BORG: Block-reORGanization for Self-optimizing Storage Systems

Medha Bhadkamkar* %, J orge Guerra*®, Luis Useche*®, Sam Burnett!, Jason Liptaki,
Raju Rangaswami®, and Vagelis Hristidis®
SFlorida International University, ' Carnegie Mellon University, *Syracuse University

Abstract

This paper presents the design, implementation, and
evaluation of BORG, a self-optimizing storage system
that performs automatic block reorganization based on
the observed I/O workload. BORG is motivated by three
characteristics of I/O workloads: non-uniform access
frequency distribution, temporal locality, and partial de-
terminism in non-sequential accesses. To achieve its ob-
jective, BORG manages a small, dedicated partition on
the disk drive, with the goal of servicing a majority of the
I/O requests from within this partition with significantly
reduced seek and rotational delays. BORG is transparent
to the rest of the storage stack, including applications, file
system(s), and I/O schedulers, thereby requiring no or
minimal modification to storage stack implementations.
We evaluated a Linux implementation of BORG using
several real-world workloads, including individual user
desktop environments, a web-server, a virtual machine
monitor, and an SVN server. These experiments compre-
hensively demonstrate BORG’s effectiveness in improv-
ing I/O performance and its incurred resource overhead.

1 Introduction

There is a continual increase in the gap between CPU
performance and disk drive performance. While the
steady increase in main memory sizes attempts to bridge
this gap, the impact is relatively small; Patterson et
al. [25] have pointed out that disk drive capacities and
workload working-set sizes tend to grow at a faster rate
than memory sizes. Present day file systems, which con-
trol space allocation on the disk drive, employ static data
layouts [5, 8, 15, 20, 22, 37]. Mostly, they aim to pre-
serve the directory structure of the file system and opti-
mize for sequential access to entire files. No file system
today takes into account the dynamic characteristics of
I/O workload within its data management mechanisms.
We conducted experiments to reconcile past observa-
tions about the nature of I/O workloads [7, 9, 30] in the
context of current-day systems including end-user and
server-class systems. Our key observations that motivate
BORG are: (i) on-disk data exhibit a non-uniform access
frequency distribution; the “frequently accessed” data is
usually a small fraction of the total data stored when con-
sidering a coarse-granularity time-frame, (ii) considering

*The first three authors contributed equally to this work.

a fine-granularity time-frame, the “on-disk working-set”
of typical I/O workloads is dynamic; nevertheless, work-
loads exhibit temporal locality in the data that they ac-
cess, and (iii) 1/O workloads exhibit partial determin-
ism in their disk access patterns; besides sequential ac-
cesses to portions of files, fragments of the block access
sequence that lead to non-sequential disk accesses also
repeat. We elaborate on these observations in § 2.

While the above observations mostly validate the prior
studies, and may even appear largely intuitive, surpris-
ingly, there is a lack of commodity storage systems that
utilize these observations to reduce I/O times. We believe
that such systems do not exist because (i) key design and
implementation issues related to the feasibility of such
systems have not been resolved, and (ii) the scope of ef-
fectiveness of such systems has not been determined.

We built BORG, an online Block-reORGanizing stor-
age system to comprehensively address the above issues.
BORG correlates disk blocks based on block access pat-
terns to capture the I/O workload characteristics. It
manages a dedicated, BORG OPtimized Target (BOPT)
partition and dynamically copies working-set data blocks
(possibly spread over the entire disk) in their relative ac-
cess sequence contiguously within this partition, thus si-
multaneously reducing seek and rotational delays. Inad-
dition, it assimilates all write requests into the BOPT par-
tition’s write buffer. Since BORG operates in the back-
ground it presents little interference to foreground appli-
cations. Also, BORG provides strong block-layer data
consistency to upper layers, by maintaining a persistent
page-level indirection map.

We evaluated a Linux implementation of BORG for
a variety of workloads including a development work-
station, an SVN server, a web server, a virtual machine
monitor, as well as several individual desktop applica-
tions. The evaluation shows both the benefits and short-
comings of BORG as well as its resource overheads.
Particularly, BORG can degrade performance when a
non-sequential read workload suddenly shifts its on-disk
working-set. For most workloads, however, BORG de-
creased disk busy times in the range 6% to 50%, offering
the greatest benefit in the case of non-sequential write-
mostly workloads without tuning BORG parameters for
optimality. A sensitivity study with various parameters
of BORG demonstrates the importance of careful pa-

USENIX Association

7th USENIX Conference on File and Storage Technologies 183



‘Workload File System Memory Reads [GB] Writes [GB] File System Top 20% Partial
type size [GB] size [GB] | Total | Unique | Total | Unique accessed data access | determinism
office 8.29 1.5 6.49 1.63 0.32 0.22 22.22 % 51.40 % 65.42 %
developer 45.59 2.0 3.82 2.57 10.46 3.96 14.32 % 60.27 % 61.56 %
SVN server 2.39 0.5 0.29 0.17 0.62 0.18 14.60 % 45.79 % 50.73 %
web server 169.54 0.5 21.07 7.32 2.24 0.33 4.51 % 59.50 % 15.55 %

Table 1: Summary statistics of week-long traces obtained from four different systems.

rameter choice which can lead to even greater improve-
ments or degrade performance in the worst case; a self-
configuring BORG is certainly a logical and feasible di-
rection. Memory overheads of BORG are bound within
0.25% of BOPT, but CPU overheads are higher. Fortu-
nately, most processing can be done in the background
and there is ample room for improvement.

This paper makes the following contributions: (i) we
study the characteristics of I/O workloads and show how
the findings motivate BORG (§ 2) , (ii) we motivate and
present the detailed design and the first implementation
of a disk data re-organizing system that adapts itself to
changes in the I/O workload (§ 3 and § 4), (iii) we present
the challenges faced in building such a system and our
solutions to it (§ 5), and (iv) we evaluate the system to
quantify its merits and weaknesses (§ 6).

2 Characteristics of I/0O Workloads

In this section, we investigate the characteristics of mod-
ern I/O workloads, specifically elaborating on those that
directly motivate BORG. We collected I/O traces, down-
stream of an active page cache, over a one-week pe-
riod from four different machines. These machines have
different I/O workloads, including office and developer
desktop workloads, a version control SVN (Subversion)
server, and a web-server. The office and developer
workloads are single-user workloads. The former work-
load was composed mostly of web-browsing, graph plot-
ting with gnuplot, and several open-office applications,
while the latter consisted of extensive development us-
ing emacs, gcc, and gdb, document preparation using
IATEX, email, web-browsing, and updates of the oper-
ating system. The SVN server hosted document and
project code-base repositories for our 6-person research
group. Finally, the web-server workload mirrored the
web-requests made to our department’s production web-
server on one of our lab machines and served 1.1 million
web requests during the trace period. Key statistics for
these workloads are summarized in Table 1. We define
the on-disk working-set (henceforth also referred to sim-
ply as “working-set”) of an I/O workload as the set of all
unique blocks accessed in a given interval.

2.1 Non-uniform Access Frequency Distribution

Researchers have pointed out that file system data have
non-uniform access frequency distribution [2, 29, 39].

This was confirmed in the traces that we collected where
less than 4.5-22.3% of the file system data were accessed
over the duration of an entire week (shown in Table 1).
We observe that the office and web server workloads are
read mostly, while the developer and SVN server are
write mostly. Figure 1 (top row) shows page access rank-
frequency plots for the workloads; file system pages were
4KB in size, composed of 8 contiguous blocks. A uni-
form trend to be observed across the various workloads
is that the really high frequency accesses are due write
requests. However, and especially in the case of the read-
mostly office and web server workloads, there are a large
number of read requests that occur repeatedly. In either
case (read or write), the access frequencies are highly
skewed. Figure 1 (middle row) depicts disk heatmaps
created by partitioning the disk into regions and mea-
suring accesses to each region. The heatmaps indicate
that accesses, both high and low frequency ones, in most
cases are spread over the entire disk area. Skewed data
access frequency is further illustrated in Table 1 — the
top 20% most frequently accessed blocks contributed to a
substantially large (~45-66%) percentage of the total ac-
cesses across the workloads, which are within the ranges
reported by Gémez and Santonja (Figure 2(a) in [7]) for
the Cello traces they examined.

Based on the above observations, it is reasonable to ex-
pect that co-locating frequently accessed data in a small
area of the disk would help reduce seek times when com-
pared to the same data being spread throughout the entire
disk area. Akyurek and Salem [2] have demonstrated the
performance benefits of such an optimization via a sim-
ulation study. This observation also motivates reorganiz-
ing copies of popular blocks in BORG.

2.2 Temporal Locality

Temporal locality in I/O workloads is observed when the
on-disk working-sets remain mostly static over short du-
rations. Here, we refer to a locality of hours, days, or
weeks, rather than seconds or minutes (typical of main
memory accesses). For instance, a developer may work
on a few projects over a period of a few weeks or months,
typically resulting in her daily or weekly working sets
being substantially smaller than her entire disk size. In
servers, popularity of client requests result in temporal
locality. A web server’s top-level links tend to be ac-
cessed more frequently than content that is embedded

184

7th USENIX Conference on File and Storage Technologies

USENIX Association



10000 100000

Writes —— Writes ——

1000 10000

1000
100

Page access frequency

1 1
0000 Wiies 000
Reads

Writes ——
Reads ———

1000

100

100 1000 10000 100000 1e+06 1
Rank Rank

1 10

10 100 1000 10000100000 1e+06 1e+07

1 4 ;
10 100 1000 10000 100000 1 10 100 1000 10000 100000 1e+06 1e+07
Rank Rank

All accesses Gxza
Top 20% accesses mmm—m

All accesses &zZZa

100 Top 20% accesses mmm—

100

80 80

60 60
40 40

20 20

Data access overlap with Day 1 (%)

Day 1 Day 2 Day 3 Day 4 Day 5 Day
Days of the week

Days of the week

(a) office

(b) developer

All accesses ExZZaI

All accesses BzI 100
Top 20% accesses mmm—

Top 20% accesses mmm—
80
60
40

20

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Days of the week

Days of the week

(c) SVN server (d) web server

Figure 1: Rank-frequency, heatmap, and working-set plots for week-long traces from four different systems.
The heatmaps (middle row) depict frequency of accesses in various physical regions of the disk, each cell representing
a region. Six normalized, exponentially-increasing heat levels are used in each heatmap where darker cells represent
higher frequency of accesses to the region. Disk regions are mapped to cells in row-major order.

much deeper in the web-site; an important new revision
of a specific repository on an SVN server is likely to be
accessed repeatedly over the initial weeks.

Figure 1 (bottom row) depicts the changes in the per-
day working-sets of the I/O workload. The two end-user
I/O workloads and the web server workload exhibit large
overlaps in the data accessed across successive days of
the week-long trace with the first day of the trace. There
is substantial overlap even among the top 20% most ac-
cessed data across successive days. Interestingly, these
workloads do not necessarily exhibit a gradual decay in
working-set overlap with day 1 as one might expect, in-
dicating that popularity is consistent across multi-day pe-
riods. The SVN server exhibits anomalous behavior be-
cause periods of high commit activity degrade temporal
locality (new data gets created), while periods of high
update activity improve temporal locality.

These observations indicate that optimizing layout
based on past I/O activity can improve future I/O perfor-
mance for some workloads and motivates planning block
reorganization based on past activity in BORG.

2.3 Partial Determinism

Partial determinism in I/O workload occurs when certain
non-sequential accesses in the block access sequence are
found to repeat. A non-sequential access is defined by a
sequence of two I/O operations that are addressed non-
contiguous block addresses. It manifests in both end-
user systems and servers. For instance, I/O during appli-

cation start-up is largely deterministic, both in terms of
the set of I/O requests and the sequence in which they
are requested. Reading files related to a repeatable task
such as setting up a project in an integrated development
environment, compilation, linking, word-processing, etc.
result in a deterministic I/O pattern. In a web-server, ac-
cessing a web-page involves accessing associated sub-
pages, images, scripts, etc., in deterministic order.

In Table 1, we present the partial determinism for each
workload calculated as the percentage of non-sequential
accesses that repeat at least once during the week. The
partial determinism percentages are high for the two end-
user and the SVN server workloads. Further, for each of
these workloads, there were a non-trivial amount of non-
sequential accesses that repeated as many as 100 times.
These findings suggest that there is ample scope for op-
timizing the repeated non-sequential access patterns.

3 Overview and Architecture

BORG is motivated by the simple question: What stor-
age system optimizations based on workload character-
istics can allow applications to utilize the disk drive
more efficiently than current systems do?  This sec-
tion presents the rationale behind the design decisions
in BORG and its system architecture.

3.1 BORG Design Decisions

A Disk-based Cache.
The operating system uses main memory to cache fre-

USENIX Association

7th USENIX Conference on File and Storage Technologies 185



quently and recently accessed file system data to reduce
the number of disk accesses incurred. In any given du-
ration of time, the effectiveness of the cache is largely
dependent on the on-disk working-set of the I/O work-
load, and can degrade when this working-set increases
beyond the size of the page cache. Storage optimiza-
tions such as prefetching [16, 24, 33] and I/O schedul-
ing [13, 26, 27, 32] help improve disk I/O performance
in such situations.

Using a disk-based cache as an extension of the main
memory cache offers three complementary advantages
in comparison to main memory caching alone, prefetch-
ing, and I/O scheduling. First, it is more effective as a
cache (than main memory) because it offers a less expen-
sive (and thus larger) as well as reliable caching solution,
thus allowing data to be cache-resident for long periods
of time. Second, the size of the disk-based cache can
easily be configured by the system administrator with-
out changing any hardware. And finally, dynamically
optimizing data layout based on access patterns within
a disk-based cache provides the unique ability to make
originally non-sequential data accesses more sequential.

A Block Layer Solution.

A self-optimizing storage solution can be built at any
layer in the storage stack (shown in Figure 2). Block
level attributes of disk I/O operations are not easily ob-
tained at the VFS or the page cache layer. While file
system layer solutions can benefit from semantic knowl-
edge of blocks, they incur a significant disadvantage in
being tied to a specific file system (and perhaps even ver-
sion). Device driver encapsulations (interface at P4) are
incapable of capturing upper layer attributes, such as pro-
cess ID and request time-stamp due to I/O scheduler re-
ordering and loss of process context.

We contend that the block layer (interface at P3) is
ideal for introducing block reorganization for several rea-
sons. First, key temporal, block- and process- level at-
tributes about disk accesses are available. Second, oper-
ating at the block layer makes the solution independent
of the file system layer above, allowing it the flexibility
to support multiple heterogeneous file systems simulta-
neously. Finally, new abstractions due to virtualization
trends (e.g., virtual block device abstraction) as well as
network-attached storage environments (SAN and NAS)
can be supported in a straightforward way. In the case
of SAN, BORG can reside on the client where all con-
text for I/O operations are readily available with the un-
derlying assumption that the SAN device’s logical block
address space is optimized for sequential access. In the
case of NAS, the BORG layer can reside within the NAS
device where I/O context is readily available. Modifying
the NAS interface to include process associations within
file I/O requests can complete the profile information.

Using an Independent BOPT partition.

The file system optimizes for sequential accesses to en-
tire files, a common form of file access. However,
certain workloads, including application start-up, con-
tent indexing and web-page requests, exhibit a more non-
sequential, but deterministic, access behavior. It is thus
possible that the same set of data can be accessed sequen-
tially by some applications and non-sequentially by oth-
ers. Further, some deterministic non-sequential accesses
may only be temporary phenomenon.

Based on this observation, Akyurek and Salem [2]
have argued in favor of copying rather than shuffling [29,
39] of data. Copying retains original sequential layouts
so a choice of location based on the observed access pat-
tern may be possible. Reverting back to the original lay-
out is straightforward. Similarly, rather than permanently
disturbing the sequential layout of files, BORG operates
on copies of blocks placed temporarily in an independent
BOPT partition, optimizing for the current common case
of access for each data block.

3.2 BORG Architecture

Applications

P2
File System: EXT3, JFS,
P3

BORG

P3 ¢ | l 1/0 Indirector I

1/0 Scheduler
pa |

|E]: New

D: Existing Comp

——>: Control Flow |

Figure 2: BORG System Architecture.

Abstractly, BORG follows a four-stage process:
1. profiling application block I/O accesses,

2. analyzing 1/O accesses to derive access patterns,
3. planning a modification to the data layout, and

4. executing the plan to reconfigure the data layout.
In addition, an I/O indirection mechanism runs contin-
uously, re-directing requests to the partition that it opti-
mizes as required. Figure 2 presents the architecture of
BORG in relation to the storage stack within the oper-
ating system. The modification to the existing storage
stack is in the form of a new layer, which we term BORG
layer, that implements three major components: the //O
profiler, the BOPT reconfigurator and the I/O Indirector.
A secondary throttle-friendly user-space component im-
plements the analyzer and the planner stages of BORG

186

7th USENIX Conference on File and Storage Technologies

USENIX Association



and performs computation and memory-intensive tasks.
While profiling and indirection are both continuous pro-
cesses, the other stages run periodically and in succes-
sion culminating in a reconfiguration operation.

For the I/O profiler, we use a low-overhead kernel tool
called blktrace [3]. The analyzer reads the I/O trace
collected by the profiler and derives data access patterns.
Subsequently, the planner uses these data access patterns
and generates a new reconfiguration plan for the BOPT
partition, which it communicates to the BOPT reconfig-
urator component. The user-space analyzer and planner
components run as a low-priority process, utilizing only
otherwise free system resources. Under heavy system
load, the only impact to BORG is that generating the new
reconfiguration plan would be delayed.

The BOPT reconfigurator is responsible for the peri-
odic reconfiguration of the BOPT partition, per the lay-
out plan specified by the planner. The reconfigurator is-
sues low-priority disk I/Os to accomplish its task, mini-
mizing the interference to foreground disk accesses. Fi-
nally, the I/O indirector continuously directs I/O requests
either to the FS partition or the BOPT partition, based on
the specifics of the request and the contents of the BOPT.

3.3 BOPT Space Management

BOPT

Read-Cache | |

Disk: . || Borg Meta-data Write-Buffer || .

(a) BOPT overview

Segment

& ] [

(b) Read-Cache detail

Segment Segment

NN

(c) Write-Buffer detail

Segment

I Pal: Read-Cache segment map [(N: Write-Buffer segment map + valid entries counter [_]: Data blocks |

Figure 3: Format of the BOPT partition. Each entry in
the Write-Buffer and Read-Cache map tables is a 3-tuple
of the form (FS LBA, BOPT LBA, valid bit).

The OPtimized Target partition (BOPT) as managed
by BORG is shown in Figure 3. To reduce head move-
ment, we suggest that the BOPT partition be created
adjoining the swap partition if virtual memory is used.
BORG partitions the BOPT into three fragments: BORG
Meta-data, Read-cache, and Write-buffer. The Read-
cache and Write-buffer are further sub-divided into fixed-
length segments which store both data and (valid/invalid)
map entries for the segment. The in-memory indirec-
tion map (elaborated in § 4.5) maintained by BORG is a
union of all the segment map entries in the BOPT. The
BOPT map entries are synchronously updated each time
the in-memory map information changes. Additionally,
the segment map in the write-buffer contains a “valid en-
tries counter” to track space usage in the write buffer.

Magic number BORG BOPTpartition identifier.

BORG-REQUIRE bit BOPT contains dirty data.

BOPT size BOPT partition size.

Read-cache info Offset and size of the Read-cache.

Write-buffer info Offset and size of the Write-buffer.

Segment size Fixed size of segments in the BOPT.

Table 2: Borg meta-data.

Table 2 depicts the BOPT meta-data fragment. It
stores key persistent information that aid in the opera-
tion of BORG. The BORG_REQUIRE bit is set when the
BOPT contains data that requires to be copied back to the
FS. If set, the operating system initiates BORG at boot
time to ensure consistent data accesses. The remaining
meta-data information is used to correctly populate the
in-memory indirection map structure during BORG ini-
tialization.

4 Detailed Design

In this section, we present the design details of BORG
by elaborating on its individual components.

4.1 1/O Profiler

The 1I/O profiler is a data collection component that is
responsible for comprehensively capturing all disk I/O
activity. The I/O profiler generates an /O trace that in-
cludes the temporal (timestamp of the request), process
(process ID and executable) and the block-level (address
range and read/write mode) attributes. We use the Q
events reported by blktrace [3], which capture the 1/O
requests queued at the block layer. These include all
requests as issued by the file system(s), including any
journaling and/or page destageing mechanisms. We de-
fer further details to the blktrace work [3].

4.2 Analyzer

The analyzer is responsible for summarizing the disk I/O
workload. It first splits the I/O trace obtained from the
profiler into multiple I/O traces, one per process. Each
process trace is used to build a directed process access
graph G;(V;, E;), where vertices represent LBA ranges
and edges a temporal dependency (correlation) between
two LBA ranges. The weight on an edge between ver-
tices (u,v) represents the frequency of accesses (reads
or writes) from u to v. The directed and weighted graph
representation is powerful enough to identify repeated
sequences of multiple non-sequential requests.

Since multiple processes may access the same LBA,
a single master access graph G(V, E), that captures all
available correlations into a single input for the reconfig-
uration planner is created (illustrated in Figure 4). The
complexity of the merge process increases if two ver-
tices (either within the same graph or across graphs) have
overlapping ranges. This is resolved by creating multi-
ple vertices so that each LBA is represented in at most
one range vertex. While we omit the detailed algorithm

USENIX Association

7th USENIX Conference on File and Storage Technologies 187



Process graphs r and s Master access graph after merging r and s

‘
1
1

: 1
1 lﬂ"l,a‘lz(l,2)]—2>I7'2,51:(4,2)l—l>[ r3:(8, 1) I
' [ [

! T2 T3
[ 1 I 1
LBAspace:[ O [ 1T [ 2 [ 3 [ 4[5 6 7809 0 ] -
[ ]

= =5
Figure 4: Building the master access graph. Vertices
are defined by (start LBA, size of request). Since vertices
r1 and s1 have overlapping LBAs, r1 is split into two
vertices in the master access graph, one with size 1 and
the other with the overlapping s1 blocks, starting at LBA
1 with size 2.

for vertex splitting and graph merging due to space con-
straints, we point out that we reduce the complexity of
the merge algorithm by keeping the vertices sorted by
their initial LBA. The total time complexity for the ana-
lyzer stage is given by O(n x 1), where n is the number
of vertices and [ is the size (in LBA) of the largest vertex
in the graph. Once the merge operation is completed, the
master access graph, G, is obtained.

4.3 Planner

The planner takes the master access graph, G, as input
and determines a reconfiguration plan for the BOPT par-
tition. It uses a greedy heuristic that starts by choosing
for placement the most connected vertex, u, i.e., with
the maximum sum of incoming and outgoing edges (Fig-
ure 5). Next it chooses the vertex v most connected (in
one direction only, either incoming or outgoing) to u. If
v lies on the outgoing edge of w, it is placed after v and
if it lies on the incoming edge it is placed before. The
next vertex to be placed is the one most connected to the
group u U v. This process is repeated until either all the
vertices in G are placed, or the read cache in the BOPT is
fully occupied, or the edges connecting to the unplaced
vertices in the master graph have weight below a cho-
sen threshold. If the graph contains disconnected com-
ponents, each of these are placed as separate groups. The
time complexity for the planner is O(n x lg(m) + n?)
where n is the number of vertices and m is the num-
ber of edges; finding the most connected vertex takes
O(n x lg(m)) time and finding the next vertex takes
O(n) time .

4.4 BOPT Reconfigurator

The BOPT reconfigurator implements the plan created
by the planner component by performing the actual data
movement to realize the new configuration of the BOPT.
This task is complicated primarily because of consis-
tency and overhead concerns. Overhead is partially ad-
dressed by issuing low-priority I/O requests for data lay-

Figure 5: Placing the master access graph. C is
the most connected vertex and is chosen for placement
first. Next, vertex B is placed after vertex C since it
is connected by an outgoing edge and has the highest
weight of all the edges connected to C. Next, vertex
G is placed be fore vertex group C'U B. The final se-
quence of vertices from the lowest LBA to the highest is:
L=[F,H,J AG,C, B,E,D].

out reconfiguration, making the use of a priority sched-
uler a prerequisite. BORG ensures block data consis-
tency between the FS and BOPT copies of data blocks
by maintaining a persistent indirection map, termed the
borg_map, that continuously tracks the most up-to-date
location of a data block. This map is updated each time
a block location changes.

The reconfigurator copies blocks in three stages; out-
going, where it copies all the dirty blocks that are no
longer in the new plan back to the original file system
(FS) location, relocate, where it copies blocks that have
to be relocated within the BOPT, and incoming where
it copies all the new blocks that have to be copied from
the FS to the BOPT. A single data movement operation
and the corresponding update on borg_map entry can be
considered ‘atomic’ since any application write request
to the source LBA during data movement is put on hold
until after the movement is complete and the borg_map
entry is updated. This ensures that an up-to-date version
of data is always maintained by the file system.

4.5 1/0O Indirector

The 1/0 indirector operates continuously, redirecting file
system I/O requests as required. An I/O request may be
composed of an arbitrary number of pages. Each page
request is handled separately based on (i) number of
blocks that can be satisfied from the BOPT as per the
borgmap entry, (i7) type of operation (read or write)
and (7i7) presence of a free page in the BOPT.

For each I/O request larger than one page, the indirec-
tor splits it into multiple per-page requests. If a map-
ping exists for all the pages of the I/O request in the
borg.map, the request is indirected to the BOPT. If no
mapping exists, and the request is a read request, it is is-
sued unchanged to the file system. If only some pages of
aread I/O request are mapped and the mapped entries are
clean, the entire I/O is indirected to the file system; this

188

7th USENIX Conference on File and Storage Technologies

USENIX Association



optimization reduces the seek overhead incurred to serve
the request partially from the BOPT and the rest from the
FS. For a write request, when no mapping exists for any
of the pages, the blocks are written to a write-buffer por-
tion of the BOPT reserved for assimilating write requests
(if space permits) along with an additional request for up-
dating corresponding mapping entries in the borg_map.
For partially-mapped writes, the mapped blocks are in-
directed to their BOPT locations; the unmapped pages
are also absorbed in the write-buffer, space permitting,
otherwise these are issued to the FS.

4.6 Kernel Data Structures

The persistent data structure borg-map is implemented
as a radix tree such that given an FS LBA, the BOPT
LBA can be retrieved efficiently and vice-versa. It also
maintains the dirty information for the BOPT LBAs. For
every page of 4KB, BORG stores 4 bytes each for the for-
ward and the reverse mapping and one dirty bit. If all the
pages in the BOPT of size S GB are occupied, the worst
case memory requirement is 2 x .S MB (S MB for for-
ward and reverse mapping each), and 2% MB for the dirty
information. Thus, in the worst case, borg_map requires
memory of 0.25% of the size of the BOPT partition, an
acceptable requirement for kernel-space memory.

5 Implementation Issues

In this section, we discuss the particularly challenging
aspects of the BORG implementation that help address
data consistency and overhead.

5.1 Persistent Indirection Map

Since BORG replicates popular data in the BOPT space,
the system must ensure that reads are always up-to-
date versions of data, including after a clean shutdown
or a system crash. BORG implements a persistent
borg map, which is distributed within read-cache and
write-buffer segments of the BOPT. Map entries on-disk
are updated (along with their in-memory version) each
time the BOPT partition is reconfigured or when a new
map entry is added to accommodate a new write ab-
sorbed into the BOPT. Upon writes to an existing BOPT
mapped block, its indirection entry in the in-memory
copy of the reconfiguration map is marked as dirty, once
the I/O is completed. To minimize overhead for BOPT
writes, we chose not to maintain dirty information in the
on-disk copy. Upon reboot after an unclean shut down,
all entries in the persistent map are marked as dirty and
future IOs to these blocks are directed to the BOPT.

5.2 Optimizing Reconfiguration

Consider a set L of n LBAs, Lq,---, L,, sequentially
located in the BOPT space. L forms a chain if VL; € L,
where L; # L,,, L; has to be relocated to location L; + 1
and L, is an outgoing block. If L, has to be relocated to
L1 within the BOPT, L forms a cycle. Information about

chains and cycles, that occur exclusively for the relocated
blocks, can be used to further optimize data movement
during the reconfiguration operation. If a cycle exists, it
is broken by copying the last block L,, back to the FS
(if dirty) and then deleting the plan entry for that block;
an additional plan entry is then created to mark this as
incoming block to L,. Next, all remaining blocks be-
longing to the same chain/cycle are copied to their new
locations in the BOPT. To do so, the reconfigurator is-
sues all reads to the source locations in parallel; once all
reads have been completed, it issues all the writes in par-
allel, in each case allowing the I/O scheduler to optimize
the request schedule.

5.3 Other Data Consistency Issues

BORG maintains metadata at the granularity of a page
(rather than block) to reduce metadata memory require-
ment (by 8X for Linux file systems). Consequently, the
indirector must carefully handle I/O requests whose sizes
are not multiples of the page-size and/or which are not
page-aligned to the beginning of the target partition. We
address this issue via I/O request splitting and page-wise
indirection, techniques borrowed from our earlier work
on EXCES [38], a block-layer extension that manages a
persistent cache for reducing disk power consumption.

BORG is dynamically included in the I/O stack by
substituting the make_request function of the device
targeted for performance optimization. While module in-
sertion is straightforward, module removal/unload must
ensure that all the data from the BOPT has been copied
back to their original locations in the file system and han-
dle foreground I/O correctly. Once again, BORG uses
techniques from EXCES [38] and flushes dirty BOPT
blocks to their original locations in the file system upon
removal. To address race conditions caused when an ap-
plication issues an I/O request to a page that is being
flushed to disk, BORG stalls (via s1eep) the foreground
I/O operation until the specific page(s) being flushed are
written to the disk.

6 Evaluation

In this section, we compare the performance of BORG
with a vanilla system in which all the blocks are located
in their original FS space under various workloads to an-
swer the following questions.

(i) How well does BORG perform? We use the total
disk busy time (i.e., excluding all idle periods) as the pri-
mary metric of performance. Due to BORG’s optimiza-
tions, apart from the potentially improved head position-
ing times, the degree of merging of requests may also be
increased when compared with the vanilla configuration,
thus changing the request pattern itself. Thus, the more
common I/O response time metric is an ill-suited choice.
The total disk busy time (henceforth simply referred to
as disk busy time) is also robust against the trace-replay

USENIX Association

7th USENIX Conference on File and Storage Technologies 189



RAM Capacity (GB)

‘ Host ‘ Make ‘ Model ‘ (MB) Total |p FSy | BOPT
01 WD 2500AAKS 1024 250 46 1
02 WD 360GD 1024 39 24 2
o3 Maxtor 6L020L1 1024 20 15 2
04 WD 2500AAKS 1024 250 180 8
05 Maxtor 6L020J1 1536 20 8 1

Table 3: Experimental test-bed details.

speedups we employ in some of our experiments.

(ii) Why is BORG effective? We would like to know if
BORG performance gains are because of the sequential-
ity or the proximity of data (or both) in the BOPT. We use
two metrics, average seek distance and non-sequential
accesses percentage for this purpose. The latter is mea-
sured as %. Since non-sequential accesses are at
least an order of magnitude less efficient than sequential
accesses, even a small reduction in this metric may lead
to substantial performance benefit.

(iii) When is BORG not effective? BORG can degrade
the system performance for certain workloads. We eval-
uate BORG for varying workloads to determine in which
cases it could perform worse than the vanilla system.
(iv) How much CPU resource overhead does BORG in-
cur? While the upper bound on memory overhead was
examined in § 4.6, the CPU resources consumed by
BORG should also be within acceptable limits. We use
the execution times for various stages of BORG as an ap-
proximate measure of CPU resource utilization.

(v) How is BORG affected by its parameters? We per-
form a sensitivity analysis of BORG to its parameters
- reconfiguration interval, BOPT size, and BOPT write
buffer fraction - to evaluate their impact on performance.
Experimental Setup. All experiments were performed
on machines running the Linux 2.6.22 kernels. We
used host machines, O1 through O5, with differing hard-
ware configurations and disk drives (Table 3). We used
reiserfs for O1 and O3, and ext3 for the rest. No
additional hardware was required to implement BORG.

We conducted four different sets of experiments. The
first set uses week-long traces of a developer’s system
and a Subversion control server (SVN). The second ex-
periment is an actual deployment of a web server that
mirrors our CS department’s web server. The third ex-
periment evaluates BORG performance in a virtual ma-
chine environment. The fourth experiment evaluates the
performance improvement due to BORG for application
start-up events.

In each experiment, we performed 4 reconfigurations
equally spaced in time; this gave us a reasonable number
of phases for detailed analysis. By not choosing more
favorable times such as idle disk periods based on well-
known diurnal workload cycles, we would only over-
estimate the overhead of BORG during reconfiguration.
We further discuss the selection of this parameter in § 6.5

Vanilla &xxxxa
BORG mmmm

Disk busy time (sec)

Figure 6: Disk busy times in various phases of the SVN
server trace replay. R; and N; correspond to recon-
figuration phase i and non-reconfiguration phase j re-
spectively. R3 and Ry are beyond the y-axis range with
values of 272 and 564 seconds respectively.

and § 7. Finally, we use the notation R; and N; in var-
ious graphs to denote reconfiguration phase ¢ and non-
reconfiguration phase j respectively.

6.1 Trace Replay

To evaluate BORG under realistic workloads, we con-
ducted trace replay experiments using SVN server and
developer workloads described in Table 1. For the traces
and the replay, we used blktrace and btreplay respec-
tively [3]. We used an acceleration factor of 168X that re-
duces the experimentation time from one week to a man-
ageable one hour after verifying that the resultant block
access sequence was unaffected. The trace-playback
acceleration factor was reverted to 1X during each re-
configuration operation to accurately estimate reconfig-
uration overhead. Since we only measure disk busy
times, the comparison between normal and reconfigura-
tions phases remains valid despite the varying accelera-
tion factors.

6.1.1 SVN Server

For the SVN server trace replay, we used the host 02 (Ta-
ble 3). The write buffer size was set to 20% of the BOPT
size. Figure 6 shows the disk busy times during differ-
ent phases of the experiment. In all the reconfiguration
phases the busy time with BORG is notably higher than
the vanilla case. This is due to substantial head move-
ment during reconfiguration for relocating blocks. The
longest reconfiguration phase lasted approximately 10
minutes. R3 and R4 have substantially higher busy time
than the previous two reconfigurations. After trace anal-
ysis, we found that while the amount of data movement
was similar across the four reconfiguration instances, in
the latter two phases, the I/O scheduler merge ratio and
the sequential disk accesses dropped dramatically; this
can be attributed to the blocks relocated within the BOPT
being spread out more than in the previous reconfigura-
tions. However, As is evident by the vanilla busy times,
the foreground activity during these intervals are negligi-

190

7th USENIX Conference on File and Storage Technologies

USENIX Association



700 -
Vanilla =xxxx

Disk busy time (sec)

’g '2 4@/ 2 4 o v o Y
Phases

Figure 7: Disk busy time in various phases of the de-
veloper trace replay.

ble and thus the increased reconfiguration durations have
little impact to foreground I/O.

In all the non-reconfiguration phases, each of which
lasted 1.75 days approximately, BORG offers better per-
formance for foreground I/O than the vanilla configura-
tion. In the best case (range N2), BORG decreases the
disk busy time by approximately 45%. This is a sur-
prising result, since as per Figure 1(c), the working-set
for this workload undergoes rapid shifts. The expla-
nation lies in the fact that the SVN server is a write-
intensive workload and the BOPT write-buffer is suc-
cessful in sequentializing a rapidly changing, possibly
non-sequential, write workload. Analysis of the block
level traces revealed that with BORG, the non-sequential
access percentage reduced from 1.70% to 1.15%, and the
average seek distance reduced from 704 to 201 cylinders
during the non-reconfiguration phases.

6.1.2 Developer

For the developer trace replay, we used the host 01 (Ta-
ble 3) with the BOPT write buffer set to 40% of the
BOPT size. Figure 7 shows the disk busy time for this
experiment in various phases. With this workload, the
longest measured reconfiguration phases were R3 and
R4 which lasted approximately 7 minutes each. We ob-
serve reduced disk busy times (13% to 50% reductions)
across the non-reconfiguration periods, except for Nj
which shows an increase of 25%. Overall, the developer
workload is a write-mostly workload and thus, largely
conducive to BORG optimizations. Analysis of the block
level traces revealed that overall, the non-sequential ac-
cess percentage reduced from 3.93% to 3.30%, and the
average seek distance reduced from 1203 to 782 cylin-
ders when using BORG.

6.2 Web Server

To evaluate BORG in a production server environment,
we made a copy of the our Computer Science depart-
ment web server on the O4 machine (see Table 3), and
replayed all the web requests for a week. During this
week a total of 1137234 requests to 256017 distinct files
were serviced. We set BORG to reconfigure four times

during this period, using an BOPT of 8GB (< 5% of the
180GB web server file system). To measure the influence
of the I/O history, we conducted two sets of experiments.
In the first experiment, we used all the traces gathered
from the beginning of the experiment as input to the re-
configurator (cumulative). For the second, we only used
the portion of the trace corresponding to the period since
the last reconfiguration (partial).

3500
3000
2500
2000
1500
1000
500
0

Vanilla &xxxx
BORG-C mmmm
BORG-P

Disk Busy Time (sec)

ravavavavavave”

Phases

Figure 8: Disk busy time for the week long web log
replay. Borg-C and Borg-P correspond to using cumu-
lative and partial traces respectively.

Figure 8 shows the improvements in disk busy time
across various non-reconfiguration and reconfiguration
phases during the experiment.  For both the cumula-
tive and partial experiments, BORG reduces disk busy
time in all non-reconfiguration phases with reductions
ranging from 14% to 35% for cumulative and 5% to
39% for the partial configuration, except N5 for cumu-
lative which reported a 6% increase for cumulative due
to drastic change in the last interval’s workload. Disk
busy times in reconfiguration phases are typically higher
due to the overhead of copying data to the BOPT. Nev-
ertheless, BORG was able to obtain overall reductions of
14% and 18% for cumulative and partial configuration. It
is interesting to note that short term training yielded bet-
ter results in this case, perhaps due to greater influence
of short term locality.

30000 T T T

Reconfigurator
Planner mmm— e —H
Analyzer kxxx1

25000

20000

15000

Time (sec)

10000

5000

Ro N .~ Rg
Reconfigurations

Figure 9: BORG overhead. Bars C and P represent the
cumulative and partial traces experiments respectively. R; in-
dicates the ith reconfiguration.

Next we examine operational overhead of BORG. Fig-
ure 9 shows the amount of time spent in each phase of
the reconfiguration. With cumulative traces, the time

USENIX Association

7th USENIX Conference on File and Storage Technologies 191



required for the analyzer and planner phases increases
linearly. While the planner and analyzer stages can run
as low-priority tasks in the background, we must point
out that the current implementation of BORG analyzer
and planner stages are highly unoptimized and there is
substantial room for improvement. We discuss possi-
ble improvements for both subsystems in §7. With par-
tial traces, the time increases until the second recon-
figuration, but then decreases and stays almost constant
for the following ones, indicating a gradually stabilizing
working-set.

Relocate
Leaving mm—
Incoming EzEsEER

# of Pages (millions)
5
— T T T

CH4

Ry . Rg
Reconfigurations

Figure 10: Differences in the reconfiguration plans.

To explain this further, we examined the reconfigu-
ration plan divided by the type of operation (refer to
§ 4.4), presented in Figure 10. We note that the size
of the plan consistently increases when using cumulative
traces and most of the movements correspond to page re-
locates, which are page movements within the BOPT it-
self. The story is quite different for partial traces, where
we see pages not accessed in the past interval leaving the
BOPT, resulting in a smaller working set in the BOPT
and thereby reducing the amount of work done by the
analyzer, planner, and reconfigurator stages.

6.3 Virtual Machines

BORG has the potential to significantly improve the per-
formance of virtualized environments, by co-locating
multiple virtual machine (VM) localities spread across a
physical volume. We evaluated the impact on the per-
VM boot time and the overall performance of virtual
machines by deploying BORG in a Xen [4] virtual ma-
chine monitor. We created four VMs, each with 64MB
memory and 4GB physical partition on the host O5 (refer
to Table 3). For evaluating boot-time improvement, we
trained BORG with the boot-time events of all the vir-
tual machines. BORG showed an almost 3X average im-
provement in VM boot-times - 167 seconds with vanilla
and 65 seconds with BORG.

To measure normal execution performance improve-
ment for the VMs, we ran the Postmark benchmark
which emulates an e-mail server and creates and up-
dates small files. We set the number of files to be 2000
in 500 directories and performed 200,000 transactions.

1000
500

3500
s Vanilla &xxxx3
% 3000 - BORG mmm
é’ 2500
£ 2000
% 1500
3
9]
X
2
a

Phases

Figure 11: BORG with a VMM.

App [ Start-up time | Rand. /O % [ Avgseek (¥cyl) |
[ V] B [ V] B [V B
firefox 3.71 2.32 2.7 1.2 132 37
cowriter 5.30 2.74 3.8 0.2 193 20
xemacs 7.26 2.72 2.1 0.3 87 9
acroread 6.20 2.65 4.6 0.1 39 9
eclipse 4.12 1.52 2.5 0.3 198 29
gimp 3.62 3.66 2.5 2.1 102 63
coimpress 5.18 1.97 2.7 0.3 61 39

Table 4: Application start-up time improvement. V:
vanilla, B: BORG.

We reconfigured BORG after every 20% of the bench-
mark was executed with the training set including I/O
operations from the start of the execution of the bench-
mark. The results for the I/O performance are shown in
Figure 11. As before, the reconfiguration phases see a
increased disk busy times with BORG. For the normal
operation, as the training set increases, the disk busy
times with BORG starts decreasing. Overall, there is
an average decrease of 6% in busy time during the non-
reconfiguration phases. However, this improvement is
not consistent; performance degrades substantially even
during normal operation in the early stages of the bench-
mark. The loss of process context inside the VMM is a
key problem that tends to convert sequentially laid out
files into non-sequential upon reconfiguration. We be-
lieve that making BORG aware of process context inside
the VMM [14] can substantially improve the BOPT lay-
out, resulting in much greater performance benefit.

6.4 Application Start-up

We evaluated the impact of BORG on 1/O-bound start-
up phase for common desktop applications using host
03. We first trained the system for a duration of approx-
imately four hours, during which we invoked a subset of
the applications listed in Table 4 (but specifically exclud-
ing gimp and coimpress) multiple times for perform-
ing common office tasks. We invalidated the page cache
periodically to artificially dilate time and simulate sys-
tem reboots. Table 4 shows the difference in application
start-up times, the percentage of sequential accesses and
average seek overhead. For the applications that were
used in training, it can be observed that there is a no-
ticeable improvement in the I/O time with BORG - at
least 43% for oowriter and up to 67% for eclipse.

192

7th USENIX Conference on File and Storage Technologies

USENIX Association



100

100

Developer xxxxx
SVN

80
60

80

Throughput Improvement (%)

-20

-20

100

Developer xxxxxi
SVN s

Developer m==xxx1
SVN 80
K3 -

%

S % Sy,

% % 2, %
% % % R

Reconfiguration Interval

10@
Size of BOPT

- 20 ‘ ‘ ‘ ‘
% % % D n
> 0

Write Buffer Fraction

Figure 12: A sensitivity analysis of BORG performance to its configurable parameters.

Further, it is interesting to observe that although the per-
centage of sequential I/Os decreases for cowriter and
acroread with BORG, there is an overall improvement
in I/O performance, possibly due to a reduction in the ro-
tational overhead . There is barely any difference in the
performance for untrained application gimp. However,
although coimpress was not used in the training, its
start-up user-time shows an improvement of 62% in the
average I/O time; this can be attributed to large shared
libraries also used by the cowriter which was included
in training.

6.5 Sensitivity Analysis

To gain maximum performance improvement with
BORG its configurable parameters — the reconfiguration
interval, the BOPT size, and the BOPT write buffer frac-
tion — must be carefully tuned for a given workload. To
better understand the effects of these parameters, we re-
played the developer and the SVN workload traces on
host O1 varying each of these parameters over a range
of values. In all the experiments, the trace replay be-
gins at the same starting point, that is after a base re-
configuration, which uses the first six hours of the trace
as the training period. We measure the relative effi-
ciency of disk I/O using BORG averaged across the non-
reconfiguration intervals by reporting the improvement
in disk busy time throughput (referred to henceforth as
“throughput improvement”) when compared to a vanilla
system.

6.5.1 Reconfiguration Interval

Figure 12 (left) shows the percentage improvement over
the vanilla system. The reconfiguration interval is varied
from 8 hours (18 reconfigurations) to 3 days (1 reconfig-
uration). To bootstrap the sensitivity analysis, the BOPT
size is fixed to 1GB, with 50% reserved for write buffer-
ing in this experiment. For the developer workload, as
the reconfiguration interval increases the throughput in-
creases, the training set becomes larger, and BORG can
more effectively capture the working-set. For the SVN
workload, the performance decreases for higher inter-
vals. This is because the SVN working-set changes quite
frequently (elaboration in § 2 and Figure 1(c)).

6.5.2 BOPT size

We use the best-case reconfiguration intervals of 3 days
for the developer and a day for the SVN workload from
the previous experiment. We vary the BOPT size from
256MB to 8GB, of which the write buffer is always cho-
sen as 50% of the BOPT size. Figure 12 (middle) shows
that as the BOPT size increases, BORG’s performance
with the developer workload increases since the devel-
oper workload has a larger working set. When most
of the blocks in the working set can be accommodated
in the BOPT, the performance improvement stabilizes.
Since the working set size for the SVN workload is rel-
atively smaller, the performance improvement is almost
same for the BOPT sizes >256MB.

6.5.3 Write Buffer Variation

From our previous results, we pick an interval of 3 days
and 1 day and BOPT size of 2GB and 4GB for the devel-
oper and the SVN workloads respectively. We vary the
write buffer from 0-100%. Figure 12 (right) shows that
for the developer workload, not having a write buffer re-
sults in the lowest throughput. There is a steady increase
in performance, peaking at 50% write buffer. Thereafter,
it starts falling since read performance begins to degrade
due to lesser available read cache. For the write-intensive
SVN workload, the performance increases with increase
in the write buffer size, since all the writes can be co-
located in the BOPT partition.

Configuring BORG parameters The above experi-
ments indicate that configuring parameters incorrectly
can lead to sub-optimal performance improvements with
BORG. Fortunately, iterative algorithms can be easily
employed to identify better parameter combinations in a
straightforward way. Exploring such iterative algorithms
more formally is one aspect of our future work.

7 Discussion

While our experiences with BORG have been mostly
positive, there are several directions in which the current
version can be either improved or extended. We now dis-
cuss some of the significant directions that can serve as
subjects of future investigation.

Analyzer and Planner optimization. The current ver-
sions of the analyzer (§ 4.2) and the planner (§ 4.3) com-

USENIX Association

7th USENIX Conference on File and Storage Technologies

193



ponents of BORG do not use the results of past execu-
tions and therefore incur higher overheads for every sub-
sequent reconfiguration when using cumulative traces for
training. Each of these components can be substantially
optimized by making them more intelligent. The ana-
lyzer can build the master access graph incrementally
rather than from scratch; likewise, the planner can incre-
mentally create the new plan for BOPT reconfiguration
during each iteration.

Alternate BOPT layout strategies. The current version
of BORG uses a simple BOPT layout strategy starting
from the most-connected vertex — the vertex with the
highest sum of its edge-weights — in the master access
graph, and then choosing the vertex most connected to
it, and so on. Alternate layout strategies can be envi-
sioned that potentially yield greater benefit. For instance,
the placement can begin with the nodes connected to the
highest weight edge, and then resorting to the same incre-
mental addition of vertices. Alternatively, a distributed
layout algorithm can be designed which uses many start-
ing points for building the layout.

Timely reconfiguration. The current reconfiguration
trigger in BORG is based on a fixed interval. However,
opportune times for performing reconfiguration are dur-
ing periods of no or low foreground I/O activity, espe-
cially for workloads that exhibit obvious idle or peak pe-
riods of activity. More sophisticated triggers can use al-
ternate metrics to identify “unwanted” or “much needed”
reconfiguration, such as the BOPT hit rate or the per-
centage of sequential accesses pre- and post- indirection
to evaluate the effectiveness of the current BOPT layout.
The above techniques can help substantially reduce the
impact of reconfiguration to foreground I/O and increase
the effectiveness of each reconfiguration operation.

Avoiding performance degradation. BORG can de-
grade performance for certain workloads, for instance,
a read-intensive workload that has a very large or unsta-
ble working-set (§ 6.2). Future versions of BORG can be
made intelligent to measure the impact of reconfigura-
tion on such workloads by comparing the percentage se-
quentiality and the spatial locality for the accesses before
(vanilla) and after (BORG) the indirection operation. If
these metrics degrade post-BORG, BORG can be dis-
abled. Such a mechanism will allow system performance
to degrade gracefully in the event that the workload is not
conducive to benefit from block reorganization.

8 Related Work

We examine related work by organizing the literature
into block and file based approaches.

8.1 Block level approaches

Early work [41] on optimized data layout argued for
placing the frequently accessed data in the center of

the disk. Vongsathorn et al. [39] and Ruemmler and
Wilkes [29] both propose Cylinder Shuffling. Ruemm-
ler and Wilkes specifically demonstrated that perform-
ing relatively infrequent shuffling led to greater improve-
ment in [/O performance. In Akyurek and Salem’s
work [2], the authors demonstrated the advantages of
copying over shuffling and the importance of reorganiza-
tion at the block (rather than cylinder) level. These early
data clustering approaches emphasized on process- and
access-pattern- agnostic block counts to perform the data
reorganization and reported simulation-based results.

Researchers have also investigate self-optimizing
RAID systems. Wilkes et al. proposed HP Au-
toRAID [40], a controller-based solution, that transpar-
ently adapts to workload changes by using a two-level
storage hierarchy; the upper level provides data redun-
dancy for popular data while the lower level provides
RAID 5 parity protection for inactive data. Work on ea-
ger writing [42] and distorted mirrors [35] address mir-
rored/striped RAID configurations primarily for database
OLTP workload (which are characterized by little local-
ity or sequentiality) that choose to write to a free sec-
tor closest to the head position on one more disk drives.
While we are yet to explore BORG’s use in multi-disk
systems, the optimizations used in BORG are differ-
ent and mostly complementary to the above proposals,
whereby BORG attempts to capture longer-term on-disk
working-sets within a dedicated volume.

Hu et al.’s work on Disk Caching Disk [10] uses an ad-
ditional logging disk (or disk partition) to perform writes
sequentially and subsequently, destage to their original
locations. Write buffering in BORG is slightly different
in that writes to data already in the BOPT partition are
written in place. The DCD work does not optimize for
data read operations; BORG optimizes reads as well so
head movement is substantially restricted.

Among recent work on block reorganization, C-
Miner [17] uses advanced data mining techniques to
mine correlations between block I/O requests.  These
techniques can be utilized in BORG to infer complex
disk access patterns. The Intel Application Launch Ac-
celerator [12] reorganizes blocks used during application
start-up to be more sequential, but does not provide a
generic solution to improve overall disk I/O performance
of the system.

For throughput improvement, Schindler et al. have
proposed free-block scheduling [18] and track-aligned
extents [31] which use intelligent I/O scheduling rather
than block reorganization. These are complementary
techniques that can be used in conjunction with BORG.

Among block level approaches, our work is closest to
ALIS [9], wherein frequently accessed blocks as well as
block sequences are placed sequentially on a dedicated,
reorganized area on the disk. There are key differences

194

7th USENIX Conference on File and Storage Technologies

USENIX Association



in design and implementation, though. First, BORG in-
curs reduced space, maintenance, and metadata overhead
since it maintains at most one copy of each data block.
The multiple replicas in ALIS can become stale quickly
in write-intensive workloads. Further, unlike BORG,
ALIS does not optimize write traffic. Finally, the evalu-
ation of ALIS techniques is performed using a disk sim-
ulator with trace playback. On the other hand, we imple-
ment and evaluate an actual system, thereby having the
opportunity to address a greater detail of system imple-
mentation issues.

8.2 File level approaches

In one of the early file oriented approaches, Staelin et
al. [36] proposed monitoring file accesses and mov-
ing frequently accessed files (entirely) to the center of
the disk. Log-structured file systems (LFS [28]) offer
superior performance for workloads with large number
of small writes by batching disk writes to the end of a
disk-sequential /og. BORG writes all data to the BOPT
partition to achieve a similar effect, but also attempts to
co-locate a majority of read operations with the writes.
Matthews et al. [19] proposed an optimization to LFS by
incorporating data layout reorganization to improve read
performance. Their use of block access graphs is similar
to the process access graphs used in BORG. Their LFS-
specific solution moves blocks within the LFS partition
storing exactly one copy of each block at any time. Since
BORG stores two copies, it can optimize for sequential
and application-driven deterministic, non-sequential ac-
cesses simultaneously.

Researchers have also explored data- and application-
specific layout mechanisms. Ganger and Kaashoek [6]
advocate co-locating inodes and file blocks for small
files. Conversely, PLACE [23], exposes the underly-
ing layout structure to applications, so they can perform
custom data placement. Sivathanu et al. [34] propose
semantically-smart disk systems (SDS) that infer file sys-
tem semantic associations for blocks, subsequently used
for aligning files with track boundaries. Windows
XP [21] uses the defragmenter for co-locating temporally
correlated file data for speeding up application start-up
events. BORG is a generic solution in comparison to the
above approaches, since it creates a block reorganization
mechanism that can adapt to an arbitrary workload.

Mac OS’s HES Plus [1] uses adaptive hot file cluster-
ing to migrate and sequentially store hot files of small
sizes near the volume’s metadata. In contrast, BORG
operates at the block layer and sequentializes by copying
(rather than migrating) hot block sequences, which may
span either partial or multiple files.

Among file level approaches, BORG is closest to the
FS2 [11]. FS2 proposes replication of frequently ac-
cessed blocks based on disk access patterns in file sys-

tem free space. This strategy, unfortunately, also restricts
the degree of seek and rotational-delay optimization due
to the distribution of free space. Since FS2 may cre-
ate multiple copies of a block simultaneously, staleness,
and consequently, space and I/O bandwidth wastage, be-
come important concerns (similar to those in ALIS);
BORG maintains at most one extra copy of each block
and its strength is in being a non-intrusive, storage-stack
friendly, and file system independent (portable) solution.

9 Conclusions and Future Work

We presented BORG, a self-optimizing layer in the stor-
age stack that automatically reorganizes disk data layout
to adapt to the workload’s disk access patterns. BORG
was designed to optimize both read and write traffic
dynamically by making reads and writes more sequen-
tial and restricting majority of head movement within
a small optimized disk partition. A Linux implemen-
tation of BORG was evaluated and shown to offer per-
formance gains in the average case for varied work-
loads including office and developer class end-user sys-
tems, a web server, an SVN server, and a virtual ma-
chine monitor. Disk busy time reductions with BORG
across these workloads during non-reconfiguration in-
tervals range from 6% (for the VM workload) to 50%
(for the developer server workload), with even greater
improvements possible with careful parameter selection
within BORG.

BORG performs occasionally worse than a vanilla
system, specifically when a read-mostly workload dras-
tically shifts its working set. BORG is able to eas-
ily address changing working-sets with a (possibly non-
sequential) write workload, since it has the ability to ab-
sorb and sequentialize writes inside the BOPT. A sensi-
tivity analysis revealed the importance of choosing the
right configuration parameters for reconfiguration inter-
val, BOPT size, and the write-buffer fraction. Fortu-
nately, simple iterative algorithms can be quite effective
in identifying the right parameter combination; a formal
investigation of such an approach is an avenue for fu-
ture work. The memory and CPU overheads incurred by
BORG are modest, and with ample scope for further op-
timization. In summary, we believe that BORG offers a
novel and practical approach to building self-optimizing
storage systems that can offer large I/O performance im-
provements in commodity environments.

Acknowledgments

We would like to thank the reviewers of this paper and
especially our shepherd Ken Salem for insightful feed-
back that helped improve the content and presentation of
this paper substantially. This work was supported in part
by the NSF grants CNS-0747038 and I1S-0534530 and
by DoE grant DE-FG02-06ER25739.

USENIX Association

7th USENIX Conference on File and Storage Technologies 195



References

[1] HES Plus Volume Format.

http:lldeveloper.apple.com/technotes/tn/tnl 150.html.

[2] S. Akyurek and K. Salem. Adaptive Block Rearrange-
ment. Computer Systems, 13(2):89-121, 1995.

[3] J. Axboe. blktrace user guide, February 2007.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, 1. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proc. of the ACM SOSP, Octo-

ber 2003.
[5] H. Custer. Inside the Windows NT File System. Microsoft

Press, August 1994.

[6] G.R. Ganger and M. F. Kaashoek. Embedded inodes and
explicit grouping: Exploiting disk bandwidth for small
files. Proc. of the USENIX Technical Conference, 1997.

[7] M. Gémez and V. Santonja. Characterizing Temporal
Locality in I/O Workload. Proc. of the International
Symposium on Performance Evaluation of Computer and

Telecommunication Systems, 2002.

[8] M. Holton and R. Das. XFS: A Next Generation Jour-
nalled 64-bit filesystem with Guaranteed Rate 10. SGI
Technical Report, 1996.

[9] W. W. Hsu, A.J. Smith, and H. C. Young. The automatic
improvement of locality in storage systems. ACM Trans-

actions on Computer Systems, 23(4):424—473, Nov 2005.
[10] Y. Hu and Q. Yang. DCD - Disk Caching Disk: A New

Approach for Boosting I/O Performance. Proc. of the In-

ternational Symposium on Computer Architecture, 1995.
[11] H.Huang, W. Hung, and K. G. Shin. FS2: Dynamic Data

Replication In Free Disk Space For Improving Disk Per-
formance And Energy Consumption. Proc. of the ACM

SOSP, October 2005.
[12] Intel Corporation. Intel application launch accelerator.

http:/lsupport.intel.com/support/chipsets/iaal, 1998.

[13] S.Iyer and P. Druschel. Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness
in Synchronous I/O. Proc. of the ACM SOSP, Sept 2001.

[14] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Antfarm: Tracking processes in a virtual ma-
chine environment. Proc. of the USENIX Technical Con-
ference, May 2006.

[15] D. Kleikam, D. Blaschke, S. Best, and B. Arndt. JFS for
Linux. http://jfs.sourceforge.net|.

[16] C.Liand K. Shen. Managing Prefetch Memory for Data-
Intensive Online Servers. Proc. of the USENIX FAST, De-
cember 2005.

[17] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou. C-Miner:
Mining Block Correlations in Storage Systems. Proc. of

the USENIX FAST, April 2004.
[18] C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock

Scheduling Outside of Disk Firmware. Proc. of USENIX
FAST, January 2002.

[19] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang,
and T. E. Anderson. Improving the Performance of Log-
Structured File Systems with Adaptive Methods. Proc. of
the ACM SOSP, 1997.

[20] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A Fast
File System for UNIX*. ACM Transactions on Computer
Systems 2, 3:181-197, August 1984.

[21] Microsoft Corporation. Fast System Startup for PCs Run-
ning Windows XP. Windows Platform Design Notes, De-
cember 2006.

[22] Namesys, Inc. The

http:/lwww.namesys.com/.
[23] J. Nugent, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Controlling your PLACE in the File System
with Gray-box Techniques. Proc. of the USENIX Tech-
nical Conference, June 2003.

[24] A. E. Papathanasiou and M. L. Scott.  Aggressive
Prefetching: An Idea Whose Time Has Come. Proc. of

the Workshop on HotOS, June 2005.
[25] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,

and J. Zelenka. Informed Prefetching and Caching. In

Proc. of the 15th ACM SOSP, December 1995.
[26] F. 1. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Robust, Portable I/O Scheduling with the Disk
Mimic. Proc. of the USENIX Technical Conference, June
2003.

[27] L. Reuther and M. Pohlack. Rotational-position-aware
real-time disk scheduling using a dynamic active subset

(DAS). Proc. of the IEEE RTSS, December 2003.
[28] M. Rosenblum and J. Ousterhout. The design and im-

plementation of a log-structured file system. Proc. of the

ACM SOSP, October 1991.

[29] C. Ruemmler and J. Wilkes. Disk Shuffling. Technical
Report HPL-CSP-91-30, Hewlett-Packard Laboratories,
October 1991.

[30] C. Ruemmler and J. Wilkes. UNIX disk access patterns.

Proc. of the Winter USENIX Conference, 1993.
[31] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger.

Track-aligned Extents: Matching Access Patterns to Disk

Drive Characteristics. Proc. of USENIX FAST, 2002.
[32] M. Seltzer, P. Chen, and J. Ousterhout. Disk Scheduling

Revisited. Proc. of the Winter USENIX Technical Confer-
ence, 1990.

[33] M. Seltzer and C. Small. Self-Monitoring and Self-
Adapting Operating Systems. Proc. of the Workshop on
HotOS, May 1997.

[34] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Semantically-Smart Disk Systems. Proc. of the

USENIX FAST, March 2003.
[35] J. A. Solworth and C. U. Orji. Distorted Mirrors. Proc. of

PDIS, 1991.

[36] C. Staelin and H. Garcia-Molina. Smart Filesystems. In
USENIX Winter Conference, 1991.

[37] S. C. Tweedie. Journaling the Linux ext2fs File System.
The Fourth Annual Linux Expo, May 1998.

[38] L. Useche, J. Guerra, M. Bhadkamkar, M. Alarcon, and
R. Rangaswami. EXCES: External caching in energy sav-

ing storage systems. [EEE HPCA, 2008.
[39] P. Vongsathorn and S. D. Carson. A System for Adap-

tive Disk Rearrangement. Softw. Pract. Exper., 20(3):225—
242, 1990.

[40] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The
HP AutoRAID Hierarchical Storage System. Proc. of the
ACM SOSP, 1995.

[41] C. K. Wong. Minimizing Expected Head Movement
in One-Dimensional and Two-Dimensional Mass Storage
Systems. ACM Computing Surveys, 12(2):167-178, 1980.

[42] C. Zhang, X. Yu, A. Krishnamurthy, and R. Y. Wang.
Configuring and Scheduling an Eager-Writing Disk Array
for a Transaction Processing Workload. Proc. of USENIX
FAST, January 2002.

ReiserFS File System.

196

7th USENIX Conference on File and Storage Technologies

USENIX Association





