and u(t). n is the model
order that captures how much history the model takes into
account. Parameter d0 is the delay between an actuation
and the time the first effects of that actuation are observed
on the measurements. The unknown model parameters Ai
and Bi are estimated using Recursive Least-Squares (RLS)
estimation [7]. This is a standard, computationally fast es-
timation technique that fits (1) to a number of measure-
ments, so that the sum of squared errors between the mea-
surements and the model predictions is minimized. For the
discussion in this paper, we focus on discrete-time mod-
els. One time unit in this discrete-time model corresponds
to an invocation of the controller, i.e., sampling of system
measurements, estimation of a model, and setting the actu-
ators.

Clearly, the relation between actuation and observed sys-
tem behavior is not always linear. For example, while
throughput is indeed a linear function of the share of re-
sources (e.g., CPU cycles) assigned to a workload, the re-
lation between latency and resource share is nonlinear as
Little’s law indicates. However, even in the case of non-
linear metrics, a linear model is often a good-enough local
approximation to be used by a controller [2], as the latter
usually only makes small changes to actuator settings. The
advantage of using linear models is that they can be esti-
mated in computationally efficient ways. Thus, they result
in tractable control laws and they admit simpler analysis
including stability proofs for the closed-loop system.

The control law is essentially a function that, based on the
estimated system model (1) at time t, decides what the ac-
tuator values u(t) should be to minimize the objective func-
tion. The STR derives u(t) from a closed-form expression
as a function of previous actuations, previous measure-
ments, model parameters and the reference values (goal)
for the measurements. Details of the theory can be found
in Åström et al. [2]. From a systems perspective, the
important point is that these are computationally efficient
calculations that can be performed on-line. Moreover, an
STR requires little system-specific tuning as it uses a dy-
namically estimated model of the system and the control
law automatically adapts to system and workload dynam-
ics.

2.2 Properties of controllable systems

For the aforementioned process to apply and for the result-
ing closed-loop system to be stable and to have predictable
convergence time, control theory has derived a list of nec-
essary and sufficient properties that the target system must
abide by [2, 7]. In the following paragraphs, we interpret
these theoretical requirements into a set of system-centric
properties. We provide guidelines about how one can ver-
ify whether a property is satisfied and what are the chal-
lenges for enforcing them.

C.1. Monotonicity. The elements of matrix B0 in (1) must
each have a known sign that remains the same over time.

The intuition behind this property is that the real (non es-
timated) relation between any actuator and any measure-
ment must be monotonic and of known sign. This property
usually refers to some physical law. Thus, it is generally
easy to check for it and get the signs of B0. For example, in
the long term, a process with a large share of CPU cycles
gets higher throughput and lower latency than one with a
smaller share.

C.2. Accurate models. The estimated model (1) is a good-
enough local approximation of the system’s behavior.

As discussed, the model estimation is performed periodi-
cally. A fundamental requirement is that the dynamic rela-
tion between actuators and measurements is captured suf-
ficiently by the model around the current operating point
of the system. In practice, this means that the estimated
model must track only real system dynamics. We use the
term noise to describe deviations in the system behavior
that are not captured by the model. It has been shown
that to ensure stability in linear systems where there is
a known upper bound on the noise amplitude, the model
should be updated only when the model error is twice the
noise bound [5]. The theory is more complicated for non-
linear systems [15], but the above principle can be used as
a rule of thumb in that case too. There are a number of
sources for the aforementioned noise:

1. System dynamics that have a frequency higher than
that of sampling in the system, especially when one
measures instantaneous values instead of averages
over the sampling interval.

2. Sudden transient deviations from the operating range
of the system. For example, rapid latency fluctuations
because of contention on a shared network link.

3. A fundamentally volatile relation between certain ac-
tuators and measurements. One example is the rela-
tion between resource shares and provided through-
put. When the aggregate throughput of the system
oscillates a lot (as is often the case in practice), this
relation is volatile. Instead, a more stable relation
could be expressed as the fraction of the total system
throughput received by a workload as a function of
share.

4. Quantization errors when a linear model is used to ap-
proximate locally in an operating range the behavior
of a nonlinear system.

In fact, a tiny actuation error has often to be introduced, so
that the system is excited sufficiently for a good model to
be derived. In other words, the system is forced to slightly
deviate from its operating point to derive a linear model
approximation (you need two points to draw a line). It is
the controller that typically introduces such small pertur-
bations for modeling purposes.

Picking actuators and measurement metrics that result in
stable, ideally linear, relations is one of the most challeng-
ing and important tasks in the design of a controllable sys-
tem, as we discuss in Section 3. The following two proper-
ties are also related to the requirement for accurate models.

C.3. Known system delay. There is a known upper bound
d0 on the time delay in the system.

C.4. Known system order. There is a known upper bound
n on the order of the system.

Property C.3 ensures that the controller knows when to ex-
pect the first effects of its actuations, while C.4 ensures
that the model remembers sufficiently many prior measure-
ments (y(t)) and actuations (u(t)) to capture the dynamics
of the system. These properties are needed for the con-
troller to be able to observe the effects of its actuations
and then attempt to correct any error in subsequent actua-
tions. If the model order was less than the actual system
order, then the controller would not be aware of some of
the causal relations between actuation and measurements
in the system. The values of d0 and n are derived experi-
mentally. The designer is faced with a trade-off: On one
hand, the values of d0 and n must be sufficiently high to
capture as much as possible of the causal relations between
actuation and measurements. On the other hand, a high d0
implies a slow-responding controller and a high n increases

the computational complexity of the STR. d0 = 1 and n = 1
are ideal values.

C.5. Minimum phase. Recent actuations have higher im-
pact on the measurements than older actuations do.

A minimum phase system is basically one for which the
effects of an actuation can be corrected or canceled by an-
other, later actuation. It is possible to design STRs that deal
with non-minimum phase systems, but they involve exper-
imentation and non-standard design processes. In other
words, without the minimum phase requirement, we can-
not use off-the-shelf controllers. Typically, physical sys-
tems are minimum phase—the causal effects of events in
the system fade as time passes by. Sometimes, however,
this is not the case with computer systems, as we see in
Section 3. To ensure this property, a designer must re-set
any internal state that reflects older actuations. Alterna-
tively, the sample interval can always be increased until the
system becomes minimum phase. Consider, for example,
a system where the effect of an actuation peaks after three
sample periods. By increasing the sample period threefold,
the peak is now contained in the first sample period, thus
abiding by this property. Increasing the sample interval
should only be a last resort, as longer sampling intervals
result in slower control response.

C.6. Linear independence. The elements of each of the
vectors y(t) and u(t) must be linearly independent.

Unless this property holds, the quality of the estimated
model is poor: the predicted value for y(k) may deviate
considerably from the actual measurements. The reason
for this requirement is that some of the calculations in RLS
involve matrix inversion. When C.6 is not satisfied, there
exists a matrix internal to RLS that is singular or close to
singular. When inverted, that matrix contains very large
numbers, which in combination with the limited resolution
of floating point arithmetic of a CPU, result in models that
are wrong. Note that the property does not require that the
elements in u(k) and in y(k) are completely non-correlated;
they must not be linearly correlated. Often, simple intu-
ition about a system may be sufficient to ascertain if there
are linear dependencies among actuators, as we see in Sec-
tion 3.

C.7. Zero-mean measurements and actuator values.
The elements of each of the vectors y(k) and u(k) should
have a mean value close to 0.

If the actuators or the measurements have a large con-
stant component to them, RLS tries to accurately predict
this constant component and may thus miss to capture the
comparably small changes due to actuation. For example,
when the measured latency (in ms) in a system varies in the
[1000,1100] range depending on the share of resources as-
signed to a workload, the model estimator would not accu-
rately capture the relatively small changes due to the share
actuation. If there is a large constant component in the
measurements and it is known, then it can be simply de-

ducted from the reported measurements. If it is unknown,
then it can be easily estimated using a moving average.
Problems may arise if this constant value changes rapidly,
for example when a workload rapidly alternates between
being disk-bound and cache-bound resulting in more than
an order of magnitude difference in measured latency. In
that case, it is probably better to search for a new actuator
and measurement combination.

C.8. Comparable magnitudes of measurements and ac-
tuator values. The values of the elements in y(k) and u(k)
should not differ by more than one order of magnitude.

If the measurement values or the actuator values differ con-
siderably, then RLS results in a model that captures more
accurately the elements with the higher values. There are
no theoretical results to indicate the threshold at which
RLS starts producing bad models. Instead, we have empir-
ically found that the quality of models estimated by RLS
in a control loop start degenerating fast after a threshold of
one order of magnitude difference. This problem can be
solved easily by scaling the measurements and actuators,
so that their values are comparable. This scaling factor can
also be estimated using a moving average.

3 Case studies

In this section, we illustrate the systems aspects of the pre-
vious properties and the wide applicability of the approach,
with two examples of management problems.

3.1 Controllable Scheduler

Here, we consider a 3-tier e-commerce service that con-
sists of a web server, an application server and a database.
A scheduler is placed on the network path between the
clients and the front end of the service. It intercepts client
http requests and re-orders or delays them to achieve differ-
entiated quality of service among the clients. The premise
is that the performance of a client workload varies in a pre-
dictable way with the amount of resources available to ex-
ecute it. The scheduler enforces approximate proportional
sharing of the service’s capacity to serve requests (through-
put) aiming at meeting the performance goals of the differ-
ent client workloads. In particular, we use a a variation of
Weighted Fair Queuing (WFQ) that works in systems with
high degree of concurrency.

However, given the dynamic nature the system and the
workloads, the same share of the service’s capacity does
not always result in the same performance; e.g., a 10%
share for some client may result in a average latency of
100 ms at one point in time and in 250 ms a few seconds
later. Thus, shares have to be adjusted dynamically to en-
force the workload performance objectives. The on-line
optimization problem that needs to be solved here is to set

the shares of the different competing workloads so that the
difference between actual measurements and performance
goals is minimized overall workloads (possibly consider-
ing priorities among workloads).

According to the terminology of the previous section, the
3-tier service including the scheduler is our system; the
workload shares are the actuators u(t) and the performance
measurements (latency or throughput) of the workloads are
y(t); the performance goals for the workloads are captured
by yre f (t). However, when used in tandem with the con-
troller, the scheduler could not be tuned to meet the work-
load performance goals in the service operating under a
typical workload. The closed-loop system often became
unstable and would not converge to the performance goals.

While investigating the reasons of this behavior, we ob-
served that actuation (setting workload shares) by the con-
troller would often have no effect in the system. As a
result, the controller would try more aggressive actuation
which often led to oscillations. Going through the prop-
erties of Section 2, we realized that C.5 (minimum phase)
was violated. WFQ schedulers dispatch requests for pro-
cessing in ascending order of tags assigned to the requests
upon arrival at the scheduler; the tags reflect the relative
share of each workload. However, when the shares vary
dynamically, the tags of queued requests are not affected.
Thus, depending on the number of queued requests in the
scheduler, it may take arbitrarily long for the new shares
to be reflected on dispatching rates. In other words, there
is no way to compensate for previous actuations. For the
same reasons, properties C.3 and C.4 (known bounds on
delay and order) are not satisfied either. One way to ad-
dress this problem is by increasing the sampling period.
However, this would not work in general because the num-
ber of queued requests with old tags depends on actual
workload characteristics and is not necessarily bounded.
So, instead, we looked into modifying the system. In par-
ticular, we modified the basic WFQ algorithm to recalcu-
late the tags of queued requests every time shares change.
Thus, controller actuations are reflected immediately on
request dispatching. After this modification, properties C.3
– C.5 are satisfied and d0 = 1, n = 1 for a sampling period
of 1 second.

Another, minor problem with the scheduler was due to the
inherent linear dependency of any single share (actuator)
to the other N−1 shares: its value is 100% minus the sum
of the others. As a result, property C.6 was violated. We
addressed this problem by simply keeping only N−1 actu-
ators. The scheduler derived the value of the Nth actuator
from that of the others.

The system abides by all other properties. Monotonicity
(C.1) may not hold for a few sampling intervals, but it does
hold on average in the long term. Moreover, we have seen
that, with an estimation period of around 1 second, an on-
line RLS estimator is able to trace the system dynamics

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Time (seconds)

WFQ
C-WFQ

Latency target

Figure 3: Using an STR to control workload shares in WFQ and
C-WFQ. The graph depicts one of the workloads in the system.
WFQ results in an unstable system that misses workload goals.

with locally linear models (C.2). The noise level in the
measurements for the 3-tier service is at most 2% and thus
we chose a model update threshold of 4%. Property C.7
(zero means) is easily satisfied by using a moving average
to calculate on-line a constant factor which is then sub-
tracted from the measurement values. Similarly, we use a
moving average to estimate a normalization ratio for the
measurements (C.8, value magnitudes).

Figure 3 illustrates the performance of the system with the
conventional (WFQ) and the modified (C-WFQ) sched-
ulers. The site hosted on the system is a version of the Java
PetStore [8]. The workload applied to it mimics real-world
user behavior, e.g., browsing, searching and purchasing,
including the corresponding time scales and probabilities
these occur with. The fact that WFQ is not controllable
results in oscillations in the system and substantial devia-
tions from the performance goals.

3.2 Trading off power and performance

In this case, the objective is to trade off power consump-
tion and performance targets (both captured in y(t)) in a
data center by controlling the number of blades dedicated
to a workload (captured in u(k)). The on-line optimiza-
tion aims at reducing the overall difference between y(t)
and the goals for performance and power consumption. In
the case of power, the goal is zero consumption, i.e., min-
imization of the absolute value. All the data used for the
discussion here are taken from Bianchini et al. [3].

Clearly, increasing the number of blades monotonically in-
creases consumed power and delivered performance (C.1).
When a new blade is added, there is a spike before power
consumption settles to a new (higher) level. This sug-
gests that it would be hard to satisfy C.2 (accurate mod-
els). However, other than this transient spike, the relation
between power and the number of blades, and between per-
formance and the number of blades is steady with an error
of less than 5%. In order to abide by C.2, we can get rid
off the initial spike in one of two ways: 1) by ignoring
those power measurements, using a higher sample period,

e.g., of several seconds; 2) by automatically factoring in
this spike in the model estimation by using a higher model
order (n in C.4) with a sample period of just a few seconds.
The value of d0 (C.3) depends on the sampling period and
on whether new blades have to be booted (higher d0) or
are stand-by (lower d0). C.5 (minimum phase) is satisfied,
as the effects of new settings (number of blades) override
previous ones. C.7 and C.8 can also be trivially satisfied by
using a moving average, as described in Section 2. Things
are a little more subtle with C.6 (linear independence). In
certain operating ranges, power and performance depend
linearly on each other. In those cases, the controller should
consider only one of these measurements as y(k) to satisfy
C.6.

4 Conclusion

Designing closed-loop systems involves two key chal-
lenges. First, rigorous controller design is a hard problem
that has been an active research area for decades. The re-
sulting theory and methodology are not always approach-
able by the systems community. However, certain man-
agement problems in computer systems can be formulated
so that designers may use automated approaches for con-
troller design or even use off-the-shelf controllers. Such
problems include meeting performance goals [10], maxi-
mizing the utility of services, and improving energy effi-
ciency [4]. It is an open issue how other problems, such as
security or dependability objectives, can be formalized as
dynamic control problems.

Thus, for a range of management problems, controller de-
sign can be considered a solved problem for the systems
community. We should instead be focusing on a second
challenge that is closer to our skill set. That is, how to de-
sign systems that are amenable to dynamic control. This
paper discusses a canonical set of properties, derived from
control theory, that any system should abide by to be con-
trollable by a standard adaptive controller. Checking for
these properties is not always an intuitive process. Even
worse, enforcing them requires domain-specific expertise,
as we saw with the two examples in Section 3. Developing
a systematic approach for building controllable systems is
an open problem that deserves further attention.

References

[1] ABB Automation Products. Avant Controller 410, version
1.5/2 edition, 2001.

[2] K. J. Åström and B. Wittenmark. Adaptive Control. Elec-
trical Engineering: Control Engineering. Addison-Wesley
Publishing Company, 2 edition, 1995. ISBN 0-201-55866-
1.

[3] R. Bianchini and R. Rajamony. Power and Energy Manage-
ment for Server Systems. IEEE Computer, 37(11):68–74,
November 2004.

[4] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle.
Managing Energy and Server Resources in Hosting Cen-
tres. In ACM Symposium on Operating Systems Principles
(SOSP), pages 103–116, Banff, Canada, October 2001.

[5] B. Egardt. Stability of Adaptive Controllers, volume 20.
Springer-Verlag, 1979. ISBN 0-38709-646-9.

[6] J. Gray. A conversation with Jim Gray. ACM Queue, 1(4),
June 2003.

[7] M. Honig and D. Messerschmitt. Adaptive Filters: Struc-
tures, Algorithms, and Applications. Kluwer Academic
Publishers, Hingham MA, 1984. ISBN 0-898-38163-0.

[8] Java PetStore. www.middleware-company.com.

[9] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Perfor-
mance Isolation and Differentiation for Storage Systems.
In International Workshop on Quality of Service (IWQoS),
pages 67–74, Montreal, Canada, June 2004.

[10] M. Karlsson, X. Zhu, and C. Karamanolis. An Adaptive
Optimal Controller for Non-Intrusive Performance Differ-
entiation in Computing Services. In IEEE Conference on
Control and Automation (ICCA), Budapest, Hungary, June
2005. To appear.

[11] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50, January 2003.

[12] Y. Lu, T. Abdelzaher, C. Lu, and G. Tao. An adaptive con-
trol framework for QoS guarantees and its application to
differentiated caching services. In International Workshop
on Quality of Service (IWQoS), pages 23–32, Miami Beach,
FL, May 2002.

[13] S. Parekh, K. Rose, Y. Diao, V. Chang, J. Hellerstein,
S. Lightstone, and M. Huras. Throttling Utilities in the IBM
DB2 Universal Database Server. In American Control Con-
ference (ACC), pages 1986–1991, Boston, MA, June 2004.

[14] D. Patterson. A new focus for a new century: availability
and maintainability >> performance. Keynote speech at
USENIX FAST, January 2002.

[15] J.-J. Slotine and W. Li. Applied Nonlinear Control. Prentice
Hall, 1991. ISBN 0-13-040890-5.

[16] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Over-
booking and Application Profiling in Shared Hosting Plat-
forms. In USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 239–254, Boston,
MA, December 2002.

[17] J. Wilkes, J. Mogul, and J. Suermondt. Utilification. In
11th ACM SIGOPS European Workshop, Leuven, Belgium,
September 2004.

[18] S. S. Xue Liu, Xiaoyun Zhu and M. Arlitt. Adaptive en-
titlement control of resource containers on shared servers.
In 9th IFIP/IEEE International Symposium on Integrated
Network Management (IM), Nice, France, May 2005.

