
Green team paper:
Falling off the cliff: when systems go nonlinear

Yvonne Coady, Russ Cox, John DeTreville, Peter Druschel, Joseph Hellerstein, Andrew Hume,

Kimberly Keeton, Thu Nguyen, Christopher Small, Lex Stein, Andrew Warfield1

Abstract

As the systems we build become more complex, understanding and managing their behavior becomes more chal-
lenging. If the system’s inputs are within an acceptable range, it will behave predictably. However, the system may
“fall off the cliff” if input values are outside this range. This nonlinear behavior is undesirable, because the system
no longer behaves predictably: it may not be possible to use, control or even recover the system. In this paper, we
describe what it means for a system to fall off the cliff. We outline methods for detecting and predicting these
modes of nonlinear behavior, and propose several approaches for designing systems to cope with these instabilities,
or to avoid them altogether. We conclude by outlining open research questions for investigation by the systems
community.

1 Author affiliations and email addresses: University of Victoria, ycoady@cs.uvic.ca; MIT, rsc@mit.edu; Microsoft
Research, johndetr@microsoft.com; Rice University, druschel@cs.rice.edu; IBM Research, hellers@us.ibm.com;
AT&T Research, andrew@research.att.com; HP Labs, kimberly.keeton@hp.com; Rutgers University,
tdnguyen@cs.rutgers.edu; Vanu, Inc., chris@vanu.com; Harvard University, stein@eecs.harvard.edu; University of
Cambridge, andrew.warfield@cl.cam.ac.uk

1. Introduction

A system behaves nonlinearly when the same input or
environmental change produces different system behav-
ior at light loads and at heavy loads. For instance, an
increased demand at light loads might produce linear
behavior, where the amount of work the system per-
forms is proportional to the load, and the system
quickly recovers from perturbations. Systems may op-
erate nonlinearly under heavier loads, producing poor
or unpredictable performance and perhaps even result-
ing in a partial or complete system collapse.

Systems respond to input changes like increased load in
different ways. Some employ various techniques to
reduce load and bring the system back to a “safe” mode
of operation. Alternately, they may gracefully degrade
performance or otherwise reduce the quality of service
provided for each request. In the absence of such cop-
ing mechanisms, systems may degrade gracelessly,
resulting in a loss of predictability, recoverability, or
controllability.

The real world is full of systems that exhibit each of
these strategies. One example is the US telephone net-
work. To reduce capital costs, local telephone switches
are configured to handle some limited number of con-
current calls that is far below the theoretical limit. As a
result, an emergency that causes a sudden spike in call

attempts can swamp local systems. Customers who do
not receive service promptly often hang up and retry
repeatedly, nonlinearly increasing the system load and
lengthening the period during which they do not re-
ceive service.

The telephone network incorporates a number of effec-
tive techniques to handle overload more gracefully. For
example, although call attempts are normally handled
in FIFO order, during overload they are handled in
LIFO order, increasing the fraction of customers who
receive prompt service and thereby reducing retries.
These techniques have evolved over a period of dec-
ades, producing a stable telephone system, but this
lengthy evolutionary path is not available to more mod-
ern systems.

Another example of graceful degradation is the reaction
of the CNN.com web service to increased demand after
the terrorist attacks on September 11, 2001 [9]. In the
span of fifteen minutes, page request demand increased
by an order of magnitude: peak demand rose to 1.8
million hits per minute, which is 20X of normal de-
mand. The organization employed several techniques
to handle the load spikes. First, they dynamically re-
provisioned servers from other web services (e.g., car-
toons or entertainment) to reinforce their news service.
They also added additional server capacity to the sys-
tem. Most interestingly, they chose to reduce the com-

plexity of the pages they serviced, by removing adver-
tisements and pictures, and focusing on the text.

The real world also provides examples of graceless
degradation. On August 14, 2003, a series of operator
errors caused an electrical power grid in northern Ohio
to stop tracking failures caused by sagging wires on a
hot day [2]. Power lines sag as they carry power, and
sometimes fail after contacting trees, forcing realloca-
tion of power through other wires, and making them
fail, too. Later, as the outage spread, overload sensors
in other areas produced false positives and shut down
more of the system, eventually affecting 50 million
people in the United States and Canada. Power was not
fully restored in some areas for over a week.

We would like our systems to behave more like the
telephone network or CNN.com, rather than the power
grid on that hot August day. Can we design and build
systems whose behavior we can understand and that do
not behave unexpectedly under unusual circumstances?
Can we build systems that work all of the time, not just
much of the time? Or are complex systems inherently
unpredictable under unusual loads?

2. Defining graceless degradation

Graceless degradation describes the situation in which
a small change in a system’s input or environment
causes a large degradation in system behavior. We take
a broad view of change, including an increase in load, a
modification of configuration, or the installation or
upgrade of a system component. Similarly, we define
degradation broadly to include a loss of predictability,
recoverability, and controllability. This section charac-
terizes these types of degradation and discusses why
they occur.

Types of graceless degradation

Probably the most familiar form of degradation is the
loss of predictable performance for a service. For in-
stance, in the management of virtual memory, a small
increase in the multiprogramming level can result in
highly variable response times if not all working sets
can fit into memory. Alternately, in the configuration
of database management systems, a small increase in
buffer pool size can rapidly degrade throughput if it
results in a change in query plans. In these examples, a
small change in concurrency level, load, or data volume
results in a tremendous change in system performance.

A common cause for a loss of predictable service under
load is the use of load adaptation mechanisms that in-

troduce feedback loops into the system. An example of
such feedback is thrashing – the situation in which a
virtual memory system is so constrained in satisfying
the physical memory requirements of a set of concur-
rent applications that it spends the majority of its time
moving pages of memory to and from disk rather than
making forward progress. Still another example is
TCP’s congestion control mechanism. TCP interprets
packet loss as an indication of congestion and halves a
connection’s transmission rate in response; this behav-
ior results in poor performance on even moderately
lossy links [4]. This congestive response has been
shown to be vulnerable to attacks on TCP flows, espe-
cially where TCP implementations use constant retry
timeouts; well-timed bursts of data have been shown to
render the TCP connections on a link useless [7, 8].

A second type of graceless degradation is the loss of
recoverability of the critical resources being used or
provided by a system. In a storage system, the data
being stored is a critical resource. As the underlying
storage system degrades (e.g., as physical disks fail),
this data is itself in a degraded state: it is less capable
of surviving further failures, and may not be provided
at as high a throughput as in the fully-functional sys-
tem. After sufficient degradation, the resources are
irrecoverably lost. This form of degradation results in a
compromise of the system’s capacity to provide its ser-
vice.

A final type of graceless degradation is a loss of con-
trollability. Often, as a system degrades, so does the
ability to intervene to prevent further decline. A naïve
example is that of a UNIX system experiencing a fork-
bomb, in which a malicious process alternates between
consuming system resources and forking copies of it-
self. An administrator wanting to recover the system
needs to kill the forking processes, but as time pro-
gresses must kill more and more processes, with less
and less resources available to recover.

Why does graceless degradation happen?

As system designers, we hope to build systems that are
stable and predictable under all possible (or at least all
specified) operating conditions. We now consider a set
of specific characteristics of existing systems that lead
to graceless degradation. This list is hardly compre-
hensive, but rather an attempt to identify some key fac-
tors of concern.

Renewable resource exhaustion: systems that allow
over-subscription of renewable resources (CPU, mem-
ory, and network connections) are susceptible to over-

load. While overloaded, the system will have to pro-
vide some means of dividing the limited resources
across consumers until the load returns to an acceptable
state. Although overloading of renewable resources is
not necessarily a cause of graceless degradation, the
mechanisms for dealing with it frequently are.

Persistent resource exhaustion: As discussed with
respect to the loss of recoverability above, the persis-
tent resources of a system may themselves be compro-
mised. This situation may occur due to failure of the
underlying devices, system or application software,
operator mistakes, or malicious attacks. Systems may
be designed to be resistant against this form of degrada-
tion by employing various forms of redundancy.

Feedback-induced degeneration: Adaptation mecha-
nisms within a system that feedback into the system’s
operational behavior may enter states of oscillation or
related instability, and thus prevent the system from
getting useful work done.

Removal from expected operating regime: A superset
of the previous example, a system may be forced into
an unexpected mode of operation. Such a phase change
may result in the execution of poorly-tested code paths
and compromise the stability of the system as a whole.

Degradation of operating state over time: Small, non-
performance-critical problems may accumulate over the
course of a system’s lifetime. These state permutations
may result in difficulties much later. Consider the man-
agement of applications on modern operating systems,
in which OS rot may eventually result in the inability to
update a system, requiring that the OS be re-installed
from scratch.

Error conditions or exception logic: Exception logic is
rarely invoked and often poorly tested. Thus, when it is
invoked, it is common for degradation or even failures
to result. Often exception logic is invoked as a result of
a small increment in load that causes a buffer pool to
overflow or too many file handles to be acquired. Thus,
while the change in workload appears to be small, the
change in the execution path is substantial.

Unintended software reuse: Modular software design
encourages the reuse of components, as well as the con-
struction of hierarchical systems from existing compo-
nents. Although this approach can reduce costs, it can
also lead to successful systems being used in ways and
environments never imagined. Components can behave
predictably in their intended environment, but unpre-
dictably in others.

Unclear usage semantics: The premise of this section
is that a small change results in a large degradation in
performance. But sometimes it is difficult to quantify
“small.” For example, is it a small change to increase a
buffer pool size by 1KB in a database management
system with 1GB of memory? While this is small in
terms of the fraction of memory affected, it may be
huge in terms of the impact on query plans. To address
this case and the previous one, it may be valuable to
specify constraints on how software components can be
safely used, and to verify the satisfaction of these con-
straints before deployment or during execution.

3. Detecting graceless degradation

Computer systems susceptible to graceless degradation
should be built to detect such graceless degradation and
substitute a more graceful alternative. The first step in
such an approach is monitoring the system to detect
when graceless degradation occurs or is about to occur.

If we view the system as a black box with inputs (e.g.,
request load, hardware failures) and outputs (e.g.,
throughput, latency, correctness, and other application-
specific performance measurements), then a basic de-
tection strategy is to characterize the safe operating
ranges for the inputs or the outputs (or both) and detect
when the system has moved outside the safe operating
range.

Some operating constraints can be derived from the
design of the system. For instance, a decision to use
erasure codes places a hard limit on the number of
fragments that must be available. Other constraints
might be derived from more general requirements: a
web server should respond to a request within a minute
or else the response is likely to be ignored by the web
browser – either the program or the human, both of
which are likely to have timed out. The most precise
constraints can only be derived from testing the system
and determining what operating conditions keep it per-
forming as desired.

Testing a large computer system may be non-trivial: the
CNN.com web servers reached over one million page
views per minute following both the 2000 U.S. elec-
tions and the 2001 terrorist attacks. Generating such
conditions during testing requires a significant test
framework. Computer systems designers might take
solace in the fact that, unlike physical structures such as
bridges, computer systems are usually not destroyed by
being tested beyond their limits.

System load is not the only interesting parameter during
testing. For example, testing a web server farm might
also mean checking how many server failures the farm
can tolerate simultaneously without entering a cascad-
ing failure scenario. Parameters are often interrelated:
in the previous example, offered load certainly affects
the number of server failures that can be tolerated.

Black-box testing may be insufficient for applications
that are expected to run for long periods of time, as it is
difficult to identify inputs and environmental condi-
tions that can drive an application into unsafe regimes.
Currently, some researchers are exploring the alterna-
tive white-box testing approach. For example, if source
code is available (or byte code for Java applications),
the compiler may be able to help. Compiler analyses
can aid in the coverage testing of uncommon code
paths such as recovery code [6]. Compiler analyses
and instrumentations may also help applications and the
runtime system/OS to track resource usage and detect
when an application may be approaching the cliff.

Testing should focus on determining safe output pa-
rameters, as well. For example, if a web server can re-
spond to all requests within five seconds under ex-
pected conditions, then significantly longer response
times in a real deployment are indicative of unexpected
behavior, possibly graceless degradation. Safe operat-
ing ranges could also be defined in terms of more cu-
mulative statistics. For example, high variance in one-
minute average throughput during high load might in-
dicate that the servers are experiencing performance
problems.

Once the expected safe operating parameters have been
determined, the system must be able to continuously
measure and check these parameters, ready to change
behavior if graceless degradation is detected or antici-
pated. Statistical learning techniques may provide a
means for understanding the observed data [5].

4. Coping with graceless degradation

There are several ways to cope with and even avoid
graceless degradation. Admission control limits the
amount of load that can enter a system. Overprovision-
ing builds a buffer of extra resources into a system.
Reprovisioning dynamically adds resources as needed.
Load shedding drops or scales back processing when
resource over-commitment is detected.

Admission control conditions system load to try to
avoid load spikes. Unlike physical systems, which often
have implicit capacity-based admission controls, com-

puter systems cannot depend on physical space or fixed
environmental conditions to impose limits. As a result,
computer systems must explicitly control admission.
Examples of admission control in computer systems
include circuit signaling in computer networks or user
login. However, many computer systems (e.g., IP net-
works or web servers) use very little admission control.
Admission control and overprovisioning are duals. An
ideal admission control scheme conditions load so that
it can never take a system out of its safe region. Over-
provisioning makes the safe region so vast that the cliff
is over the horizon.

Computer systems tend to underprovision for effi-
ciency, rather than overprovision for safety. When
compared with bridges, buildings, or other physical
systems, most computer systems are designed with few
excess resources. Overprovisioning presents two chal-
lenges. First, it is expensive. Second, it is difficult to
know how much to overprovision each resource. Over-
provisioning to handle load spikes smoothly means that
most resources will be idle most of the time. Statistical
multiplexing increases resource utilization by gambling
on uncorrelated load. When the requests become corre-
lated, the system receives a burst, and the gamble has
been lost. At this point, the system is approaching the
cliff and has to choose a strategy for coping. It can try
to reprovision resources to move the cliff farther away,
or it can use short-term approaches, such as load shed-
ding, to back away from the cliff.

While software complexity may make it difficult to
define a safe region a priori, the flexibility of software
control provides a means to rescue systems that are
leaving their safe region and heading for the cliff. Soft-
ware can reprovision and reorganize system resources
in real-time. For example, many storage systems use a
virtualization layer to make capacity addition and fail-
ure events transparent to applications. In contrast to
overprovisioning, where resources are statically allo-
cated to absorb peak load, reprovisioning either
changes the mix of resources or includes resources
from an external source. For example, resources could
be incorporated from a pool shared across many sys-
tems. In this case, reprovisioning is an attempt to statis-
tically multiplex overprovisioning across independent
systems. Systems that share a resource pool should
have uncorrelated needs for the pool to remain solvent.

Reprovisioning is particularly important for situations
where falling off the cliff implies loss of recoverability.
For example, consider data redundancy for availability
and durability. If the data is replicated using erasure
coding, when the number of fragments drops below a

critical threshold, then the data becomes unrecoverable.
Consider an erasure code-based P2P storage system. If
replicas are failing and some data are approaching their
critical threshold, then it becomes necessary to reprovi-
sion storage nodes, even at the expense of handling
incoming load. Incoming load could be throttled down
through admission control or the load shedding ap-
proach discussed below. This example illustrates that
coping mechanisms can be combined effectively. To-
talRecall is an example of such a system; it automati-
cally measures and estimates the availability of host
components and calculates and enforces the appropriate
redundancy mechanisms and repair policies [1].

A final approach for avoiding graceless degradation is
load-shedding. The simplest approach to shedding load
is to drop requests from the tail of a FIFO queue. An-
other approach is to prioritize and postpone work where
possible. One example of this approach is soft updates,
which stabilize file system performance under heavy
load by tracking the dependencies between block I/Os
to postpone disk updates until the system calms. In the
extreme case of the load shedding approach, a system
might choose to avoid a cliff by resetting its state and
starting fresh through either a full or partial reboot [3].

Load shedding may provoke feedback from the higher-
level systems that issued the dropped requests. If the
feedback is poorly behaved, it threatens to further ag-
gravate an already struggling system: consider the
phone retry example from Section 1. Synchronization is
a danger because it correlates load and neutralizes sta-
tistical multiplexing. Randomization can help avoid
synchronization. Exponential backoff can also reduce
feedback problems by progressively delaying consis-
tently problematic retries [10]. Negative acknowledg-
ments (nacks) avoid generating load on an overloaded
system by using acks for success cases and not sending
any reply for errors, letting the higher layer time out.
These approaches have their limits, however: they as-
sume that the upper layer is a trusted and logical sys-
tem, which may not always be the case.

Many systems are designed under the assumption of
particular environmental parameters. Using randomiza-
tion is one way to immunize a system against fluctua-
tions in these parameters. The system will not behave
optimally under some conditions, but at least it will not
perform terribly under others. Randomized file system
layout has been shown to provide stable file system
performance across storage system virtualization pa-
rameters [11]. For routing in a hypercube, sending first
to a random neighbor has been shown to improve per-
formance by balancing messages across queues [12].

5. Summary and open research questions

Catastrophic failures have forced us to consider what
should be done to better understand and manage system
software. Avoidance and detection strategies require
that we not only clearly define where the cliffs are, but
also identify trends that force systems towards them.
Key future challenges thus revolve around identifying a
meaningful set of system constraints to describe safe
operating regions, effectively capturing information
about the system’s operational state, and responding to
cliff-inducing conditions in a timely fashion.

System constraints must be holistic to be meaningful.
Some set of local system constraints may be known a
priori, while potentially global constraints must be dy-
namically derived from specifics of system configura-
tion and execution environment. Open questions in-
clude how best to identify and represent constraints or
safe modes of operation, how to expose the right pa-
rameters for local constraints and how to dynamically
derive context-specific holistic constraints.

Testing the system may help to discover operating con-
straints. Required advancements in this area include
trace collection of heavy load scenarios, workload gen-
erators to synthetically generate load or to replay col-
lected traces, and development of large-scale simula-
tion and/or emulation environments.

The process of capturing and mining system state intro-
duces several challenges. Given the vast amount of
shared system state and increasing variability of con-
figuration options, research challenges include how to
manage state collection carefully, how to selectively
monitor state according to global/local information
needs, and how to quantify critical tradeoffs in safety
and performance.

Responding to potentially cliff-inducing conditions
requires an appropriate coping strategy. Further re-
search is required to define new approaches for enforc-
ing safe modes of operation and for gracefully degrad-
ing system behavior, and to understand the conditions
under which each strategy may be appropriate.

Given the nature of this problem and the dramatic in-
crease in its importance, we as a research community
must collectively commit to better understanding and
managing the systems we build.

6. References

[1] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G.
M. Voelker. “TotalRecall: systems support for auto-
mated availability management,” Proc. of
ACM/USENIX Symp. on Networked Systems Design
and Implementation (NSDI), San Francisco, CA, March
2004.

[2] Canada-U.S. Power System Outage Task Force.
Final report on the August 14, 2003 blackout in the
United States and Canada: causes and recommenda-
tions. April 2004. Available from http://www.nrcan-
rncan.gc.ca/media/docs/final/finalrep_e.htm.

[3] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman,
and A. Fox, “Microreboot - a technique for cheap re-
covery,” Proc. of 6th ACM/USENIX Symp. on Operat-
ing Systems Design and Implementation (OSDI), San
Francisco, CA, December 2004.

[4] R. Chakravorty, J. Cartwright, and I. Pratt. “Practi-
cal experience with TCP over GPRS,” Proc. of IEEE
GLOBECOM, Taipei, Taiwan, November 2002.

[5] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and
J. Chase. “Correlating instrumentation data to system
states: a building block for automated diagnosis and
control,” Proc. of 6th OSDI, San Francisco, CA, De-
cember 2004.

[6] C. Fu, B. Ryder, A. Milanova, and D. Wonnacott.
“Robustness testing of Java server applications,” IEEE
Trans. on Software Engineering, Vol. 31, No. 4, April
2005.

[7] M. Guirguis, A. Bestavros, and I. Matta. “Exploit-
ing the transients of adaptation for RoQ attacks on
Internet resources,” Proc. of Intl. Conf. on Network
Protocols, Berlin, Germany, October 2004.

[8] A. Kuzmanovic and E. Knightly. “Low-rate TCP-
targeted denial of service attacks. (The shrew vs. the
mice and elephants),” Proc. of ACM SIGCOMM,
Karlsruhe, Germany, August 2003.

[9] W. Lefebvre. “CNN.com: facing a world crisis,”
Invited talk at USENIX 15th Systems Administration
Conference (LISA), San Diego, CA, December 2001.
Summary available from
http://www.usenix.org/publications/library/proceedings
/lisa2001/lisa2001confrpts.pdf.

[10] R. Metcalfe and D. Boggs, "Ethernet: distributed
packet switching for local computer networks", Com-
munications of the ACM, Vol. 19, No. 5, July 1976, pp.
395 - 404.

[11] L. Stein. “Stupid file systems are better,” Proc. of
ACM/USENIX 10th Workshop on Hot Topics in Operat-
ing Systems (HotOS X), Santa Fe, NM, June 2005.

[12] L. Valiant. "A scheme for fast parallel communica-
tion," SIAM Journal on Computing, Vol. 11, No. 2,
1982, pp. 350 - 361.

