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Abstract 

As the systems we build become more complex, understanding and managing their behavior becomes more chal-
lenging.  If the system’s inputs are within an acceptable range, it will behave predictably. However, the system may 
“fall off the cliff” if input values are outside this range.  This nonlinear behavior is undesirable, because the system 
no longer behaves predictably: it may not be possible to use, control or even recover the system.  In this paper, we 
describe what it means for a system to fall off the cliff.  We outline methods for detecting and predicting these 
modes of nonlinear behavior, and propose several approaches for designing systems to cope with these instabilities, 
or to avoid them altogether.  We conclude by outlining open research questions for investigation by the systems 
community.  
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1. Introduction 

A system behaves nonlinearly when the same input or 
environmental change produces different system behav-
ior at light loads and at heavy loads.  For instance, an 
increased demand at light loads might produce linear 
behavior, where the amount of work the system per-
forms is proportional to the load, and the system 
quickly recovers from perturbations.  Systems may op-
erate nonlinearly under heavier loads, producing poor 
or unpredictable performance and perhaps even result-
ing in a partial or complete system collapse. 

Systems respond to input changes like increased load in 
different ways.  Some employ various techniques to 
reduce load and bring the system back to a “safe” mode 
of operation.  Alternately, they may gracefully degrade 
performance or otherwise reduce the quality of service 
provided for each request.  In the absence of such cop-
ing mechanisms, systems may degrade gracelessly, 
resulting in a loss of predictability, recoverability, or 
controllability.  

The real world is full of systems that exhibit each of 
these strategies.  One example is the US telephone net-
work. To reduce capital costs, local telephone switches 
are configured to handle some limited number of con-
current calls that is far below the theoretical limit. As a 
result, an emergency that causes a sudden spike in call 

attempts can swamp local systems. Customers who do 
not receive service promptly often hang up and retry 
repeatedly, nonlinearly increasing the system load and 
lengthening the period during which they do not re-
ceive service. 

The telephone network incorporates a number of effec-
tive techniques to handle overload more gracefully. For 
example, although call attempts are normally handled 
in FIFO order, during overload they are handled in 
LIFO order, increasing the fraction of customers who 
receive prompt service and thereby reducing retries. 
These techniques have evolved over a period of dec-
ades, producing a stable telephone system, but this 
lengthy evolutionary path is not available to more mod-
ern systems. 

Another example of graceful degradation is the reaction 
of the CNN.com web service to increased demand after 
the terrorist attacks on September 11, 2001 [9].  In the 
span of fifteen minutes, page request demand increased 
by an order of magnitude:  peak demand rose to 1.8 
million hits per minute, which is 20X of normal de-
mand.  The organization employed several techniques 
to handle the load spikes.  First, they dynamically re-
provisioned servers from other web services (e.g., car-
toons or entertainment) to reinforce their news service.  
They also added additional server capacity to the sys-
tem.  Most interestingly, they chose to reduce the com-



plexity of the pages they serviced, by removing adver-
tisements and pictures, and focusing on the text. 

The real world also provides examples of graceless 
degradation. On August 14, 2003, a series of operator 
errors caused an electrical power grid in northern Ohio 
to stop tracking failures caused by sagging wires on a 
hot day [2]. Power lines sag as they carry power, and 
sometimes fail after contacting trees, forcing realloca-
tion of power through other wires, and making them 
fail, too. Later, as the outage spread, overload sensors 
in other areas produced false positives and shut down 
more of the system, eventually affecting 50 million 
people in the United States and Canada. Power was not 
fully restored in some areas for over a week. 

We would like our systems to behave more like the 
telephone network or CNN.com, rather than the power 
grid on that hot August day. Can we design and build 
systems whose behavior we can understand and that do 
not behave unexpectedly under unusual circumstances? 
Can we build systems that work all of the time, not just 
much of the time? Or are complex systems inherently 
unpredictable under unusual loads? 

2. Defining graceless degradation  

Graceless degradation describes the situation in which 
a small change in a system’s input or environment 
causes a large degradation in system behavior.  We take 
a broad view of change, including an increase in load, a 
modification of configuration, or the installation or 
upgrade of a system component. Similarly, we define 
degradation broadly to include a loss of predictability, 
recoverability, and controllability.  This section charac-
terizes these types of degradation and discusses why 
they occur. 

Types of graceless degradation 

Probably the most familiar form of degradation is the 
loss of predictable performance for a service.  For in-
stance, in the management of virtual memory, a small 
increase in the multiprogramming level can result in 
highly variable response times if not all working sets 
can fit into memory.  Alternately, in the configuration 
of database management systems, a small increase in 
buffer pool size can rapidly degrade throughput if it 
results in a change in query plans. In these examples, a 
small change in concurrency level, load, or data volume 
results in a tremendous change in system performance.  

A common cause for a loss of predictable service under 
load is the use of load adaptation mechanisms that in-

troduce feedback loops into the system.  An example of 
such feedback is thrashing – the situation in which a 
virtual memory system is so constrained in satisfying 
the physical memory requirements of a set of concur-
rent applications that it spends the majority of its time 
moving pages of memory to and from disk rather than 
making forward progress. Still another example is 
TCP’s congestion control mechanism. TCP interprets 
packet loss as an indication of congestion and halves a 
connection’s transmission rate in response; this behav-
ior results in poor performance on even moderately 
lossy links [4].  This congestive response has been 
shown to be vulnerable to attacks on TCP flows, espe-
cially where TCP implementations use constant retry 
timeouts; well-timed bursts of data have been shown to 
render the TCP connections on a link useless [7, 8]. 

A second type of graceless degradation is the loss of 
recoverability of the critical resources being used or 
provided by a system.  In a storage system, the data 
being stored is a critical resource.  As the underlying 
storage system degrades (e.g., as physical disks fail), 
this data is itself in a degraded state:  it is less capable 
of surviving further failures, and may not be provided 
at as high a throughput as in the fully-functional sys-
tem.  After sufficient degradation, the resources are 
irrecoverably lost.  This form of degradation results in a 
compromise of the system’s capacity to provide its ser-
vice. 

A final type of graceless degradation is a loss of con-
trollability.  Often, as a system degrades, so does the 
ability to intervene to prevent further decline.  A naïve 
example is that of a UNIX system experiencing a fork-
bomb, in which a malicious process alternates between 
consuming system resources and forking copies of it-
self.  An administrator wanting to recover the system 
needs to kill the forking processes, but as time pro-
gresses must kill more and more processes, with less 
and less resources available to recover. 

Why does graceless degradation happen? 

As system designers, we hope to build systems that are 
stable and predictable under all possible (or at least all 
specified) operating conditions.  We now consider a set 
of specific characteristics of existing systems that lead 
to graceless degradation.  This list is hardly compre-
hensive, but rather an attempt to identify some key fac-
tors of concern. 

Renewable resource exhaustion:  systems that allow 
over-subscription of renewable resources (CPU, mem-
ory, and network connections) are susceptible to over-



load.  While overloaded, the system will have to pro-
vide some means of dividing the limited resources 
across consumers until the load returns to an acceptable 
state.  Although overloading of renewable resources is 
not necessarily a cause of graceless degradation, the 
mechanisms for dealing with it frequently are. 

Persistent resource exhaustion:  As discussed with 
respect to the loss of recoverability above, the persis-
tent resources of a system may themselves be compro-
mised.  This situation may occur due to failure of the 
underlying devices, system or application software, 
operator mistakes, or malicious attacks.  Systems may 
be designed to be resistant against this form of degrada-
tion by employing various forms of redundancy. 

Feedback-induced degeneration: Adaptation mecha-
nisms within a system that feedback into the system’s 
operational behavior may enter states of oscillation or 
related instability, and thus prevent the system from 
getting useful work done. 

Removal from expected operating regime:  A superset 
of the previous example, a system may be forced into 
an unexpected mode of operation.  Such a phase change 
may result in the execution of poorly-tested code paths 
and compromise the stability of the system as a whole. 

Degradation of operating state over time: Small, non-
performance-critical problems may accumulate over the 
course of a system’s lifetime.  These state permutations 
may result in difficulties much later.  Consider the man-
agement of applications on modern operating systems, 
in which OS rot may eventually result in the inability to 
update a system, requiring that the OS be re-installed 
from scratch.  

Error conditions or exception logic: Exception logic is 
rarely invoked and often poorly tested. Thus, when it is 
invoked, it is common for degradation or even failures 
to result. Often exception logic is invoked as a result of 
a small increment in load that causes a buffer pool to 
overflow or too many file handles to be acquired. Thus, 
while the change in workload appears to be small, the 
change in the execution path is substantial. 

Unintended software reuse:  Modular software design 
encourages the reuse of components, as well as the con-
struction of hierarchical systems from existing compo-
nents.  Although this approach can reduce costs, it can 
also lead to successful systems being used in ways and 
environments never imagined.  Components can behave 
predictably in their intended environment, but unpre-
dictably in others. 

Unclear usage semantics:   The premise of this section 
is that a small change results in a large degradation in 
performance. But sometimes it is difficult to quantify 
“small.” For example, is it a small change to increase a 
buffer pool size by 1KB in a database management 
system with 1GB of memory? While this is small in 
terms of the fraction of memory affected, it may be 
huge in terms of the impact on query plans.  To address 
this case and the previous one, it may be valuable to 
specify constraints on how software components can be 
safely used, and to verify the satisfaction of these con-
straints before deployment or during execution. 

3. Detecting graceless degradation  

Computer systems susceptible to graceless degradation 
should be built to detect such graceless degradation and 
substitute a more graceful alternative.  The first step in 
such an approach is monitoring the system to detect 
when graceless degradation occurs or is about to occur. 

If we view the system as a black box with inputs (e.g., 
request load, hardware failures) and outputs (e.g., 
throughput, latency, correctness, and other application-
specific performance measurements), then a basic de-
tection strategy is to characterize the safe operating 
ranges for the inputs or the outputs (or both) and detect 
when the system has moved outside the safe operating 
range. 

Some operating constraints can be derived from the 
design of the system.  For instance, a decision to use 
erasure codes places a hard limit on the number of 
fragments that must be available.  Other constraints 
might be derived from more general requirements: a 
web server should respond to a request within a minute 
or else the response is likely to be ignored by the web 
browser – either the program or the human, both of 
which are likely to have timed out.  The most precise 
constraints can only be derived from testing the system 
and determining what operating conditions keep it per-
forming as desired. 

Testing a large computer system may be non-trivial: the 
CNN.com web servers reached over one million page 
views per minute following both the 2000 U.S. elec-
tions and the 2001 terrorist attacks.  Generating such 
conditions during testing requires a significant test 
framework. Computer systems designers might take 
solace in the fact that, unlike physical structures such as 
bridges, computer systems are usually not destroyed by 
being tested beyond their limits. 



System load is not the only interesting parameter during 
testing. For example, testing a web server farm might 
also mean checking how many server failures the farm 
can tolerate simultaneously without entering a cascad-
ing failure scenario.  Parameters are often interrelated: 
in the previous example, offered load certainly affects 
the number of server failures that can be tolerated. 

Black-box testing may be insufficient for applications 
that are expected to run for long periods of time, as it is 
difficult to identify inputs and environmental condi-
tions that can drive an application into unsafe regimes.  
Currently, some researchers are exploring the alterna-
tive white-box testing approach.  For example, if source 
code is available (or byte code for Java applications), 
the compiler may be able to help.  Compiler analyses 
can aid in the coverage testing of uncommon code 
paths such as recovery code [6].  Compiler analyses 
and instrumentations may also help applications and the 
runtime system/OS to track resource usage and detect 
when an application may be approaching the cliff. 

Testing should focus on determining safe output pa-
rameters, as well. For example, if a web server can re-
spond to all requests within five seconds under ex-
pected conditions, then significantly longer response 
times in a real deployment are indicative of unexpected 
behavior, possibly graceless degradation. Safe operat-
ing ranges could also be defined in terms of more cu-
mulative statistics.  For example, high variance in one-
minute average throughput during high load might in-
dicate that the servers are experiencing performance 
problems. 

Once the expected safe operating parameters have been 
determined, the system must be able to continuously 
measure and check these parameters, ready to change 
behavior if graceless degradation is detected or antici-
pated.  Statistical learning techniques may provide a 
means for understanding the observed data [5]. 

4. Coping with graceless degradation  

There are several ways to cope with and even avoid 
graceless degradation. Admission control limits the 
amount of load that can enter a system. Overprovision-
ing builds a buffer of extra resources into a system. 
Reprovisioning dynamically adds resources as needed. 
Load shedding drops or scales back processing when  
resource over-commitment is detected.   

Admission control conditions system load to try to 
avoid load spikes. Unlike physical systems, which often 
have implicit capacity-based admission controls, com-

puter systems cannot depend on physical space or fixed 
environmental conditions to impose limits. As a result, 
computer systems must explicitly control admission. 
Examples of admission control in computer systems 
include circuit signaling in computer networks or user 
login. However, many computer systems (e.g., IP net-
works or web servers) use very little admission control.  
Admission control and overprovisioning are duals. An 
ideal admission control scheme conditions load so that 
it can never take a system out of its safe region. Over-
provisioning makes the safe region so vast that the cliff 
is over the horizon. 

Computer systems tend to underprovision for effi-
ciency, rather than overprovision for safety. When 
compared with bridges, buildings, or other physical 
systems, most computer systems are designed with few 
excess resources.  Overprovisioning presents two chal-
lenges. First, it is expensive. Second, it is difficult to 
know how much to overprovision each resource. Over-
provisioning to handle load spikes smoothly means that 
most resources will be idle most of the time. Statistical 
multiplexing increases resource utilization by gambling 
on uncorrelated load. When the requests become corre-
lated, the system receives a burst, and the gamble has 
been lost. At this point, the system is approaching the 
cliff and has to choose a strategy for coping. It can try 
to reprovision resources to move the cliff farther away, 
or it can use short-term approaches, such as load shed-
ding, to back away from the cliff.  

While software complexity may make it difficult to 
define a safe region a priori, the flexibility of software 
control provides a means to rescue systems that are 
leaving their safe region and heading for the cliff. Soft-
ware can reprovision and reorganize system resources 
in real-time. For example, many storage systems use a 
virtualization layer to make capacity addition and fail-
ure events transparent to applications. In contrast to 
overprovisioning, where resources are statically allo-
cated to absorb peak load, reprovisioning either 
changes the mix of resources or includes resources 
from an external source.  For example, resources could 
be incorporated from a pool shared across many sys-
tems. In this case, reprovisioning is an attempt to statis-
tically multiplex overprovisioning across independent 
systems. Systems that share a resource pool should 
have uncorrelated needs for the pool to remain solvent. 

Reprovisioning is particularly important for situations 
where falling off the cliff implies loss of recoverability. 
For example, consider data redundancy for availability 
and durability. If the data is replicated using erasure 
coding, when the number of fragments drops below a 



critical threshold, then the data becomes unrecoverable.  
Consider an erasure code-based P2P storage system. If 
replicas are failing and some data are approaching their 
critical threshold, then it becomes necessary to reprovi-
sion storage nodes, even at the expense of handling 
incoming load. Incoming load could be throttled down 
through admission control or the load shedding ap-
proach discussed below. This example illustrates that 
coping mechanisms can be combined effectively.  To-
talRecall is an example of such a system; it automati-
cally measures and estimates the availability of host 
components and calculates and enforces the appropriate 
redundancy mechanisms and repair policies [1].   

A final approach for avoiding graceless degradation is 
load-shedding.  The simplest approach to shedding load 
is to drop requests from the tail of a FIFO queue. An-
other approach is to prioritize and postpone work where 
possible. One example of this approach is soft updates, 
which stabilize file system performance under heavy 
load by tracking the dependencies between block I/Os 
to postpone disk updates until the system calms. In the 
extreme case of the load shedding approach, a system 
might choose to avoid a cliff by resetting its state and 
starting fresh through either a full or partial reboot [3]. 

Load shedding may provoke feedback from the higher-
level systems that issued the dropped requests. If the 
feedback is poorly behaved, it threatens to further ag-
gravate an already struggling system: consider the 
phone retry example from Section 1. Synchronization is 
a danger because it correlates load and neutralizes sta-
tistical multiplexing. Randomization can help avoid 
synchronization. Exponential backoff can also reduce 
feedback problems by progressively delaying consis-
tently problematic retries [10]. Negative acknowledg-
ments (nacks) avoid generating load on an overloaded 
system by using acks for success cases and not sending 
any reply for errors, letting the higher layer time out. 
These approaches have their limits, however:  they as-
sume that the upper layer is a trusted and logical sys-
tem, which may not always be the case.  

Many systems are designed under the assumption of 
particular environmental parameters. Using randomiza-
tion is one way to immunize a system against fluctua-
tions in these parameters. The system will not behave 
optimally under some conditions, but at least it will not 
perform terribly under others. Randomized file system 
layout has been shown to provide stable file system 
performance across storage system virtualization pa-
rameters [11].  For routing in a hypercube, sending first 
to a random neighbor has been shown to improve per-
formance by balancing messages across queues [12].   

5. Summary and open research questions  

Catastrophic failures have forced us to consider what 
should be done to better understand and manage system 
software.  Avoidance and detection strategies require 
that we not only clearly define where the cliffs are, but 
also identify trends that force systems towards them.   
Key future challenges thus revolve around identifying a 
meaningful set of system constraints to describe safe 
operating regions, effectively capturing information 
about the system’s operational state, and responding to 
cliff-inducing conditions in a timely fashion. 

System constraints must be holistic to be meaningful.  
Some set of local system constraints may be known a 
priori, while potentially global constraints must be dy-
namically derived from specifics of system configura-
tion and execution environment.  Open questions in-
clude how best to identify and represent constraints or 
safe modes of operation, how to expose the right pa-
rameters for local constraints and how to dynamically 
derive context-specific holistic constraints. 

Testing the system may help to discover operating con-
straints.  Required advancements in this area include 
trace collection of heavy load scenarios, workload gen-
erators to synthetically generate load or to replay col-
lected traces, and development of large-scale simula-
tion and/or emulation environments. 

The process of capturing and mining system state intro-
duces several challenges.  Given the vast amount of 
shared system state and increasing variability of con-
figuration options, research challenges include how to 
manage state collection carefully, how to selectively 
monitor state according to global/local information 
needs, and how to quantify critical tradeoffs in safety 
and performance. 

Responding to potentially cliff-inducing conditions 
requires an appropriate coping strategy. Further re-
search is required to define new approaches for enforc-
ing safe modes of operation and for gracefully degrad-
ing system behavior, and to understand the conditions 
under which each strategy may be appropriate. 

Given the nature of this problem and the dramatic in-
crease in its importance, we as a research community 
must collectively commit to better understanding and 
managing the systems we build. 
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